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Proximity Queries 

Geometric reasoning of spatial relationships among 
objects (in a dynamic environment) 

 

d

Closest Points & Separation Distance 

d

Penetration Depth 

Collision Detection Contact Points & Normals 

Motivation 

2+ objects 1 object 

Proximity queries 

Intersection Separation & 
Peneration distance Self-collision 
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Problem Domain Specifications 
•  Model Representations 

–  polyhedra (convex vs. non-convex vs. soups) 

–  CSG, implicits, parametrics, point-clouds 
 

•  Type of Queries 
–  discrete vs. continuous query 

–  distance vs. penetration computation 

–  estimated time to collision 

Simulation Environments 
–  pairwise vs. n-body 

–  static vs. dynamic 

–  rigid vs. deformable 

Applications 

  Robot motion planning 
  Simulation of (dis-)assembly tasks 

  Tolerance verification 

  Simulation-based design 

  Ergonomics analysis 

  Haptic rendering 
  Physics-based modeling and simulation 

Prior	
  work	
  on	
  Proximity	
  Computa1ons	
  

•  	
  Fast	
  algorithms	
  for	
  convex	
  polytopes	
  (1991	
  onwards)	
  

•  	
  Bounding	
  volume	
  hierarchies	
  for	
  general	
  polygonal	
  	
  
models	
  (1995	
  onwards)	
  

•  	
  Deformable	
  models	
  &	
  self-­‐collisions	
  (2000	
  onwards)	
  

•  Mul1ple	
  soIware	
  systems	
  

I-­‐Collide,	
  RAPID,	
  PQP,	
  DEEP,	
  SWIFT,	
  SWIFT++,	
  PIVOT	
  
DeformCD,	
  Self-­‐CCD,…..	
  

Prior	
  work	
  on	
  Proximity	
  Computa1ons	
  

Mul1ple	
  soIware	
  systems	
  

•  I-­‐Collide,	
  RAPID,	
  PQP,	
  DEEP,	
  SWIFT,	
  SWIFT++,	
  DeformCD,	
  
PIVOT,	
  Self-­‐CCD,…..	
  

•  More	
  than	
  100,000	
  downloads	
  from	
  1995	
  onwards	
  

•  Issued	
  more	
  than	
  50	
  commercial	
  licenses	
  (Kawasaki,	
  MSC	
  
SoIware,	
  Ford,	
  Sensable,	
  Siemens,	
  BMW,	
  Phillips,	
  Intel,	
  
Boeing,	
  etc.)	
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Do	
  we	
  need	
  beYer	
  or	
  faster	
  algorithms?	
   Do	
  we	
  need	
  beYer	
  or	
  faster	
  algorithms?	
  

Reliable	
  con+nuous,	
  self-­‐collisions	
  for	
  cloth	
  simula+on	
  
(Model	
  Courtesy:	
  Disney	
  Anima+on) 

Do	
  we	
  need	
  beYer	
  or	
  faster	
  algorithms?	
  

Penetra+on	
  computa+on	
  has	
  high	
  
combinatorial	
  complexity:	
  Needed	
  
for	
  dynamic	
  response	
  and	
  path	
  
planning 

Do	
  we	
  need	
  beYer	
  or	
  faster	
  algorithms?	
  

Finite-­‐Element	
  Simula+on	
  for	
  Crash	
  Analysis:	
  Collisions	
  can	
  take	
  
50-­‐90%	
  of	
  simula+on	
  +me	
  (Model	
  Courtesy:	
  BMW	
  &	
  LS-­‐DYNA	
  ) 
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Our	
  Recent	
  Work	
  

•  Faster	
  algorithms	
  for	
  con1nuous	
  collision	
  detec1on	
  
among	
  deformable	
  models	
  

•  Volumetric	
  con1nuous	
  collision	
  methods	
  

•  Penetra1on	
  depth	
  computa1on	
  

•  Parallel	
  algorithms	
  for	
  mul1-­‐core	
  and	
  many-­‐core	
  
processors	
  

Con1nuous	
  Collision	
  Detec1on	
  

Compute	
  the	
  first	
  1me	
  of	
  contact	
  between	
  discrete	
  
1me	
  intervals	
  

•  Incremental	
  hierarchy	
  based	
  methods	
  

•  Improved	
  culling	
  based	
  on	
  normal	
  bounds	
  

•  Eliminate	
  redundant	
  elementary	
  tests	
  

•  Simple	
  filters	
  to	
  remove	
  false	
  posi1ves	
  

More	
  than	
  10-­‐20X	
  improvement	
  in	
  performance	
  

[Tang	
  et	
  al.	
  2008,	
  Cur1s	
  et	
  al.	
  2008,	
  Tang	
  et	
  al.	
  2010]	
  

Con1nuous	
  Collision	
  Detec1on	
   Volumetric	
  CCD	
  

•  New	
  volumetric	
  methods	
  for	
  FEM	
  simula1ons	
  

•  Collision	
  checking	
  between	
  internal	
  nodes	
  and	
  elements	
  

•  Eliminate	
  redundant	
  elementary	
  tests	
  

•  Simple	
  filters	
  to	
  remove	
  false	
  posi1ves	
  

Up	
  to	
  20X	
  improvement	
  in	
  performance	
  

[Tang	
  et	
  al.	
  2011]	
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Volumetric	
  CCD	
   Penetra1on	
  Depth	
  Computa1on	
  

•  Generalized	
  penetra1on	
  depth	
  formula1on	
  based	
  on	
  
rota1onal	
  mo1on	
  

•  Local	
  and	
  global	
  penetra1on	
  depth	
  computa1on	
  

•  Retrac1on	
  based	
  planners	
  for	
  rigid	
  and	
  ar1culated	
  
models	
  

[Zhang	
  et	
  al.	
  2006;	
  Zhang	
  et	
  al.	
  2007;	
  Zhang	
  et	
  al.	
  2008;	
  Pan	
  
et	
  al.	
  2010]	
  

Retrac1on-­‐based	
  Planner	
  using	
  Penetra1on	
  
Depth	
  Computa1ons	
  

Collision	
  or	
  proximity	
  
checking	
  takes	
  more	
  
than	
  90%	
  of	
  +me	
  in	
  
sample-­‐based	
  planners 

20 

A Parallel Revolution:  
2005 Onwards   

•  Power Wall = Brick Wall  
⇒ End of way built microprocessors for last 40 years 

New Moore’s Law is 2X processors (“cores”) per chip 
every technology generation, but ≈ same clock rate 

–  “This shift toward increasing parallelism is not a triumphant stride 
forward based on breakthroughs …; instead, this … is actually a 
retreat from even greater challenges that thwart efficient silicon 

implementation of traditional solutions.”  
The Parallel Computing Landscape: A Berkeley View, Dec 2006 

 

•  Sea change for HW & SW industries since changing the model of 
programming and debugging 
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Parallel Revolution has started! 

•  While evolution and global warming are “controversial” in 
scientific circles, belief in need to switch to parallel 
computing is unanimous in the hardware community  

  (Dave Patterson, Berkeley) 

 

•  AMD, Intel, IBM, Sun, … now sell more multiprocessor 
(“multicore”) chips than uniprocessor chips 

– Plan on little improvement in clock rate (8% / year?) 

– Expect more cores every 2 years, ready or not 

– Note – they are already designing the chips that will 
appear over the next 5 years, and they’re parallel 

21 

Mul1-­‐Core	
  and	
  Many-­‐Core	
  Processors	
  

•  Mul1-­‐core	
  CPUs	
  (Intel,	
  AMD,	
  IBM)	
  
•  Take	
  the	
  best	
  serial	
  core	
  and	
  fit	
  as	
  many	
  cores	
  on	
  a	
  single	
  chip,	
  
as	
  possible	
  

•  Each	
  serial	
  core	
  has	
  large	
  caches	
  
•  Support	
  limited	
  SIMD	
  and	
  instruc1on-­‐level	
  parallelism	
  

Many-­‐Core	
  Processors	
  (GPUs)	
  

 

•  2010: Fermi has 512 *scalar* fragment processors or cores 

•  2009:GT285  240 *scalar* fragment processors or cores 

•  2006:G80 (8800 GTX) has 128 fragment processors or cores 

•  2005:G71 (7900) has 48 *vec4* pixel  cores 

   2004: NV40 (6800) has 16 vec4  cores 

•  2003: NV30 (5800) had 4 vec4 pixel shader pipes or cores 

•  Growth Rate of NVIDIA GPUs (2003 onwards) 

Many-­‐Core	
  or	
  High-­‐Throughput	
  Compu1ng	
  

•  Notion of designing commodity processors with tens or 
hundreds of cores 

•   Combining fine-grain and coarse-grain parallelism 

•   High parallel code performance 

•   Improved memory throughput and power efficiency 
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GPU-­‐based	
  Algorithms	
  

•   Challenges in exploiting multiple cores 

•  Communication and synchronization between the cores is limited 

•   Limited cache hierarchy 

•   Use high number of threads to hide memory latency 

High GPU Computing Throughput	
  

•  Provide a sufficient number of parallel tasks so that all the cores 
are utilized 

•  Provide several times that number of tasks just so that each 
core has enough work to perform while waiting for data from 
slow memory accesses 

Dynamic GPU Work Distribution Methods [Lauterbach, Mo and 
Manocha 2009; Lauterbach & Manocha 2010] 

Computing and Traversing Hierarchies Hierarchy-based proximity queries 

•  Build or update hierarchies (Hard to parallelize) 
•  Traverse hierarchies recursively 

–  Start with root nodes 
–  Do nodes overlap? 

  Yes: Inner nodes: recurse on combinations of children 
       Leaf nodes: put primitive pair in separate queue 

–  Perform primitive overlap tests (Easy to parallelize)  
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Primitive tests 

•  Discrete collision: triangle-triangle test 
–  Do triangles overlap? 

 
 

•  Continuous collision 
–  Did moving triangles 

overlap at any time 
between t1 and t2? 

t1 

t2 t1 

t1 

Related work 

•  Use multi-core CPUs 
–  [Kim et al. 08, Kim et al. 09, Tang et al. 09 ] 

Work organization on GPUs 

•  Standard for recursive hierarchy operations 
–  Global work queue, work stealing 

 
 
 
 
 

•  Problem 
–  Shared access on GPU only via slow, non-

consistent global memory 

Task 1 Task 2 Task 3 

Shared queue 

Task 1 Task 2 Task 3 

Lightweight balancing 

•  Our solution 
–  Every thread/core has local queue (non-shared) 
–  Keep track of other thread's state occasionally 

  One shared global idle counter 

–  If above threshold, break and balance queues 
 
  

 

•  Avg. ~2-3x performance of work stealing 
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Parallel Hierarchy Operations 

•  Can also use vector units 
–  Each vector lane handles one intersection pair 
–  Potentially thousands of parallel tests 

•  Local work queue shared between lanes 
–  Access synchronized by atomics or prefix sum 
–  Does not change outside synchronization 

Hierarchy Construction 

 
BVH construction on GPUs 
 Uses thread and data parallelism 
  Fast linear BVH construction 
 
Interactive construction on current GPUs 

 

Hierarchy Construction 

Top-down methods 
E.g. recursively split primitives in half 

Bottom-up methods 
Repeatedly combine primitives into groups 

Derive from scene graph 

Bounding volumes 

•  We use oriented bounding boxes (OBBs) on GPUs 
–  Operations: about 1-2 order of  

magnitude more instructions  

•  But: 
–  Hierarchy construction only ~25% slower for OBBs 
–  Better culling efficiency (fewer overall tests) 
–  Overall performance win  (especially for continuous 
collision and distance queries)  
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Bounding volumes 

•  Separation distance: 
Rectangular swept spheres (widely used in 
PQP) 

 
 

 
–  Also has expensive construction 
–  Similar advantages, easy extension of OBBs 

Front tracking 

•  Exploit temporal coherence 
–  Simulations typically have small timesteps 

 
 

•  Store last intersecting pair for each subtree 
•  Next frame: still intersecting? 

–  Yes: test primitives 
–  No: go up in tree until intersection found  

Front tracking 

•  Advantage 
–  Less steps in intersection 
–  Not necessarily less work, but results in higher 

parallelism 
 

•  Overall 
–  ~10-25% less overall time for our benchmarks 

Results 
•  Implemented in CUDA on NVIDIA GTX 285 

–  Hierarchies built and updated fully on GPU 

•  Self-collision 

–  Includes collision and update of BVH per frame 

–  10-20X speedup over CPU-based algorithms 

49k tris, 34ms collision 40k tris, 29ms collision 

92k tris, 38ms collision 146k tris, 74ms collision 
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Results & Application 

•  Ported to NVIDIA GeForce 480 desktop GPU 
–  2.5 – 3X improvement over NVIDIA GeForce 285 

–  Resulting package (gProximity) is available on the 
WWW 

–  Used for real-time high DOF motion planning 
(gPlanner) 

Real-time High DOF Motion Planning	
  

PRM	
  Mo1on	
  Planning	
  on	
  GPUs	
  
•  50-100X acceleration can be observed over CPU-based 

algorithms 

 
 
 
OOPSMP on Intel 3.2GHz i7 (single core) CPU 

($600) 
gPlanner on NVIDIA GTX 285 GPU ($400) 

Results on PR2 robot model 
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Conclusions 

•  Collision and proximity queries 
–  Deformable models 
–  FEM and volumetric meshes 
–  Penetration depth computation 

•  Parallel GPU-based algorithms 

•   Application to real-time motion planning 

Future Work 

•  Need faster algorithms 
•  Integration with dynamics and FEM simulation 

packages 
•  Real-time planning on physical robots 
•  Parallelism and scalability? 

Request to the Community 

•  Please take the effort to make your source code 
available 
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