
7/2/11

1

Fast Collision and Proximity
Computations

 Dinesh Manocha
University of North Carolina at Chapel Hill

dm@cs.unc.edu
http://gamma.cs.unc.edu

Collaborators

•  Sean Curtis (UNC)
•  Christian Lauterbach (UNC/Google)
•  Young Kim (Ewha)
•  Ming Lin (UNC)
•  Qi Mo (UNC)
•  Rasmus Tamstorf (Disney)
•  Min Tang (Zhejiang Univ.)
•  Sungeui Yoon (KAIST)
•  Liangjun Zhang (UNC/Stanford)

Proximity Queries

Geometric reasoning of spatial relationships among
objects (in a dynamic environment)

d

Closest Points & Separation Distance

d

Penetration Depth

Collision Detection Contact Points & Normals

Motivation

2+ objects 1 object

Proximity queries

Intersection Separation &
Peneration distance Self-collision

7/2/11

2

Problem Domain Specifications
•  Model Representations

–  polyhedra (convex vs. non-convex vs. soups)

–  CSG, implicits, parametrics, point-clouds

•  Type of Queries
–  discrete vs. continuous query

–  distance vs. penetration computation

–  estimated time to collision

Simulation Environments
–  pairwise vs. n-body

–  static vs. dynamic

–  rigid vs. deformable

Applications

  Robot motion planning
  Simulation of (dis-)assembly tasks

  Tolerance verification

  Simulation-based design

  Ergonomics analysis

  Haptic rendering
  Physics-based modeling and simulation

Prior	
 work	
 on	
 Proximity	
 Computa1ons	

•  	
 Fast	
 algorithms	
 for	
 convex	
 polytopes	
 (1991	
 onwards)	

•  	
 Bounding	
 volume	
 hierarchies	
 for	
 general	
 polygonal	
 	

models	
 (1995	
 onwards)	

•  	
 Deformable	
 models	
 &	
 self-­‐collisions	
 (2000	
 onwards)	

•  Mul1ple	
 soIware	
 systems	

I-­‐Collide,	
 RAPID,	
 PQP,	
 DEEP,	
 SWIFT,	
 SWIFT++,	
 PIVOT	

DeformCD,	
 Self-­‐CCD,…..	

Prior	
 work	
 on	
 Proximity	
 Computa1ons	

Mul1ple	
 soIware	
 systems	

•  I-­‐Collide,	
 RAPID,	
 PQP,	
 DEEP,	
 SWIFT,	
 SWIFT++,	
 DeformCD,	

PIVOT,	
 Self-­‐CCD,…..	

•  More	
 than	
 100,000	
 downloads	
 from	
 1995	
 onwards	

•  Issued	
 more	
 than	
 50	
 commercial	
 licenses	
 (Kawasaki,	
 MSC	

SoIware,	
 Ford,	
 Sensable,	
 Siemens,	
 BMW,	
 Phillips,	
 Intel,	

Boeing,	
 etc.)	

7/2/11

3

Do	
 we	
 need	
 beYer	
 or	
 faster	
 algorithms?	
 Do	
 we	
 need	
 beYer	
 or	
 faster	
 algorithms?	

Reliable	
 con+nuous,	
 self-­‐collisions	
 for	
 cloth	
 simula+on	

(Model	
 Courtesy:	
 Disney	
 Anima+on)

Do	
 we	
 need	
 beYer	
 or	
 faster	
 algorithms?	

Penetra+on	
 computa+on	
 has	
 high	

combinatorial	
 complexity:	
 Needed	

for	
 dynamic	
 response	
 and	
 path	

planning

Do	
 we	
 need	
 beYer	
 or	
 faster	
 algorithms?	

Finite-­‐Element	
 Simula+on	
 for	
 Crash	
 Analysis:	
 Collisions	
 can	
 take	

50-­‐90%	
 of	
 simula+on	
 +me	
 (Model	
 Courtesy:	
 BMW	
 &	
 LS-­‐DYNA	
)

7/2/11

4

Our	
 Recent	
 Work	

•  Faster	
 algorithms	
 for	
 con1nuous	
 collision	
 detec1on	

among	
 deformable	
 models	

•  Volumetric	
 con1nuous	
 collision	
 methods	

•  Penetra1on	
 depth	
 computa1on	

•  Parallel	
 algorithms	
 for	
 mul1-­‐core	
 and	
 many-­‐core	

processors	

Con1nuous	
 Collision	
 Detec1on	

Compute	
 the	
 first	
 1me	
 of	
 contact	
 between	
 discrete	

1me	
 intervals	

•  Incremental	
 hierarchy	
 based	
 methods	

•  Improved	
 culling	
 based	
 on	
 normal	
 bounds	

•  Eliminate	
 redundant	
 elementary	
 tests	

•  Simple	
 filters	
 to	
 remove	
 false	
 posi1ves	

More	
 than	
 10-­‐20X	
 improvement	
 in	
 performance	

[Tang	
 et	
 al.	
 2008,	
 Cur1s	
 et	
 al.	
 2008,	
 Tang	
 et	
 al.	
 2010]	

Con1nuous	
 Collision	
 Detec1on	
 Volumetric	
 CCD	

•  New	
 volumetric	
 methods	
 for	
 FEM	
 simula1ons	

•  Collision	
 checking	
 between	
 internal	
 nodes	
 and	
 elements	

•  Eliminate	
 redundant	
 elementary	
 tests	

•  Simple	
 filters	
 to	
 remove	
 false	
 posi1ves	

Up	
 to	
 20X	
 improvement	
 in	
 performance	

[Tang	
 et	
 al.	
 2011]	

7/2/11

5

Volumetric	
 CCD	
 Penetra1on	
 Depth	
 Computa1on	

•  Generalized	
 penetra1on	
 depth	
 formula1on	
 based	
 on	

rota1onal	
 mo1on	

•  Local	
 and	
 global	
 penetra1on	
 depth	
 computa1on	

•  Retrac1on	
 based	
 planners	
 for	
 rigid	
 and	
 ar1culated	

models	

[Zhang	
 et	
 al.	
 2006;	
 Zhang	
 et	
 al.	
 2007;	
 Zhang	
 et	
 al.	
 2008;	
 Pan	

et	
 al.	
 2010]	

Retrac1on-­‐based	
 Planner	
 using	
 Penetra1on	

Depth	
 Computa1ons	

Collision	
 or	
 proximity	

checking	
 takes	
 more	

than	
 90%	
 of	
 +me	
 in	

sample-­‐based	
 planners

20

A Parallel Revolution:
2005 Onwards

•  Power Wall = Brick Wall
⇒ End of way built microprocessors for last 40 years

New Moore’s Law is 2X processors (“cores”) per chip
every technology generation, but ≈ same clock rate

–  “This shift toward increasing parallelism is not a triumphant stride
forward based on breakthroughs …; instead, this … is actually a
retreat from even greater challenges that thwart efficient silicon

implementation of traditional solutions.”
The Parallel Computing Landscape: A Berkeley View, Dec 2006

•  Sea change for HW & SW industries since changing the model of
programming and debugging

7/2/11

6

Parallel Revolution has started!

•  While evolution and global warming are “controversial” in
scientific circles, belief in need to switch to parallel
computing is unanimous in the hardware community

 (Dave Patterson, Berkeley)

•  AMD, Intel, IBM, Sun, … now sell more multiprocessor
(“multicore”) chips than uniprocessor chips

– Plan on little improvement in clock rate (8% / year?)

– Expect more cores every 2 years, ready or not

– Note – they are already designing the chips that will
appear over the next 5 years, and they’re parallel

21

Mul1-­‐Core	
 and	
 Many-­‐Core	
 Processors	

•  Mul1-­‐core	
 CPUs	
 (Intel,	
 AMD,	
 IBM)	

•  Take	
 the	
 best	
 serial	
 core	
 and	
 fit	
 as	
 many	
 cores	
 on	
 a	
 single	
 chip,	

as	
 possible	

•  Each	
 serial	
 core	
 has	
 large	
 caches	

•  Support	
 limited	
 SIMD	
 and	
 instruc1on-­‐level	
 parallelism	

Many-­‐Core	
 Processors	
 (GPUs)	

•  2010: Fermi has 512 *scalar* fragment processors or cores

•  2009:GT285 240 *scalar* fragment processors or cores

•  2006:G80 (8800 GTX) has 128 fragment processors or cores

•  2005:G71 (7900) has 48 *vec4* pixel cores

 2004: NV40 (6800) has 16 vec4 cores

•  2003: NV30 (5800) had 4 vec4 pixel shader pipes or cores

•  Growth Rate of NVIDIA GPUs (2003 onwards)

Many-­‐Core	
 or	
 High-­‐Throughput	
 Compu1ng	

•  Notion of designing commodity processors with tens or
hundreds of cores

•  Combining fine-grain and coarse-grain parallelism

•  High parallel code performance

•  Improved memory throughput and power efficiency

7/2/11

7

GPU-­‐based	
 Algorithms	

•  Challenges in exploiting multiple cores

•  Communication and synchronization between the cores is limited

•  Limited cache hierarchy

•  Use high number of threads to hide memory latency

High GPU Computing Throughput	

•  Provide a sufficient number of parallel tasks so that all the cores
are utilized

•  Provide several times that number of tasks just so that each
core has enough work to perform while waiting for data from
slow memory accesses

Dynamic GPU Work Distribution Methods [Lauterbach, Mo and
Manocha 2009; Lauterbach & Manocha 2010]

Computing and Traversing Hierarchies Hierarchy-based proximity queries

•  Build or update hierarchies (Hard to parallelize)
•  Traverse hierarchies recursively

–  Start with root nodes
–  Do nodes overlap?

  Yes: Inner nodes: recurse on combinations of children
 Leaf nodes: put primitive pair in separate queue

–  Perform primitive overlap tests (Easy to parallelize)

7/2/11

8

Primitive tests

•  Discrete collision: triangle-triangle test
–  Do triangles overlap?

•  Continuous collision
–  Did moving triangles

overlap at any time
between t1 and t2?

t1

t2 t1

t1

Related work

•  Use multi-core CPUs
–  [Kim et al. 08, Kim et al. 09, Tang et al. 09]

Work organization on GPUs

•  Standard for recursive hierarchy operations
–  Global work queue, work stealing

•  Problem
–  Shared access on GPU only via slow, non-

consistent global memory

Task 1 Task 2 Task 3

Shared queue

Task 1 Task 2 Task 3

Lightweight balancing

•  Our solution
–  Every thread/core has local queue (non-shared)
–  Keep track of other thread's state occasionally

  One shared global idle counter

–  If above threshold, break and balance queues

•  Avg. ~2-3x performance of work stealing

7/2/11

9

Parallel Hierarchy Operations

•  Can also use vector units
–  Each vector lane handles one intersection pair
–  Potentially thousands of parallel tests

•  Local work queue shared between lanes
–  Access synchronized by atomics or prefix sum
–  Does not change outside synchronization

Hierarchy Construction

BVH construction on GPUs
 Uses thread and data parallelism
  Fast linear BVH construction

Interactive construction on current GPUs

Hierarchy Construction

Top-down methods
E.g. recursively split primitives in half

Bottom-up methods
Repeatedly combine primitives into groups

Derive from scene graph

Bounding volumes

•  We use oriented bounding boxes (OBBs) on GPUs
–  Operations: about 1-2 order of

magnitude more instructions

•  But:
–  Hierarchy construction only ~25% slower for OBBs
–  Better culling efficiency (fewer overall tests)
–  Overall performance win (especially for continuous
collision and distance queries)

7/2/11

10

Bounding volumes

•  Separation distance:
Rectangular swept spheres (widely used in
PQP)

–  Also has expensive construction
–  Similar advantages, easy extension of OBBs

Front tracking

•  Exploit temporal coherence
–  Simulations typically have small timesteps

•  Store last intersecting pair for each subtree
•  Next frame: still intersecting?

–  Yes: test primitives
–  No: go up in tree until intersection found

Front tracking

•  Advantage
–  Less steps in intersection
–  Not necessarily less work, but results in higher

parallelism

•  Overall
–  ~10-25% less overall time for our benchmarks

Results
•  Implemented in CUDA on NVIDIA GTX 285

–  Hierarchies built and updated fully on GPU

•  Self-collision

–  Includes collision and update of BVH per frame

–  10-20X speedup over CPU-based algorithms

49k tris, 34ms collision 40k tris, 29ms collision

92k tris, 38ms collision 146k tris, 74ms collision

7/2/11

11

Results & Application

•  Ported to NVIDIA GeForce 480 desktop GPU
–  2.5 – 3X improvement over NVIDIA GeForce 285

–  Resulting package (gProximity) is available on the
WWW

–  Used for real-time high DOF motion planning
(gPlanner)

Real-time High DOF Motion Planning	

PRM	
 Mo1on	
 Planning	
 on	
 GPUs	

•  50-100X acceleration can be observed over CPU-based

algorithms

OOPSMP on Intel 3.2GHz i7 (single core) CPU

($600)
gPlanner on NVIDIA GTX 285 GPU ($400)

Results on PR2 robot model

7/2/11

12

Conclusions

•  Collision and proximity queries
–  Deformable models
–  FEM and volumetric meshes
–  Penetration depth computation

•  Parallel GPU-based algorithms

•  Application to real-time motion planning

Future Work

•  Need faster algorithms
•  Integration with dynamics and FEM simulation

packages
•  Real-time planning on physical robots
•  Parallelism and scalability?

Request to the Community

•  Please take the effort to make your source code
available

Acknowledgments

•  Funding agencies:
–  NSF
–  ARO
–  DARPA/RDECOM
–  NVIDIA
–  Intel
–  Willow Garage
–  Models courtesy of Disney, Kineo CAM, BMW, LS-

DYNA

7/2/11

13

Thanks!

