Fast Collision and Proximity
Computations

Dinesh Manocha
University of North Carolina at Chapel Hill

dm@cs.unc.edu

http://gamma.cs.unc.edu

W Proximity Queries

Geometric reasoning of spatial relationships among
objects (in a dvnamu environment)

*F €9

Collision Detection Contact Points & Normals

Closest Points & Separation Distance Penetration Depth

@ Collaborators

Sean Curtis (UNC)

Christian Lauterbach (UNC/Google)
Young Kim (Ewha)

Ming Lin (UNC)

Qi Mo (UNC)

Rasmus Tamstorf (Disney)

Min Tang (Zhejiang Univ.)

Sungeui Yoon (KAIST)

Liangjun Zhang (UNC/Stanford)

Motivation

e,

o Separation & .
Peneration distance geliresllsn

@ Problem Domain Specifications

Model Representations
— polyhedra (convex vs. non-convex vs. soups)

— CSG, implicits, parametrics, point-clouds

Type of Queries
— discrete vs. continuous query
distance vs. penetration computation
— estimated time to collision
Simulation Environments
— pairwise vs. n-body
— static vs. dynamic

— rigid vs. deformable

@ Prior work on Proximity Computations

Fast algorithms for convex polytopes (1991 onwards)

Bounding volume hierarchies for general polygonal
models (1995 onwards)

Deformable models & self-collisions (2000 onwards)
Multiple software systems

I-Collide, RAPID, PQP, DEEP, SWIFT, SWIFT++, PIVOT
DeformCD, Self-CCD,

@ Applications

Robot motion planning

Simulation of (dis-)assembly tasks
Tolerance verification
Simulation-based design
Ergonomics analysis

Haptic rendering

Physics-based modeling and simulation

@Prior work on Proximity Computations

Multiple software systems

« I-Collide, RAPID, PQP, DEEP, SWIFT, SWIFT++, DeformCD,
PIVOT, Self-CCD, ...

* More than 100,000 downloads from 1995 onwards

* |Issued more than 50 commercial licenses (Kawasaki, MSC
Software, Ford, Sensable, Siemens, BMW, Phillips, Intel,
Boeing, etc.)

@)o we need better or faster algorithms? @)o we need better or faster algorithms?

Reliable continuous, self-collisions for cloth simulation
(Model Courtesy: Disney Animation)

@0 we need better or faster algorithms? @o we need better or faster algorithms?

Penetration computation has high
combinatorial complexity: Needed
for dynamic response and path
planning

Finite-Element Simulation for Crash Analysis: Collisions can take
50-90% of simulation time (Model Courtesy: BMW & LS-DYNA)

i Our Recent Work @ Continuous Collision Detection

Faster algorithms for continuous collision detection
among deformable models

Volumetric continuous collision methods Incremental hierarchy based methods
Penetration depth computation Improved culling based on normal bounds
Parallel algorithms for multi-core and many-core Eliminate redundant elementary tests

processors Simple filters to remove false positives

More than 10-20X improvement in performance

[Tang et al. 2008, Curtis et al. 2008, Tang et al. 2010]

Continuous Collision Detection @ Volumetric CCD

New volumetric methods for FEM simulations

Fast Collision Detection for
Deformable Models using

Representative-Triangles Eliminate redundant elementary tests
Sean Curtis”

Collision checking between internal nodes and elements

Simple filters to remove false positives
Rasmus Tamstorf "

Dinesh Manocha®
Up to 20X improvement in performance

[Tang et al. 2011]

* University of North Carolina - Chapel Hill +Walt Disney Animation Studios

Volumetric CCD @ Penetration Depth Computation

Generalized penetration depth formulation based on
rotational motion

\VolCCD: Fast Continuous Local and global penetration depth computation
Collision Culling between Retraction based planners for rigid and articulated
Deforming Volume Meshes models
Submission ID: 0191

[Zhang et al. 2006; Zhang et al. 2007; Zhang et al. 2008; Pan
et al. 2010]

A Parallel Revolution:
2005 Onwards

Retraction-based Planner using Penetration @
Depth Computations

Power Wall =
End of way built microprocessors for last 40 years

Collision or proximity =>New Moore’ s Law is 2X processors (“cores”) per chip

checking takes more : ~
than 90% of time in every technology generation, but = same clock rate

sample-based planners “This shift toward increasing parallelism is not a triumphant stride

forward based on breakthroughs ...; instead, this ...

»

The Parallel Computing Landscape: A Berkeley View, Dec 2006

Sea change for HW & SW industries since changing the model of
programming and debugging

@ Parallel Revolution has started!

« While evolution and global warming are “controversial” in
scientific circles, belief in need to switch to parallel
computing is unanimous in the hardware community

(Dave Patterson, Berkeley)

AMD, Intel, IBM, Sun, ... now sell more multiprocessor
(“multicore”) chips than uniprocessor chips

— Plan on little improvement in clock rate (8% / year?)
— Expect more cores every 2 years, ready or not

— Note — they are already designing the chips that will
appear over the next 5 vears, and they’ re parallel

@ Many-Core Processors (GPUs)

: Fermi has 512 *scalar* fragment processors or cores
:GT285 240 *scalar* fragment processors or cores
:G80 (8800 GTX) has 128 fragment processors or cores
:G71 (7900) has 48 *vec4* pixel cores

: NV40 (6800) has 16 vec4 cores
: NV30 (5800) had 4 vec4 pixel shader pipes or cores

Growth Rate of NVIDIA GPUs (2003 onwards)

@Mulﬁ—Core and Many-Core Processors

¢ Multi-core CPUs (Intel, AMD, IBM)

* Take the best serial core and fit as many cores on a single chip,
as possible

* Each serial core has large caches

¢ Support limited SIMD and instruction-level parallelism

@any-Core or High-Throughput Computing

+ Notion of designing commodity processors with tens or
hundreds of cores

Combining fine-grain and coarse-grain parallelism
« High parallel code performance

Improved memory throughput and power efficiency

W GPU-based Algorithms

« Challenges in exploiting multiple cores
« Communication and synchronization between the cores is limited
« Limited cache hierarchy

« Use high number of threads to hide memory latency

@omputing and Traversing Hierarchies

g High GPU Computing Throughput

» Provide a sufficient number of parallel tasks so that all the cores
are utilized

» Provide several times that number of tasks just so that each
core has enough work to perform while waiting for data from
slow memory accesses

Dynamic GPU Work Distribution Methods [Lauterbach, Mo and
Manocha 2009, Lauterbach & Manocha 2010]

@ Hierarchy-based proximity queries

« Build or update hierarchies (Hard to parallelize)
 Traverse hierarchies recursively
- Start with root nodes

Do nodes overlap?

Yes: Inner nodes: recurse on combinations of children
Leaf nodes: put primitive pair in separate queue

- Perform primitive overlap tests (Easy to parallelize)

& Primitive tests & Related work

« Discrete collision: triangle-triangle test + Use multi-core CPUs
- Do triangles overlap? ' - [Kim et al. 08, Kim et al. 09, Tang et al. 09]

« Continuous collision

- Did moving triangles y
overlap atany time | A
between t1 and t2?

@ Work organization on GPUs @ Lightweight balancing

- Standard for recursive hierarchy operations « Our solution
- Global work queue, work stealing - Every thread/core has local queue (non-shared)
Task2 - Keep track of other thread's state occasionally

One shared global idle counter
Task 1 T k 2 Task 3
= = = - If above threshold, break and balance queues

Shared queue

« Problem

- Shared access on GPU only via slow, non-

consistent global memory » Avg. ~2-3x performance of work stealing

@ Parallel Hierarchy Operations

- Can also use vector units
- Each vector lane handles one intersection pair
- Potentially thousands of parallel tests
- Local work queue shared between lanes
Access synchronized by atomics or prefix sum
Does not change outside synchronization

@ Hierarchy Construction

Top-down methods

E.g. recursively split primitives in half
Bottom-up methods

Repeatedly combine primitives into groups

Derive from scene graph

@ Hierarchy Construction

BVH construction on GPUs
Uses thread and data parallelism
Fast linear BVH construction

Interactive construction on current GPUs

@ Bounding volumes

+ We use oriented bounding boxes (OBBs) on GPUs

- Operations: about 1-2 order of %

magnitude more instructions

- But:

- Hierarchy construction only ~25% slower for OBBs
Better culling efficiency (fewer overall tests)

- Overall performance win (especially f
collision and distance queries)

@ Bounding volumes @ Front tracking

« Separation distance: Exploit temporal coherence
Rectangular swept spheres (widely used in

- Simulations typically have small timesteps
PQP)

« Store last intersecting pair for each subtree
 Next frame: still intersecting?

- Also has expensive construction - Yes: test primitives
- Similar advantages, easy extension of OBBs - No: go up in tree until intersection found

@ Front tracking @ Results

Implemented in CUDA on NVIDIA GTX 285
¢ Advantage Hierarchies built and updated fully on GPU
- Less steps in intersection « Self-collision

- Not necessarily less work, but results in higher - Includes collision and update of BVH per frame
parallelism 10-20X speedup over CPU-based algorithms

49k tris, 34ms collision 40k tris, 29ms collision

« Overall >,

~10-25% less overall time for our benchmarks

92k tris, 38ms collision 146k tris, 74ms collision

@ Results & Application @eal-time High DOF Motion Planning

PRM algorithm GPU algorithm

Ported to NVIDIA GeForce 480 desktop GPU [samplegeneration LS5 S ool camoling
- 2.5 - 3X improvement over NVIDIA GeForce 285 ; s samples
Milestone construction

Parallel kNN query

m milestones (m<s) robot L obstacle

|L Proximity computation

BVH construction

- Resulting package (gProximity) is available on the 1 mitestones, m-kneighbors

o i 2, milestones
Local planning 4o . T
I m milestones, e edges s
N S — Parallel BVH collision

Used for real-time high DOF motion planning
(gPlanner)

Roadmap construction

Query connection

Graph search Parallel graph search

Query phase

PRM Motion Planning on GPUs &bl Results on PR2 robot model

50-100X acceleration can be observed over CPU-based
algorithms

[C-PRM [C-RRT [G-PRM [GL-PRM

piano 6.53s 19.44s T1s 111.23ms
helicopter 8.20s 20.94s S 129.33ms
maze3d] 138s 21.18s 78s 71.24ms
maze3d2 69.76s 17.4s 4.47s 408.6ms
maze3d3 8.45s 4.3s .40s 96.37ms
alphal.5 65.73s 2.8s .86s 1.446s

OOPSMP on Intel 3.2GHz i7 (single core) CPU
($600)
gPlanner on NVIDIA GTX 285 GPU ($400)

@ Conclusions @ Future Work

Collision and proximity queries Need faster algorithms

— Deformable models Integration with dynamics and FEM simulation

— FEM and volumetric meshes packages
- Penetration depth computation

Real-time planning on physical robots
Parallel GPU-based algorithms

Parallelism and scalability?
Application to real-time motion planning

@ Request to the Community @ Acknowledgments

 Please take the effort to make your source code « Funding agencies:

available _ NSF

- ARO
DARPA/RDECOM
NVIDIA
Intel
Willow Garage

Models courtesy of Disney, Kineo CAM, BMW, LS-
DYNA

Thanks!

