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GOAL OF OUR EXERCISE…

� Use HPC to simulate the dynamics of real-life 

engineering mechanical systems at unprecedented 

levels of accuracylevels of accuracy

� HPC hardware targeted:

� Cluster of CPUs and GPUs (accelerators)

� More than 100 CPU cores, tens of GPU cards
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Talk Overview

� Overview of the engineering problems of interest

� Large-scale Multibody Dynamics
� Problem formulation, solution method, and parallel implementation

� Overview of Heterogeneous Computing Template (HCT)

� Numerical Experiments

� Conclusions
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Computational Multibody Dynamics

Simulation generated in ADAMS

5



Multi-Physics…
Fluid-Solid Interaction: Navier-Stokes + Newton-Euler.
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Computational Dynamics
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Rover Mobility on Granular Terrain

� Wheeled/tracked vehicle mobility on granular terrain

� Also interested in scooping and loading granular material
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Simulation in Chrono::Engine



Frictional Contact Simulation
[Commercial Solution]

� Model Parameters:
� Spheres: 60 mm diameter and mass 0.882 kg
� Forces: smoothing with stiffness of 1E5, force 

exponent of 2.2, damping coefficient of 10.0, 
and a penetration depth of 0.1

� Simulation length: 3 seconds
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Frictional Contact: 
Two Different Approaches 

Considered

� Discrete Element Method (DEM) - draws on a “smoothing” (penalty) approach

� Lots of heuristics

� Slow

� General purpose

� Used in ADAMS� Used in ADAMS

� DVI-based (Differential Variational Inequalities)
� A set of differential equations combined with inequality constraints

� Fast (stable for significantly larger integration step-sizes)

� Less general purpose 

� Used widely in computer games

10



The Modeling Component

11



Equations of Motion: Multibody Dynamics
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Traditional Discretization Scheme

positions
time step index

speeds Reaction

impulsesApplied Forces
Mass Mat.

Coulomb 3D fricion 

model

Complementarity 

Condition

Stabilization 

term

(Stewart & Trinkle, 1996)
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Relaxed Discretization Scheme Used

Relaxation Term

(Anitescu & Tasora, 2008)
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� Introduce the convex hypercone... 

The Cone Complementarity Problem 

(CCP)

... and its polar hypercone:

� First order optimality conditions lead to Cone Complementarity Problem

CCP assumes following form: Find γ such that
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Large Scale Granular Dynamics

� Numerical solution can leverage parallel computing
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CPU vs. GPU– Memory Bandwidth
[GB/sec]
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Mixing 40,000 Spheres on the GPU
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300K Spheres in Tank
[parallel on the GPU]
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1.1 Million Rigid Spheres
[parallel on the GPU]
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Computational dynamics
Tracked vehicle mobility

Simulation Setup:
• Driving speed: 1.0 rad/sec

• Length: 12 seconds

• Time step: 0.005 sec

• Computation time: 18.5 hours

• Particle radius: .027273 m

6/30/2011 University of Wisconsin – Modeling, Simulation 

and Visualization Center
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• Particle radius: .027273 m

• Terrain: 284,715 particles



Track Simulation

Parameters:
• Driving speed: 1.0 rad/sec

• Length: 10 seconds

• Time step: 0.005 sec

• Computation time: 17.8 hours

• Particle radius: .025±.0025 m
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• Terrain: 467,100 particles



Track Footprint
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A Heterogeneous Computing Template
for for 

Computational Dynamics
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Heterogeneous Cluster

26

Second fastest cluster at University of Wisconsin-Madison



Computation Using Multiple CPUs
[DEM solution]
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Computation Using Multiple CPUs
[DEM solution]
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Computation Using Multiple CPUs
[DEM solution]
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Heterogeneous Computing Template
Five Major Components

� Computational Dynamics requires

� Domain decomposition

� Proximity computation

� Inter-domain data exchange� Inter-domain data exchange

� Numerical algorithm support

� Post-processing (visualization) 

� HCT represents the library support and associated 
API that capture this five component abstraction
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Typical Simulation Results…

� LEFT: Infinity norm of the residual vs. iteration index in the CCP solution
� Convergence rate (slope of curve) becomes smaller as the iteration index increases. 
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� RIGHT: Infinity norm of the CCP residual after rmax iterations as function of 

granular material depth (number of spheres stacked on each other).



Searching for Better Methods

� Frictionless case (bound constraints in place)

� Gauss-Jacobi (CE)

� Projected conjugate gradient (ProjCG)

� Gradient projected conjugate gradient (GPCG)� Gradient projected conjugate gradient (GPCG)

� Gradient projected MINRES (GPMINRES)

� Friction case (cone constraints - ongoing)

� Newton’s Method for large bound-constrained problems
� Uses re-parameterization to handle friction cones (replace with bound constraints)
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Numerical Experiments

� Test Problem: 40,000 bodies ⇒ 157,520 contacts

� Frictionless
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Test Problem (MATLAB)

Method Iterations

Final Residual 

Norm

γmin γmax Time  [sec]

CE 1000 6.11 x 10-2 0.0 2.0598 1849.5

ProjCG 1002 5.6344 x 10-4 0.0 2.2286 1235.6

GPCG 1600 1.0675 x 10-4 0.0 2.6349 382.3644

GPMinres 1100 9.5239 x 10-5 0.0 2.3090 238.0744

PCG 1000 2.4053 x 10-4 -1.1116 2.5254 27.9686

GMRES 1000 4.5315 x 10-5 -1.1635 2.5227 736.3007

MINRES 1000 1.6979 x 10-5 -1.1316 2.5253 41.5790
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Proximity ComputationProximity Computation
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GPU Collision Detection (CD)

� 30,000 feet perspective:

� Carry out spatial partitioning of the volume occupied by the bodies� Carry out spatial partitioning of the volume occupied by the bodies
� Place bodies in bins (cubes, for instance)

� Follow up by brute force search for all bodies touching each bin
� Embarrassingly parallel
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� Example: 2D collision detection, bins are squares

Basic Idea: 
Search for Contacts in Different Bins 

in Parallel

37



Example: Ellipsoid-Ellipsoid CD
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Ellipsoid-Ellipsoid CD: Results
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Speedup
GPU vs. CPU (sequential Bullet)

[results reported are for spheres]

140

160

180

200

GPU: NVIDIA Tesla C1060
CPU: AMD Phenom II Black X4 940 (3.0 GHz)

40

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

X
 S

p
e
e
d

u
p

Contacts (Millions)



2.5

3

3.5

4

T
im

e
 (

s
e
c
)

Parallel Implementation:

Number of Contacts vs. Detection Time

[results reported are for spheres]

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20 22 24

T
im

e
 (

s
e
c
)

Contacts (Millions)
41



Multiple-GPU Collision Detection

Assembled Quad GPU Machine

Processor: AMD Phenom II X4 940 Black

Memory: 16GB DDR2

Graphics: 4x NVIDIA Tesla C1060

Power supply 1: 1000W

Power supply 2: 750W

42



SW/HW Setup

Main Data Set

Results
16 GB RAM
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Results – Contacts vs. Time
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HCT Demonstration

2 sub-domains, breakeven point is at 16,000 bodies 
• CPU only: 9.58 hrs to reach steady-state

• CPU+GPU: 9.43 hrs to reach steady-state
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Conclusions

� Work aimed at enabling high-fidelity discrete models using a physics-
based approach

� HCT draws on symbiosis of CPU + GPU computing� HCT draws on symbiosis of CPU + GPU computing

� Accomplishments to date
� Billion body parallel collision detection

� Parallel solution of cone complementarity problem, about 12 million unknowns

� Early validation results encouraging

� Aiming at billion bodies simulations
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Ongoing/Future Work 

� Experimental validation (three efforts, at CAT, US Army, and JPL)

� Massively parallel linear algebra for solution of CCP problem

� Preconditioned gradient projected Krylov method� Preconditioned gradient projected Krylov method

� Effective parallel collision detection algorithms for complex geometries

� Multiphysics: 

� Fluid-solid interaction

� Electrostatics
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Thank You.Thank You.
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