
Parallel Materialization of the Finite RDFS
Closure for Hundreds of Millions of Triples

Jesse Weaver and James A. Hendler

Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY, USA
{weavej3,hendler}@cs.rpi.edu

Abstract. In this paper, we consider the problem of materializing the
complete finite RDFS closure in a scalable manner; this includes those
parts of the RDFS closure that are often ignored such as literal general-
ization and container membership properties. We point out characteris-
tics of RDFS that allow us to derive an embarrassingly parallel algorithm
for producing said closure, and we evaluate our C/MPI implementation
of the algorithm on a cluster with 128 cores using different-size subsets
of the LUBM 10,000-university data set. We show that the time to pro-
duce inferences scales linearly with the number of processes, evaluating
this behavior on up to hundreds of millions of triples. We also show the
number of inferences produced for different subsets of LUBM10k. To the
best of our knowledge, our work is the first to provide RDFS inferencing
on such large data sets in such low times. Finally, we discuss future work
in terms of promising applications of this approach including OWL2RL
rules, MapReduce implementations, and massive scaling on supercom-
puters.

1 Introduction

At present, the semantic web consists of ever-increasing Resource Description
Framework1 (RDF) data. In RDF, the fundamental unit of information is a
triple; a triple describes a relationship between two things. Some triples in con-
junction with each other can give rise to new knowledge. Consider rule rdfs2
from [1]:

( ?a rdfs:domain ?x) ∧ ( ?u ?a ?y ) → (?u rdf:type ?x)

Deriving such inferences in the semantic web poses several challenges. First,
data on the web is distributed making it difficult to ensure that the appropri-
ate triples (e.g., rdfs:domain) are discovered together to derive the appropriate
inferences (e.g., rdf:type). Second, the semantic web continues to grow creating
vast amounts of information. Computation capable of scaling to large data sets
is necessary. Third, the amount of time required to derive inferences should be
reasonable (which depends on a use case).

1 http://www.w3.org/RDF/



These three issues of dependency, scalability, and time must be addressed
to make inferencing on the semantic web practical and useful. We look at how
to resolve these issues for computing the finite RDF Schema (RDFS) closure
of large data sets. We find that the RDFS rules have certain properties which
allow us to solve the issue of dependency rather easily. Scalability and time are
addressed by forming an embarrassingly parallel2 algorithm for such rules that
allows for strong scaling.

We consider the problem of materializing the complete finite RDFS closure
in a scalable manner. We define the finite RDFS closure as follows.

Definition 1. We define the finite axiomatic triples—denoted Trdfs—as the
RDF and RDFS axiomatic triples [1] minus any triples that describe resources
of the form rdf: #.

Definition 2. We define the finite RDFS rules as the set of rules concerning
literal generalization (lg, gl) and the RDF and RDFS entailment rules (rdf1-2,
rdfs1-13)[1], and also the following rule which we call cmp:

(?n rdf:type rdfs:Resource) ∧ ?n is of the form rdf: # −→
(?n rdf:type rdfs:ContainerMembershipProperty)

Definition 3. The finite RDFS closure is defined the same way as the RDFS
closure [1] with the following exceptions: (1) the finite axiomatic triples are used
instead of all of the RDF and RDFS axiomatic triples; and (2) rule cmp is
included in the last step of rule applications.

To our knowledge, only a few systems exist that produce the complete RDFS
closure, none of which scale to large data sets. We address this problem by
defining a partitioning scheme and showing that the finite RDFS rules can be
applied to such a partitioning to produce the finite RDFS closure. In addition to
deriving an embarrassingly parallel algorithm, we discuss other challenges such
as parallel file I/O for RDF data and handling blank nodes. We present and
evaluate an implementation of the algorithm written in C using the Message
Passing Interface3 (MPI) on a cluster of large memory Opteron machines for
large subsets of the LUBM 10,000-university data set, scaling up to 128 processes.
We also give an evaluation for the amount of duplicate inferences in the output,
and promising applications are discussed as future work.

2 Related Work

The work most related to ours is MaRVIN [3, 4] and the parallel Web Ontology
Language4 (OWL) inferencing work by [5, 6].
2 An embarrassingly parallel computation is “the ‘ideal’ computation from a parallel

computing standpoint—a computation that can be divided into a number of com-
pletely independent parts, each of which can be executed by a separate processor.”
[2]

3 http://www.mpi-forum.org/
4 http://www.w3.org/2004/OWL/



MaRVIN provides sound, anytime, and eventually complete RDFS reason-
ing using a “divide-conquer-swap” strategy. Every process uses a reasoner and
processes a fraction of the data to locally produce any possible inferences. A
scoring mechanism is used to determine which triples are most useful for further
inferencing, and these triples are exchanged between processes in an attempt
to mix up the triples and find more inferences. Their evaluation in [4] shows
presumably nearly complete reasoning on 14.9 million SwetoDBLP5 triples in
roughly 23 minutes.

[6] presents an approach to rule-based reasoning for OWL ontologies with
so-called “OWL Horst” (perhaps better known as pD*) semantics [7]. Before
parallel inferencing occurs, a fair amount of preprocessing is required. OWL
ontologies are compiled into rules and a partitioning is determined ahead of
time. Four partitioning approaches are presented, three of which are classified
as data partitioning and one of which is classified as rule partitioning. Data
partitioning gives each process a fraction of the data and all of the rules, while in
rule partitioning, each process receives all of the data and a fraction of the rules.
While it is uncertain what execution times were actually achieved, they indicate
that they were able to achieve a speedup of 18 for 16 processes on the Lehigh
University Benchmark6 (LUBM) [8] 10-university data set (approximately one
million triples). Other data sets evaluated, however, did not see as much speedup.

These two projects have not shown scaling to the extent that we demonstrate
for our system, and they also handle only limited subsets of existing reasoning
standards or perform approximation. We show scaling that has not been previ-
ously demonstrated in other systems (to the best of our knowledge) for complete
finite RDFS reasoning. Furthermore, our inferencing times are smaller than those
reported for the two previously mentioned works.

Also, BigOWLIM7 reports reasoning times on large data sets, but it is uncer-
tain how to compare the performance of BigOWLIM with our system. BigOWLIM
is a semantic web repository that reportedly can perform some level of reasoning
on 8 billion statements. Loading, inferencing, and query evaluation of the LUBM
benchmark on LUBM8k took 15.2 hours. Our work focuses on inferencing as a
large computation without concerns of storage or indexing, so the two systems
are not quite comparable.

Less related works include reasoning over distributed hash tables [9, 10]; po-
tentially parallel evolutionary query answering [11]; composition of approximate,
anytime reasoning algorithms executed in parallel mentioned at the end of [12];
proposals of parallel computation techniques for ontology reasoning [13]; and
approaches for exploiting vertical parallelism in tableaux-based description logic
reasoning [14] .

The SOAR work [15–17] uses assumptions and observations similar to some
of those used in this paper. While SOAR focuses on a scalable, disk-based,
reasoning system using some RDFS and OWL-based rules on a single machine,

5 http://lsdis.cs.uga.edu/projects/semdis/swetodblp/
6 http://swat.cse.lehigh.edu/projects/lubm/
7 http://ontotext.com/owlim/benchmarking/lubm.html



our system differs greatly from SOAR in that it is not disk-based, it is parallel,
and it provides complete (finite) RDFS reasoning.

3 Our Approach to Parallel RDFS Reasoning

Our approach takes advantage of modern parallel computation techniques to
compute the finite RDFS closure of large data sets. Previous work has used ap-
proximation to achieve higher scalability while other work focuses on minimizing
dependencies in partitioning the work load. The former has the disadvantage of
sacrificing soundness and/or completeness while the latter often requires time-
intensive sequential computation to prepare the data for parallel reasoning. We
focus on finding properties of RDFS reasoning that allow for natural paral-
lelization in all parts of the computation. Therefore, we maintain soundness and
completeness without requiring any cumbersome preparation of the data. We
discuss challenges and their solutions in the following subsections.

3.1 Workload Partitioning

Workload partitioning involves breaking down the problem in such a way that it
can be executed in parallel. Ideally, each process should take the same amount of
time for the entire computation. In [6], the distinction between data partitioning
and rule partitioning is made. For RDFS reasoning, we consider it self-evident
that data partitioning is the appropriate approach considering that RDFS rea-
soning has fewer than 20 rules while data sets could scale into billions of triples
and beyond.

Before continuing, we define a few terms used throughout this paper:

Definition 4. An ontological triple is a triple used in describing an ontology
and from which significant inferences can be derived. For RDFS, these are triples
with predicate rdfs:domain, rdfs:range, rdfs:subClassOf, or rdfs:subPropertyOf
and also triples with predicate rdf:type with object rdfs:Datatype, rdfs:Class, or
rdfs:ContainerMembershipProperty.

For clarification, we emphasize that not all triples with predicate rdf:type
are ontological triples in the context of RDFS. Only rdf:type-triples for which
the object is rdfs:Datatype, rdfs:Class, or rdfs:ContainerMembershipProperty are
considered ontological.

Definition 5. An assertional triple is any triple that is not an ontological
triple.

Considering the finite RDFS rules, a particular property becomes apparent.
We find that each rule has at most one triple pattern in its body that can match
an assertional triple. For example, consider rule rdfs3 :

(?a rdfs:range ?x) ∧ (?u ?a ?v) → (?v rdf:type ?x)



The first triple pattern of the rule body will not match assertional triples
but only ontological triples. The second triple pattern, however, could match
any triple.

Definition 6. An M1 rule is a rule whose body has at most one triple pattern
which can match an assertional triple.

Proposition 1. By inspection, the finite RDFS rules are all M1.

Proposition 1 gives way to our partitioning scheme. By allowing each process
to have all ontological triples but only a fraction of the assertional triples, we can
distribute the data in such a way that the workload can be executed in parallel.
We consider this approach to be reasonable since ontologies tend to be fixed data
sets that are relatively very small compared to the potentially ever-increasing
assertional data.

Definition 7. An abox partitioning is a data partitioning scheme in which
each process/partition gets all ontological triples and a fraction of the assertional
triples.

Theorem 1. A single application of M1 rules to the partitions in an abox par-
titioning produces the same inferences as in a single partition with all triples.
More formally, define a single application of a rule r to a set of triples G, denoted
r(G), as the triples resulting from satisfying the antecedent of r without adding
such triples back into G. Then, given an M1 rule rm and an abox partitioning
(G1, G2, . . . , Gn) of a set of triples G, rm(G) =

⋃n
i=1 rm(Gi).

Proof. Since an M1 rule needs at most one assertional triple to be satisfied, it can
be satisfied on the partition that has such a triple in the same way it is satisfied
on a single partition with all triples since all partitions have all ontological triples.
�

Therefore, our approach is to give each process a partition of an abox parti-
tioning, and that process will apply all finite RDFS rules until no more inferences
can be found. This is shown in Algorithm 1. Line 1 is to be interpreted as paral-
lelism in which i denotes the rank of the process. Line 4 iterates over the finite
RDFS rules in the appropriate order to satisfy data dependencies between con-
sequents and antecedents of rules such that only a single pass over the rules is
required.

It remains to be shown that this algorithm correctly produces the RDFS
closure. Although M1 rules produce all the appropriate inferences when applied
once, it must be shown that placing the inferences in the partition from which
they were derived sufficiently maintains the abox partitioning so that subsequent
applications of the rules will also produce the correct inferences.

Lemma 1. If an M1 rule sufficiently maintains an abox partitioning after adding
its inferences back to the partition from which they were derived, then the M1
rule can be applied multiple times and produce sound and complete inferences.



Algorithm 1: Parallel RDFS Inferencing Algorithm
Input: A set of assertional triples TA, a set of ontological triples TO, and a

number of processes p . Trdfs is the set of finite axiomatic triples.
Output: All triples together with all inferences from the computation of finite

RDFS closure.
// outer loop denotes parallelism where i is rank of process

for i = 0 to p− 1 do1

TAi = { t | t ∈ TA ∧ t /∈ TAj , ∀j 6= i }2

// TAi contains roughly |TA|/p triples from TA

// that are given only to process i
Ti = TAi ∪ TO ∪ Trdfs3

foreach rule ∈ finite RDFS rules do4

repeat5

apply rule to Ti to get inferences6

add inferences to Ti7

until no new inferences8

end9

end10

return
Sp−1

i=0 Ti11

Proof. The proof is intuitive. Since M1 rules produce sound and complete infer-
ences in a single application to an abox partitioning, if the result after adding the
inferences is an abox partitioning, the M1 rules can be applied again to produce
sound and complete inferences. �

Definition 8. Say that a rule that fits the description in Lemma 1 is abox
partitioning safe (APS).

Proving that a rule (or set of rules) is APS consists of proving it is M1
and that it sufficiently maintains the abox partitioning. (We return to the issue
of sufficiency later in the paper.) We define several classes of M1 rules that
sufficiently maintain an abox partitioning, and thus, such rules are APS. Before
doing so, we make the following assumption.

Axiom 1. Other than those mentioned in the axiomatic triples or those pro-
duced from the entailment rules, the resources in the RDF and RDFS vocabu-
lary have no superclasses, subclasses, superproperties, subproperties, domains, or
ranges.

This axiom allows us to disregard odd cases that might occur if such triples
were included (like if rdfs:Class has a superclass). Such triples could modify the
semantics of RDFS, and so we simply disallow them. We now go on to prove that
the finite RDFS rules are APS using sketch proofs to be concise and excluding
proofs of propositions that are straightforward.

Definition 9. Say that a rule is abox partitioning easy (APE) if it is M1
and produces only assertional triples.



Theorem 2. APE rules are APS.

Proof. Adding the produced assertional triples from APE rules to any partition
results in an abox partitioning since the ontological triples are unaffected, so all
partitions still have all ontological triples. �

Proposition 2. By inspection, rules lg, gl, rdf1, rdf2, rdfs1, rdfs4a, rdfs4b, and
rdfs7 are APE.

Definition 10. Say that a rule is abox partitioning ontological (APO) if
the triple patterns in its body can match only ontological triples. (Note that this
implies they are M1.)

Theorem 3. APO rules are APS.

Proof. Since all partitions have all ontological triples, such rules will produce all
of their inferences on all partitions. If an APO rule produces ontological triples,
they will be produced on all partitions, and thus all partitions still have all
ontological triples. �

Proposition 3. By inspection, rules rdfs5, rdfs8, rdfs10, rdfs11, rdfs12, and
rdfs13 are APO.

Definition 11. Say that a rule is abox partitioning friendly (APF) if it
is M1 and it produces ontological triples only when the body is satisfied by only
ontological and/or axiomatic triples.

Theorem 4. APF rules are APS.

Proof. Since all partitions have all ontological triples and axiomatic triples (every
partition adds the axiomatic triples at the beginning), when APF rules produce
ontological triples, they are produced on all partitions, and thus, all partitions
still have all ontological triples. �

Proposition 4. By inspection, rules rdfs2, rdfs3, and rdfs9 are APF.

Definition 12. Say that a rule is abox partitioning trivial (APT) if it is
M1 and the ontological triples it produces do not contribute to the inferencing of
new triples that would not otherwise be inferred by other rules.

Theorem 5. APT rules are APS.

Proof. This is where “sufficiently maintains an abox partitioning” from Lemma
1 is important. APT rules do not necessarily ensure that all partitions will have
all ontological triples. Instead, they ensure that the ontological triples that they
produce are insignificant for further inferencing. Therefore, even though such
triples may have the form of ontological triples, they fail to meet the part of the
definition of ontological triple which states that significant inferences are derived
from them. Therefore, we can disregard the ontological triples produced by APT
rules, including them only for completeness. �



Proposition 5. Rule rdfs6 is APT.

Proof. We include a brief proof for this proposition since it is a little less
intuitive than the other propositions. rdfs6 produces triples of the form (?u
rdfs:subPropertyOf ?u). Such triples can help to satisfy rules rdf1, rdfs2, rdfs3,
rdfs4a, rdfs4b, rdfs5, and rdfs7. The first five rules are intuitive and are not elab-
orated upon here. Using triples produced by rdfs6, rules rdfs5 and rdfs7 merely
produce triples that already exist. �

Definition 13. Say that a rule is abox partitioning dynamic (APD) if it is
M1 and it produces parts of the ontology (ontological triples) only if the partition
needs them to produce inferences that otherwise would not be produced.

Theorem 6. APD rules are APS.

Proof. The concern is that APD rules may create some ontological triples on
some partitions and not on others. By definition, though, if the other partitions
need these ontological triples to produce sound and complete inferences, then
they would have been produced on that partition also by the APD rules. There-
fore, all partitions can be considered to have all ontological triples produced by
APD rules in the sense that all partitions have the APD rules and would produce
the triples if needed. �

Proposition 6. Rule cmp is APD.

Proof. If a rdf: # resource is mentioned in the triples of a partition, then the
triple (rdf: # rdf:type rdfs:Resource) will eventually be produced. (If used as a
property, by way of rdf1 and rdfs4a; if used as a subject, by way of rdfs4a; and
if used as an object, by way of rdfs4b.) Then, cmp is satisfied by that triple, and
the appropriate ontological triples for rdf: # are produced. �

Corollary 1. By Theorems 1-6 and Propositions 1-6, all of the finite RDFS
rules are APS. Therefore, the finite RDFS closure can be computed in parallel
using abox partitioning.

3.2 Parallel File I/O for RDF Data

As mentioned, we desire that our approach require no preprocessing of the data;
everything should be performed in parallel. Therefore, we must determine a way
to read and write RDF data in parallel. Most parallel I/O approaches use a
“chunking” method in which each process gets a fairly even number of bytes
from the data file. However, in RDF, the fundamental unit of data is the triple,
not the byte. RDF syntaxes are string-based and therefore cannot be divided
into mere bytes assuring that each process will get a set of complete triples.
Some RDF syntaxes such as RDF/XML [18] make this particularly difficult. If
an RDF/XML file is divided into portions of bytes, it becomes extremely difficult



to determine which triples are complete and which triples are incomplete in that
portion. We take advantage of the simple RDF syntax N-triples8.

In N-triples syntax, every triple occupies a single line. When a process reads
its portion of bytes, it can determine where the first complete triple begins by
locating the first end-line character, and it can determine where the last complete
triple ends by locating the last end-line character. Each process i sends the triple
fragment at the beginning of its bytes to process i−1 (process 0 exempted), and
each process uses this fragment to complete the last (partial) triple. In this way,
each process has a set of complete triples, and we assume that reading a fairly
equal number of bytes will generally result in a fairly even number of triples.

This method of reading triple sets from an N-triples file on disk is used to
partition the assertional triples as described in line 2 of Algorithm 1. Thus, we
require no preprocessing of data, although we do require that it is in N-triples
format.

3.3 Distributed Blank Nodes

After partitioning the assertional triples, each process essentially has its own
RDF graph. Thus, some meaning is lost if blank nodes are distributed. In the
original graph, we know that two blank nodes are the same because they have
the same label within the same graph. Now, however, we have partitioned the
graph into smaller graphs, and there is no guarantee that two blank nodes with
the same label in different graphs are actually the same node. (Note that since
we require data in N-triples format, all blank nodes have labels.) To resolve this
problem, each blank node is replaced by a special URI with scheme “b” and
with URI body equal to the blank node identifier. This is done while reading
the data to ensure that we will always be able to refer to blank nodes uniquely.
For example, blank node :bnode123 would become <b:bnode123>. Then, as the
results are written to file, the special URIs are turned back into blank nodes.

This handles the case of already-existing blank nodes, but it becomes more
difficult when applying rules lg, rdf2, and rdfs1 in which blank nodes are uniquely
allocated to literals. We use a similar approach as with the already-existing blank
nodes. We turn the literals into URIs by encoding the literal into an appropriate
blank node identifier and then using that identifier as the URI body of a special
URI with scheme “l.” We use a simple encoding that we call a z-encoding.

Definition 14. A z-encoding of a literal is generated as follows. The literal
is first represented in N-triples syntax (including unicode escapes). Then, each
character in the string that is not 0-9, A-Z, or a-y is replaced by “zHH” where
HH is the hexadecimal representation of the character.

Using the special l-scheme URIs with z-encoded labels ensures that each
process produces the same blank node identifier for each blank node allocated to
a literal, and the blank nodes are referred to in a consistent way across processes.
These URIs are also converted into blank nodes during output.
8 http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples



4 Implementation

Our implementation is written in C using Redland9 for in-memory RDF stor-
age and query processing. We use Redland’s tree storage structure for efficient
loading and querying of RDF data. We implement each finite RDFS rule as a
SPARQL Protocol and RDF Query Language10 (SPARQL) query followed by a
function call. The SPARQL query serves to find all potential matches for the rule
and the function serves to further restrict the results if needed (e.g., the well-
formed requirement in rdf2 ) and produce the appropriate triples. Most rules
are implemented as a simple CONSTRUCT query followed by a function that
simply adds the resulting triples. For example, rdfs3 ’s query (prefix declarations
omitted) is:

CONSTRUCT { ?v rdf:type ?x } { ?a rdfs:range ?x . ?u ?a ?v }

This rule is simply executed and the results added to the process’ triples. A more
complicated case would be rule lg :

CONSTRUCT { ?u ?a ?l } { ?u ?a ?l . FILTER(isLITERAL(?l)) }

In this case, the query is used to find all triples with literal objects, but an
additional function is needed to actually allocate a blank node to ?l.

We use MPI for parallel I/O and interprocess communication (only necessary
when reading assertional triples). However, unlike the set-union operator on line
11 of Algorithm 1, we simply write the results of each partition/process to a
file without eliminating any duplicate triples between partitions. Ensuring that
only one process has any given triple (i.e., removing duplicates) would take away
from the embarrassingly parallel nature of the algorithm, and so to emphasize
the scalability of the algorithm, we do not remove duplicates. Writing to different
files allows for better parallel I/O performance since processes will not have to
compete for file locks, and all the files will be “self-describing” in the sense that
they each have the ontology. The downside, however, is that the overall resulting
data set will be larger than necessary, so we present an evaluation in the following
section for how much duplication of inferences actually occurs.

The overall process involves initialization of the environment, loading onto-
logical triples from an N-triples file, loading assertional triples from a different
N-triples file, performing inferencing, writing results to separate files (one per
process), and finalizing the environment.

5 Evaluation

For a data set, we generated the LUBM 10,000-university data set (LUBM10k)
which, when the generated OWL files are translated directly to N-triples files,

9 http://librdf.org/
10 http://www.w3.org/TR/rdf-sparql-query/



contains 1,382,072,494 triples. We broke LUBM10k down into subsets by contin-
ually halving the data set, generating data sets that we denote as LUBM10k/2,
LUBM10k/4, ..., LUBM10k/1024. LUBM10k/1024 is the smallest data set for
which we perform an evaluation, and it contains 1,349,680 triples. LUBM10k/4
is the largest data set for which we perform an evaluation, and it contains
345,518,123 triples.

We perform our evaluation on the Opteron blade cluster at Rensselaer Poly-
technic Institute’s (RPI) Computational Center for Nanotechnology Innova-
tions11 (CCNI) using only the large memory machines. Each machine is an IBM
LS21 blade server running RedHat Workstation 4 Update 5 with two dual-core
2.6 GHz AMD Opteron processors with gigabit ethernet and infiniband inter-
connects and system memory of 16 GB. We read and write files to/from the
large General Parallel File System12 (GPFS) which has a block size of 1024 KB,
scatter block allocation policy, and 256 KB RAID device segment size using a
RAID5 storage system.

We ran each job with an estimated time limit of 30 minutes which—due to
the nature of the job queuing system—lessened the waiting time for execution.
After 30 minutes, the scheduler terminates the job if it is not finished. We found
this to be reasonable since in our experience, if it took longer than 30 minutes,
it was usually because memory usage was at maximum capacity and the time to
finish (if possible) would far exceed 30 minutes due to swapping. When the job
is run, it has full control over its nodes. Four processes are on one machine since
each machine has four cores, and this causes contention for memory between
processes. The main source of contention, though, is among our processes and
among external processes in the CCNI that may create a high demand of service
on the disk, thus slowing disk I/O. We attempted to perform our evaluation
at times when the CCNI was least used to try and reduce competition for disk
service. Timings (wall clock, not just CPU) were measured using RDTSC (ReaD
Time Stamp Counter).

5.1 Performance

Since the algorithm is embarrassingly parallel, it is no surprise to see in Figure 1
that the time to inference halves as the number of processes doubles. Similarly,
as the size of the data set doubles, the time to inference doubles.13 On 128
processes, LUBM10k/1024 takes 1.10 seconds, and LUBM10k/4 takes 291.46
seconds.

Figure 2 shows that the overall time of the computation is generally linear,
but as the smallest data set is run on a larger number of processes, the speedup

11 http://www.rpi.edu/research/ccni/
12 http://www-03.ibm.com/systems/clusters/software/gpfs/index.html
13 While LUBM data is well-structured and evenly distributed, data that is more un-

even (high skew) would likely exhibit similar linear scalability, especially as the
number of processes increases. Further performance evaluation using different data
sets is part of future work.
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Fig. 1. Time for inferencing only, averaged across processes, for different-size data sets
and varying number of processes.
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Fig. 2. Overall time averaged across processes, for different-size data sets and varying
number of processes.

decreases. This behavior is likely caused by the small amount of work per process
when a larger number of processes are employed. Figure 3 shows this more
clearly for LUBM10k/1024 on varying numbers of processes. Time to infer tends
to dominate the computation time and decreases as the number of processes
increases. The time to initialize is generally very small, but increases with the
number of processes. For 128 processes, it took roughly the same amount of time
to infer as it did to initialize the environment. Therefore, as the amount of work
per process gets smaller, the overall time reaches the overhead cost of computing
in parallel.
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Fig. 3. Breakdown of times for computing finite RDFS closure on LUBM10k/1024 for
varying number of processes.

5.2 Inferences Produced

As mentioned in Section 5, our implementation does not eliminate duplicate
triples in different partitions; instead, for performance, we simply have each
process write all of its triples to separate files. Therefore, we present an evaluation
on how many duplicate inferences are produced by this approach as we scale
across number of processes and data set size. When run with one process, no
duplicates are created, and so we use the number of inferences from one process
as our standard for comparison. However, only the three smallest data sets could
be run on one process, so we provide evaluation only for those three data sets. For
evaluation purposes, we count the axiomatic triples as inferences since they are
added during the inferencing process, and the axiomatic triples are duplicated
on all partitions.

Data sets # Assertions
Inferences for Varying Number of Processes

1 2 4 8 16 32 64 128

10k/1024 1,349,680 1,200,186 1,205,309 1,215,685 1,235,831 1,274,320 1,339,677 1,446,088 1,621,892

10k/512 2,699,360 2,397,066 2,402,267 2,412,473 2,433,087 2,473,273 2,549,186 2,678,194 2,888,254

10k/256 5,398,720 4,785,083 4,790,285 4,800,510 4,821,327 4,861,330 4,940,744 5,091,493 5,348,844

10k/128 10,797,441 9,572,280 9,582,529 9,603,158 9,644,372 9,725,863 9,885,081 10,184,984

10k/64 21,594,882 19,169,424 19,210,312 19,291,708 19,453,885 19,774,980

10k/32 43,189,765 38,337,401 38,420,096 38,583,284 38,906,839

10k/16 86,379,530 76,671,931 76,835,141 77,163,076

10k/8 172,759,061 153,348,394 153,676,871

10k/4 345,518,123 306,700,784

Table 1. Information about data sets and inferences produced. Note that inferences
are unique only for a single process.

Table 1 shows the number of inferences produced for different data sets and
number of processes. Note that only the numbers of inferences for one process are
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Fig. 4. The percentage of inferences duplicated for the three smallest data sets for
varying number of processes.

unique inferences only (no duplicates). In Figure 4, the percentage of duplicate
inferences grows super-linearly at first (across processes) but soon begins to
taper off. As the data set doubles in size, the percentage of duplicates seems
to halve; this indicates that duplicates result from fairly static information that
somehow ends up in all partitions. This would include ontological data, axiomatic
triples, and inferences that proliferate fairly easily. The rules that created the
most duplicate inferences are those that most users would probably choose to
exclude such as rdfs4a/b (everything is a rdfs:Resource) and rdfs1 (all literals are
rdfs:Literals). The exception, though, is rdfs9 which infers rdf:type triples from
subclass hierarchy. Interestingly, the only rule for which there were any inferences
and no duplicate inferences was rdfs7, inferring statements from subproperty
hierarchy.

6 Future Work

We see two general directions for future work: scalability and expressivity.
Scalability can be improved by using more efficient in-memory representa-

tions of RDF data and by scaling to more processes. In the former case, we
hope to employ BitMat [19], a very compact in-memory representation of RDF
that also allows for efficient, basic graph pattern querying. In the latter case,
we would like to move our code to a more scalable environment like the Blue
Gene/L (BG/L) at RPI’s CCNI. Our system could also be extended to use a
pipelining approach allowing us to scale to data sets which are limited only by
disk space. We could simply read in as much of the assertional triples as will
fit in a single process, perform inferencing, write results, and then request more
assertional triples from disk.

Expressivity can be improved by simply adding more rules that fit the M1
classes described thus far and also by discovering more classes of rules that are



APS. In the former case, we have already identified a handful of OWL2RL14 rules
that can be supported in this paradigm (e.g., symmetric properties, equivalent
classes, has-value restrictions, etc.), although a multiple-pass approach may be
needed instead of the single pass approach in Algorithm 1. We plan to add sup-
port for these features in the near future. In the latter case, we are investigating
with other colleagues how to handle joins among triple patterns in such a cluster
environment so that we can handle non-M1 rules.

We also believe that this approach my be useful in a MapReduce imple-
mentation of an RDFS reasoner. In the map phase, ontological triples could be
mapped to all reducers and assertional triples to only one reducer each; then,
in the reduce phase, the rules can be applied to all the triples mapped to that
partition. Of course, considerations may have to be made to ensure that the
partitions are not overloaded with too many triples.

7 Conclusion

We have defined a partitioning scheme—abox partitioning—and five classes of
rules which can be used to perform complete parallel inferencing on abox par-
titions. We showed that all of the finite RDFS rules are abox partitioning safe
and derived an embarrassingly parallel algorithm for producing the finite RDFS
closure. We implemented a C/MPI version of the algorithm and performed an
evaluation on a cluster of large memory Opteron machines that showed linear
scaling for the inferencing time. We also showed that although some inferences
are duplicated, the percentage is generally small for larger data sets. Our results
exceed the results reported by related work in that we scale to 128 processes,
producing a closure of roughly 650 million triples from an initial data set of
roughly 345 million triples in only 8 minutes and 25 seconds, for which the ac-
tual inferencing time was only 4 minutes and 51 seconds. To our knowledge, no
other system exists that can produce the (finite) RDFS closure on such large
data sets in so little time.
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