Enabling High Performance Computational Dynamics in a Heterogeneous Hardware Ecosystem

Assistant Prof. **Dan Negrut** Simulation-Based Engineering Lab Department of Mechanical Engineering University of Wisconsin – Madison

Toward High-Performance Computing Support for the Simulation and Planning of Robot Contact Tasks June 27, 2011

Acknowledgements

- People:
 - Alessandro Tasora University of Parma, Italy
 - Mihai Anitescu Argonne National Lab
 - Lab Students:
 - Hammad Mazhar
 - Toby Heyn
 - Andrew Seidl
 - Arman Pazouki
 - Hamid Ansari

- Justin Madsen
- Naresh Khude
- Makarand Datar
- Dan Melanz
- Markus Schmid

- Financial support
 - National Science Foundation, Young Investigator Career Award
 - FunctionBay, S. Korea
 - NVIDIA
 - Microsoft
 - Caterpillar

GOAL OF OUR EXERCISE...

 Use HPC to simulate the dynamics of real-life engineering mechanical systems at unprecedented levels of accuracy

- HPC hardware targeted:
 - Cluster of CPUs and GPUs (accelerators)
 - More than 100 CPU cores, tens of GPU cards

Talk Overview

- Overview of the engineering problems of interest
- Large-scale Multibody Dynamics
 - Problem formulation, solution method, and parallel implementation
- Overview of Heterogeneous Computing Template (HCT)
- Numerical Experiments
- Conclusions

Computational Multibody Dynamics

Multi-Physics...

Fluid-Solid Interaction: Navier-Stokes + Newton-Euler.

Computational Dynamics

Rover Mobility on Granular Terrain

- Wheeled/tracked vehicle mobility on granular terrain
- Also interested in scooping and loading granular material

Frictional Contact Simulation [Commercial Solution]

- Model Parameters:
 - Spheres: 60 mm diameter and mass 0.882 kg
 - Forces: smoothing with stiffness of 1E5, force exponent of 2.2, damping coefficient of 10.0, and a penetration depth of 0.1
 - Simulation length: 3 seconds

Frictional Contact: Two Different Approaches Considered

- Discrete Element Method (DEM) draws on a "smoothing" (penalty) approach
 - Lots of heuristics
 - Slow
 - General purpose
 - Used in ADAMS

- DVI-based (Differential Variational Inequalities)
 - A set of differential equations combined with inequality constraints
 - Fast (stable for significantly larger integration step-sizes)
 - Less general purpose
 - Used widely in computer games

The Modeling Component

Equations of Motion: Multibody Dynamics

(Stewart & Trinkle, 1996)

13

Relaxed Discretization Scheme Used

$$\mathbf{q}^{(l+1)} = \mathbf{q}^{(l)} + h\mathbf{L}(\mathbf{q}^{(l)})\mathbf{v}^{(l+1)}$$

$$\mathbf{M}(\mathbf{v}^{(l+1)} - \mathbf{v}^l) = h\mathbf{f}(t^{(l)}, \mathbf{q}^{(l)}, \mathbf{v}^{(l)}) + \sum_{i \in \mathcal{A}(q^{(l)}, \delta)} (\gamma_{i,n} \mathbf{D}_{i,n} + \gamma_{i,u} \mathbf{D}_{i,u} + \gamma_{i,w} \mathbf{D}_{i,w})$$

$$\begin{split} i \in \mathcal{A}(q^{(l)}, \delta) : & 0 \quad \leq \frac{1}{h} \Phi_i(\mathbf{q}^{(l)}) + \mathbf{D}_{i,n}^T \mathbf{v}^{(l+1)} - \underbrace{\mu^i \sqrt{(\mathbf{v}^T \, \mathbf{D}_{i,u})^2 + \mathbf{v}^T \, \mathbf{D}_{i,w})^2}}_{\mathbf{R} \text{laxation Term}} \bot \gamma_n^i \geq 0, \\ (\gamma_{i,u}, \gamma_{i,w}) & = \underset{\mu_i \gamma_{i,n} \geq \sqrt{\gamma_{i,u}^2 + \gamma_{i,w}^2}}{\operatorname{argmin}} \mathbf{v}^T \left(\gamma_{i,u} \, \mathbf{D}_{i,u} + \gamma_{i,w} \, \mathbf{D}_{i,w}\right). \end{split}$$

(Anitescu & Tasora, 2008)

14

The Cone Complementarity Problem (CCP)

- First order optimality conditions lead to Cone Complementarity Problem
- Introduce the convex hypercone... $\Upsilon = \left(\underset{i \in \mathcal{A}(\mathbf{q}^l, \epsilon)}{\oplus} \mathcal{FC}^i \right)$

 $\mathcal{FC}^i \in \mathbb{R}^3$ represents friction cone associated with i^{th} contact

... and its polar hypercone:

$$\Upsilon^{\circ} = \left(\bigoplus_{i \in \mathcal{A}(\mathbf{q}^{l}, \epsilon)} \mathcal{FC}^{i \circ} \right)$$

CCP assumes following form: Find γ such that

$$\gamma \in \Upsilon \perp -(\mathbf{N}\gamma + \mathbf{d}) \in \Upsilon^{\circ}$$

Large Scale Granular Dynamics

• Numerical solution can leverage parallel computing

CPU vs. GPU – Flop Rate (GFlop/Sec)

Single Precision

Double Precision

 \wedge

CPU vs. GPU– Memory Bandwidth [GB/sec]

Mixing 40,000 Spheres on the GPU

300K Spheres in Tank

[parallel on the GPU]

1.1 Million Rigid Spheres [parallel on the GPU]

Computational dynamics

Tracked vehicle mobility

Simulation Setup:

- Driving speed: 1.0 rad/sec
- Length: 12 seconds
- Time step: 0.005 sec
- Computation time: 18.5 hours
- Particle radius: .027273 m
- Terrain: 284,715 particles

University of Wisconsin – Modeling, Simulation and Visualization Center

Track Simulation

Parameters:

- Driving speed: 1.0 rad/sec
- Length: 10 seconds
- Time step: 0.005 sec
- Computation time: 17.8 hours
- Particle radius: .025±.0025 m
- Terrain: 467,100 particles

Track Footprint

A Heterogeneous Computing Template for Computational Dynamics

Heterogeneous Cluster

Second fastest cluster at University of Wisconsin-Madison

Computation Using Multiple CPUs [DEM solution]

Computation Using Multiple CPUs [DEM solution]

28

Computation Using Multiple CPUs

[DEM solution]

Heterogeneous Computing Template Five Major Components

- Computational Dynamics requires
 - Domain decomposition
 - Proximity computation
 - Inter-domain data exchange
 - Numerical algorithm support
 - Post-processing (visualization)

• HCT represents the library support and associated API that capture this five component abstraction

Typical Simulation Results...

- LEFT: Infinity norm of the residual vs. iteration index in the CCP solution
 - Convergence rate (slope of curve) becomes smaller as the iteration index increases.

• RIGHT: Infinity norm of the CCP residual after r_{max} iterations as function of granular material depth (number of spheres stacked on each other).

Searching for Better Methods

- Frictionless case (bound constraints in place)
 - Gauss-Jacobi (CE)
 - Projected conjugate gradient (ProjCG)
 - Gradient projected conjugate gradient (GPCG)
 - Gradient projected MINRES (GPMINRES)
- Friction case (cone constraints ongoing)
 - Newton's Method for large bound-constrained problems
 - Uses re-parameterization to handle friction cones (replace with bound constraints)

32

Numerical Experiments

- Test Problem: 40,000 bodies \Rightarrow 157,520 contacts
- Frictionless

Test Problem (MATLAB)

Method	Iterations	Final Residual Norm	γ_{min}	γ_{max}	Time [sec]
CE	1000	6.11 x 10 ⁻²	0.0	2.0598	1849.5
ProjCG	1002	5.6344 x 10 ⁻⁴	0.0	2.2286	1235.6
GPCG	1600	1.0675 x 10 ⁻⁴	0.0	2.6349	382.3644
GPMinres	1100	9.5239 x 10 ⁻⁵	0.0	2.3090	238.0744
PCG	1000	2.4053 x 10 ⁻⁴	-1.1116	2.5254	27.9686
GMRES	1000	4.5315 x 10 ⁻⁵	-1.1635	2.5227	736.3007
MINRES	1000	1.6979 x 10 ⁻⁵	-1.1316	2.5253	41.5790

Proximity Computation

GPU Collision Detection (CD)

• 30,000 feet perspective:

- Carry out spatial partitioning of the volume occupied by the bodies
 - Place bodies in bins (cubes, for instance)

- Follow up by brute force search for all bodies touching each bin
 - Embarrassingly parallel

Basic Idea: Search for Contacts in Different Bins in Parallel

• Example: 2D collision detection, bins are squares

Example: Ellipsoid-Ellipsoid CD

$$\mathbf{d} = \mathbf{P}_{1} \cdot \mathbf{P}_{2} = \left(\frac{1}{2\lambda_{1}}\mathbf{M}_{1} + \frac{1}{2\lambda_{2}}\mathbf{M}_{2}\right)\mathbf{c} + \left(\mathbf{b}_{1} \cdot \mathbf{b}_{2}\right)$$

$$\frac{\partial \mathbf{d}}{\partial \alpha_{i}} = \frac{\partial \mathbf{P}_{1}}{\partial \alpha_{i}} - \frac{\partial \mathbf{P}_{2}}{\partial \alpha_{i}} , \quad \frac{\partial^{2}\mathbf{d}}{\partial \alpha_{i}\partial \alpha_{j}} = \frac{\partial^{2}\mathbf{P}_{1}}{\partial \alpha_{i}\partial \alpha_{j}} - \frac{\partial^{2}\mathbf{P}_{2}}{\partial \alpha_{i}\partial \alpha_{j}}$$

$$\frac{\partial \mathbf{P}}{\partial \alpha_{i}} = \left(\frac{1}{2\lambda}\mathbf{M} - \frac{1}{8\lambda^{3}}\mathbf{M}\mathbf{c}\mathbf{c}^{T}\mathbf{M}\right)\frac{\partial \mathbf{c}}{\partial \alpha_{i}}$$

$$\frac{\partial^{2}\mathbf{P}}{\partial \alpha_{i}\partial \alpha_{j}} = \left(-\frac{1}{8\lambda^{3}}\mathbf{M} + \frac{3}{32\lambda^{5}}\mathbf{M}\mathbf{c}\mathbf{c}^{T}\mathbf{M}\right)\mathbf{c}^{T}\mathbf{M}\frac{\partial \mathbf{c}}{\partial \alpha_{j}}\frac{\partial \mathbf{c}}{\partial \alpha_{i}}$$

$$-\frac{1}{8\lambda^{3}}\left[\left(\mathbf{c}^{T}\mathbf{M}\frac{\partial \mathbf{c}}{\partial \alpha_{i}}\right)\mathbf{M} + \mathbf{M}\mathbf{c}\left(\frac{\partial \mathbf{c}}{\partial \alpha_{i}}\right)^{T}\mathbf{M}\right]\frac{\partial \mathbf{c}}{\partial \alpha_{j}}$$

$$+\left(\frac{1}{2\lambda}\mathbf{M} - \frac{1}{8\lambda^{3}}\mathbf{M}\mathbf{c}\mathbf{c}^{T}\mathbf{M}\right)\frac{\partial^{2}\mathbf{c}}{\partial \alpha_{i}\partial \alpha_{j}}$$

Ellipsoid-Ellipsoid CD: Results

Speedup GPU vs. CPU (sequential Bullet) [results reported are for spheres]

Parallel Implementation: Number of Contacts vs. Detection Time [results reported are for spheres]

Multiple-GPU Collision Detection

Assembled Quad GPU Machine

Processor: AMD Phenom II X4 940 Black

Memory: 16GB DDR2

Graphics: 4x NVIDIA Tesla C1060

Power supply 1: 1000W

Power supply 2: 750W

SW/HW Setup

Results – Contacts vs. Time

HCT Demonstration

2 sub-domains, breakeven point is at 16,000 bodies

- CPU only: 9.58 hrs to reach steady-state
- CPU+GPU: 9.43 hrs to reach steady-state

Conclusions

- Work aimed at enabling high-fidelity discrete models using a physicsbased approach
- HCT draws on symbiosis of CPU + GPU computing
- Accomplishments to date
 - Billion body parallel collision detection
 - Parallel solution of cone complementarity problem, about 12 million unknowns
 - Early validation results encouraging
- Aiming at billion bodies simulations

Ongoing/Future Work

- Experimental validation (three efforts, at CAT, US Army, and JPL)
- Massively parallel linear algebra for solution of CCP problem
 - Preconditioned gradient projected Krylov method
- Effective parallel collision detection algorithms for complex geometries
- Multiphysics:
 - Fluid-solid interaction
 - Electrostatics

Thank You.