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Abstract

We study a model of proxy voting where the candidates,
voters, and proxies are all located on the real line, and in-
stead of voting directly, each voter delegates its vote to the
closest proxy. The goal is to find a set of proxies that is θ-
representative, which entails that for any voter located any-
where on the line, its favorite candidate is within a distance
θ of the favorite candidate of its closest proxy. This prop-
erty guarantees a strong form of representation as the set of
voters is not required to be fixed in advance, or even be fi-
nite. We show that for candidates located on a line, an opti-
mal proxy arrangement can be computed in polynomial time.
Moreover, we provide upper and lower bounds on the num-
ber of proxies required to form a θ-representative set, thus
showing that a relatively small number of proxies is enough
to capture the preferences of any set of voters. An additional
beneficial property of a θ-representative proxy arrangement
is that for strict-Condorcet voting rules, the outcome of proxy
voting is similarly close to the outcome of direct voting.

Introduction
It is natural to consider settings where voters either may not
be able to or may not be willing to directly cast their vote,
but instead decide to delegate their votes to a proxy. In much
of the related work on proxy voting, the proxies are cho-
sen from the set of eligible voters to then represent the elec-
torate (see, e.g., Cohensius et al. 2017). In this paper, we
consider a model for proxy voting that introduces proxies
to the election using only the arrangement of the candidates
and a given distance θ for any collection of voters.

We call our arrangement θ-representative since each
voter’s closest proxy is guaranteed to have a top preference
that is within θ of the voter’s. This can be interpreted as pro-
viding a set of allowed votes identified by a set of proxies
placed in the metric space, and naturally the voters cast the
vote of the proxy closest to them with the guarantee that this
preference is close to the voter’s. Another way to think about
our model is that we form a set of representatives (proxies)
whose choice does not depend on the locations of the voters
(since these locations are difficult to determine exactly, or
perhaps they are not static and change over time). The goal
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for this set of representatives is that it captures well the opin-
ions of the voters, even as the voters change over time, if the
voters are able to express their opinions by delegating their
vote to their closest representative (proxy).

We consider elections where the voters, the proxies, and
the candidates are all located in a metric space, and each
voter and each proxy has spatial preferences determined by
its distance to each candidate (see, e.g., Schofield 2008 for
a survey on spatial voting). We focus our results on the one-
dimensional case where all candidates and voters lie in the
interval [0, 1] (as in Cohensius et al. 2017). While not as gen-
eral as an arbitrary metric space, it is an important step in
understanding the behavior of the problem in more general
domains. The one-dimensional assumption encompasses the
well-studied domains of single-peaked (Black 1948) and
single-crossing preferences (Mirrlees 1971).

What sets our contributions apart from the related work
on proxy voting is that we determine a proxy arrangement
without knowing the locations of the voters; that is, a θ-
representative proxy arrangement is representative of all
possible sets of voters simultaneously. In contrast, related
work on proxy voting generally selects proxies or represen-
tatives from among a given set of voters (see, e.g., Cohensius
et al. 2017; Meir, Sandomirskiy, and Tennenholtz 2020 and
the references therein).

Our Contributions Our main contributions are as follows
(see also Table 1):

• We introduce a new model of proxy voting and measure
for the representation of voter preferences. We consider
both the unrestricted case where the proxies can be placed
anywhere, and the restricted case where the proxies can
only be placed at the candidate locations.1

• We first provide algorithms for computing an optimal θ-
representative proxy arrangement (i.e., one that uses a
minimum number of proxies) in polynomial time (The-
orems 1 and 3). However, these algorithms do not pro-
vide much insight into how many proxies are actually
necessary in order to be θ-representative, for any possi-
ble set of candidates and voters. Because of this, we also
prove upper and lower bounds on the number of proxies

1Our results also hold if the possible proxy locations are more
general, as long as they include all candidate locations as a subset.



Restrictions on proxies ↓
Bounds on the number of proxies Computational

Upper bound Lower bound Results

On top of candidates (Restricted)
2b 1θ c 2b 1θ c opt in poly time

(Theorem 2) (Proposition 1) (Theorem 1)

Anywhere within R (Unrestricted)
3
2d

1
θ e d 1θ e opt in poly time

(Theorem 4) (Proposition 2) (Theorem 3)

Table 1: Summary of results. For each assumption on the positioning of the proxies (left column), the second and the third
columns provide upper and lower bounds, respectively, on the number of proxies as a function of θ for a θ-representative proxy
arrangement. The rightmost column contains the computational results for optimal proxy arrangements.

needed to have a θ-representative proxy arrangement (see
Table 1). These bounds show that a relatively small num-
ber of proxies is enough to capture the preferences of any
set of voters, even in the worst case.

• Our results also address the dual problem of minimiz-
ing the distance threshold θ for a given number of prox-
ies. For example, we prove that for the unrestricted case,
one can use a given budget of k proxies to compute a θ-
representative arrangement with θ ≤ 3

2d
1
k e (Corollary 1).

• We observe that the proxy arrangements determined by
our algorithms are not only θ-representative with respect
to the voters, but for elections using strict-Condorcet vot-
ing rules, the direct election outcome (i.e., without prox-
ies) is within θ of the proxy-voting outcome (Proposi-
tion 3).

Related Work
Alger (2006) introduce a general proxy voting model where
there is a fixed set of proxies and the voters can choose a
proxy to represent them. Cohensius et al. (2017) consider a
proxy voting setting closely related to ours where the voters,
the proxies, and the candidates are on an interval, and the
voters delegate their vote to their nearest proxy. However, in
their work, the proxies are selected at random and the focus
is on how the outcome is affected.

Green-Armytage (2015) consider proxy voting with spa-
tial preferences where proxies are elected from among the
voters, but additionally explore settings where proxies can
further delegate their vote, which is often referred to as del-
egative democracy (see, e.g., Kahng, Mackenzie, and Pro-
caccia 2018; Gölz et al. 2018). More general models of del-
egative democracy have also been studied (see, e.g., Brill
and Talmon 2018; Abramowitz and Mattei 2019). Another
line of research considers electing a set of representatives
from the voters, and generally comparing the outcome from
the vote of the committee and the outcome from direct
voting (Skowron 2015; Pivato and Soh 2020; Meir, San-
domirskiy, and Tennenholtz 2020; Magdon-Ismail and Xia
2018).

Besides having a θ-representative proxy arrangement, we
observe that for Condorcet-consistent voting rules, our re-
sults guarantee that the proxy-voting outcome is within θ of
the direct-voting outcome. This notion of a θ-representative
outcome is related to, but quite different than, the notion

of distortion Procaccia and Rosenschein (2006). A voting
rule’s distortion is the worst-case ratio of the distance from
the voters to the winner and the candidate that minimizes
this distance. The study of distortion is an active area of re-
search in voting (see e.g., (Anshelevich et al. 2018; Goel,
Krishnaswamy, and Munagala 2017; Abramowitz, Anshele-
vich, and Zhu 2019; Kempe 2020)).

Feldman et al. (2020) study a similar model to ours for
a problem motivated by fairness in academic hiring. They
consider a setup where a set of applicants (analogous to can-
didates in our model) are chosen by a set of experts (analo-
gous to proxies). Each applicant is associated with a known
quality score, and the applicants as well as the experts are
arranged on a line. Each expert votes for its closest candi-
date, where closeness is defined as “distance minus quality.”
As with the related work on distortion, the aim of Feldman
et al. (2020) is related to the outcome, while our paper is
focused on finding a representative set of proxies.

Preliminaries
For any natural number s ∈ N, let [s] := {1, . . . , s}. Our
model involves three types of entities—candidates, voters,
and proxies—which are described below.

Candidates: Let C = {c1, . . . , cm} denote a set ofm ∈ N
candidates that are arranged on a line segment [0, 1]. We will
overload notation to denote the position of the ith candidate
also by ci ∈ [0, 1]. We will assume throughout that the ex-
treme candidates are located at the endpoints of [0, 1] (i.e.,
c1 = 0 and cm = 1), and that all candidates have distinct
locations (i.e., for any distinct i, j ∈ [m], ci 6= cj).

For any pair of adjacent candidates ci and ci+1, their can-
didate bisector is the vertical line at (ci + ci+1)/2. Notice
that with m candidates, there can, in general, be

(
m
2

)
dif-

ferent bisectors. However, unless stated otherwise, the term
‘candidate bisector’ will refer to a bisector between adjacent
candidates.

Voters: A voter can be located anywhere in [0, 1] and is
identified by its location. For any voter v ∈ [0, 1], its favorite
candidate, denoted by top(v), is the candidate that is closest
to it. That is, top(v) := argminci∈C |v − ci|, where ties are
broken according to any fixed directionally consistent tie-
breaking rule (see Definition 1). Note that we do not assume
the set of voters to be fixed in advance. This is because our



results apply to any arbitrary collection of voters that could
be located anywhere within [0, 1].
Definition 1 (Directionally consistent tie-breaking rule).
A tie-breaking rule is a function τ : [0, 1]3 → [0, 1] that
maps any triple v, x, y ∈ [0, 1] as follows:

τ(v, x, y) =


x if |v − x| < |v − y|
y if |v − x| > |v − y|
either x or y otherwise.

That is, a tie-breaking rule always maps to the point that
is closer to v, and in case of a tie, picks exactly one of the
two points. We say that a tie-breaking rule τ is directionally
consistent if, for any fixed v ∈ [0, 1], either τ always tie-
breaks to the left of v or always to the right of v (the choice
of direction could depend on v). That is, for any fixed v ∈
[0, 1], either τ(v, x, y) = x for all x, y ∈ [0, 1] such that
x ≤ v ≤ y and |v − x| = |v − y|, or τ(v, x, y) = y for all
x, y ∈ [0, 1] such that x ≤ v ≤ y and |v − x| = |v − y|.

For any candidate ci ∈ C, its Voronoi cell Vi denotes the
set of all voter locations v ∈ [0, 1] whose favorite candidate
is ci, i.e., Vi := {v ∈ [0, 1] : top(v) = ci}. Notice that
the Voronoi cells V1, . . . , Vm induce a partition of the line
segment [0, 1].

Proxies: Our model also includes a finite set P of prox-
ies whose role is to vote on behalf of the voters. Specifi-
cally, each voter v delegates its vote to its nearest proxy,
denoted by pv := argminp∈P |v − p|. Each proxy p ∈ R
then votes for its favorite candidate, denoted by top(p),
which is defined as the candidate closest to it, i.e., top(p) :=
argminci∈C |p − ci|. As before, ties are broken according
to a directionally consistent tie-breaking rule (see Defini-
tion 1). We will often use the term proxy arrangement to
refer to a set of proxies placed on the real line.

Representative proxy arrangements: We will now for-
mally define what it means for a proxy arrangement to be
representative. The definition is stated in terms of a param-
eter θ ∈ [0, 1] that corresponds to a distance threshold. We
will find it convenient to call two points x, y ∈ [0, 1] to be
θ-close if |x− y| ≤ θ, and call them θ-far otherwise.

Given any θ ∈ [0, 1], we say that a proxy arrangement
is θ-representative if for every voter location, the favorite
candidate of the voter is θ-close to the favorite candidate of
its closest proxy.
Definition 2 (θ-representative proxy arrangement). An
arrangement of proxies is θ-representative if for any voter
v ∈ [0, 1], its favorite candidate is θ-close to the favorite
candidate of its nearest proxy. That is, for every v ∈ [0, 1],
|top(v)− top(pv)| ≤ θ.

This property essentially says that for every voter, no mat-
ter where they may be located, it must be that their prefer-
ence is not too different from the preference of their closest
proxy. Therefore, the voter should feel reasonably satisfied
with the proxy arrangement, as their closest proxy (to whom
they yield the power of their vote) will be somewhat repre-
sentative of their interests. On the other hand, if an arrange-
ment is not θ-representative for some large θ, this means that

there are collections of voters which would be unhappy with
this proxy arrangement, as the votes of the proxies would
heavily disagree with the preferences of the voters.

We will now define the central problem studied in this
paper.
Definition 3 (PROXY VOTING). An instance of the PROXY
VOTING problem I = 〈C, θ〉 is specified by a set of candi-
dates C in [0, 1] and a parameter θ ∈ (0, 1). The goal is to
compute an arrangement of proxies that is θ-representative
for every location v ∈ [0, 1].2

We once again stress that a θ-representative proxy ar-
rangement should be representative of all possible sets of
voters: When choosing appropriate proxies to represent the
populace, we do not have information about the voter lo-
cations; we only know the candidate locations. No matter
where the voters are located, or how they change in the fu-
ture, the proxies will still be representative of their views.

We will study two variants of PROXY VOTING which we
call the restricted and unrestricted versions. Under the re-
stricted version of the problem, we require that the set of
proxies must be a subset of candidate locations, that is, the
proxies must lie on top of the candidates. In the unrestricted
version, the proxies can lie anywhere on the real line.

Note that the computational problem pertaining to Defi-
nition 3 can be formalized as a decision as well as an opti-
mization problem. The decision version asks whether, given
an instance I and a natural number k ∈ N, there exists a θ-
representative proxy arrangement for I consisting of at most
k proxies. The optimization version asks whether, given an
instance I, the optimal θ-representative proxy arrangement
for I can be computed in polynomial time. An arrangement
of k proxies is optimal for instance I if there is no other ar-
rangement of k− 1 or fewer proxies that is θ-representative.
We will write opt(I) to denote the number of proxies in
any optimal θ-representative arrangement for the instance
I. To make the computational problem meaningful, we will
assume throughout that all candidate locations in C and the
parameter θ are rational.

Basic Properties and Examples
Let us start by discussing some of the issues that arise when
constructing θ-representative sets of proxies, and attempt to
build intuition about our techniques. First, consider the fol-
lowing lemma, which points out a precise relationship be-
tween candidate bisectors and proxy bisectors.
Lemma 1. Let I = 〈C, θ〉 denote an instance with a pair of
adjacent candidates ci and ci+1 that are θ-far. Let P be any
proxy arrangement such that none of the bisectors between
adjacent proxies in P coincides with the bisector between ci
and ci+1. Then, P is not θ-representative for I.

Proof. Let p1, . . . , pk denote the proxies in P . Among all
proxy bisectors between adjacent proxies, let the one be-

2We exclude the degenerate corner cases of θ = 0 and θ = 1
from the definition. Indeed, if θ = 0, then it is easy to see that an
optimal proxy arrangement requires as many proxies as candidates
(realized by placing a proxy on each candidate). On the other hand,
θ = 1 involves placing a single proxy anywhere in [0, 1].



tween pj and pj+1 be closest to the candidate bisector be-
tween ci and ci+1 (see Figure 1). Without loss of gen-
erality, we can assume that this proxy bisector is to the
right of the candidate bisector, i.e., ci+ci+1

2 <
pj+pj+1

2 . Let
d := min{pj+pj+1

2 , ci+1}− ci+ci+1

2 and observe that d > 0.

ci ci+1vRvL

> θ

Figure 1: Failure of θ-representation when none of the proxy
bisectors between adjacent proxies coincides with the can-
didate bisector between θ-far candidates. The candidate bi-
sector is shown as solid vertical line, and its closest proxy
bisector is shown as a dashed vertical line in red.

Consider a pair of voters vL ∈ ( ci+ci+1

2 −d, ci+ci+1

2 ) and
vR ∈ ( ci+ci+1

2 , ci+ci+1

2 + d). Notice that the favorite can-
didates of vL and vR are ci and ci+1, respectively. Further-
more, since the closest proxy bisector is at least a distance d
away from the candidate bisector, the two voters must have
the same closest proxy, i.e., pv

L

= pv
R

= pj . Then, regard-
less of the favorite candidate of pj , θ-representation must be
violated for at least one of vL or vR. q

It is relevant to note that the implication in Lemma 1 holds
under both restricted and unrestricted positioning assump-
tions. Because of Lemma 1, it is easy to see that attempt-
ing something trivial like placing proxies at equal distances
will not result in a θ-representative arrangement, as shown
by Example 1 below. This further motivates the need for so-
phisticated algorithms for computing proxy arrangements,
such as those discussed in upcoming sections.

Example 1 (Evenly spaced proxies may not be
θ-representative). Suppose we are given some θ ∈ (0, 1)
and a budget of k ∈ N proxies. We will construct an in-
stance where evenly spacing these k proxies, i.e., placing
the proxies at `

k−1 for every ` ∈ {0, 1, . . . , k − 1}, fails to
be θ-representative (we will assume, without loss of gener-
ality, that k ≥ 2). Notice that the bisectors between adjacent
proxies are located at 2`−1

2(k−1) for every ` ∈ [k − 1].

Consider a sufficiently small ε > 0 such that [θ, θ + ε] ⊆
[ `−1k−1 ,

`
k−1 ] for some ` ∈ [k − 1]. Note that such a choice

of ε must exist since θ ∈ (0, 1). Pick a rational point x ∈
(θ, θ + ε) \ ∪i∈[`]{ 2i−1k−1 }.

Consider an instance with three candidates c1, c2, and c3
that are placed at 0, x, and 1, respectively. Notice that c1 and
c2 are θ-far, and that the bisector between c1 and c2, which
is located at x/2, does not coincide with any proxy bisector
between adjacent proxies. Therefore, by Lemma 1, the evenly
spaced proxy arrangement fails to be θ-representative.

We will now describe our results for restricted and unre-
stricted positioning of proxies.

Restricted Positioning of Proxies
This section provides an algorithm for computing an optimal
proxy arrangement, followed by upper and lower bounds on
the number of proxies needed to be θ-representative.

Algorithm for Computing Optimal Number of
Restricted Proxies
Our first result for restricted positioning (Theorem 1) shows
that a θ-representative arrangement with the smallest num-
ber of proxies can be computed in polynomial time. While
the details are somewhat complex, the proof is via an essen-
tially straightforward dynamic programming algorithm, and
is presented in the full version of the paper (Anshelevich
et al. 2020).
Theorem 1 (Optimal proxy arrangement under re-
stricted positioning). There is a polynomial-time algorithm
that, given any instance 〈C, θ〉 of PROXY VOTING as in-
put, terminates in polynomial time and returns an optimal
θ-representative proxy arrangement satisfying restricted po-
sitioning.

Upper and Lower Bounds for Restricted
Positioning of Proxies
Although the optimum number of proxies can be computed
efficiently, these algorithms do not provide any insight into
how many proxies are actually necessary in order to be θ-
representative for any given set of candidates and any set
of voters. Because of this, we now prove upper and lower
bounds on the number of proxies needed to achieve θ-
representation.
Theorem 2 (Upper bound under restricted positioning).
Given any instance 〈C, θ〉 of PROXY VOTING, there exists
a θ-representative proxy arrangement satisfying restricted
positioning that consists of at most 2( 1θ−1) proxies if 1

θ ∈ N,
and at most 2b 1θ c proxies otherwise. Furthermore, such an
arrangement can be computed in polynomial time.

Proof Sketch. The detailed proof of Theorem 2 is presented
in the full version of the paper (Anshelevich et al. 2020).
Here, we will describe the main steps in our algorithm by
means of the example shown in Figure 2a.

c1 c2 c3 c4 c5

θ ε 2θ θ + ε

(a) An instance of PROXY VOTING.
c1 c2 c3 c4 c5

(b) The proxy bisectors computed by the algorithm are shown
as dashed red lines, and the reference candidates are highlighted
in blue. The locations of proxies are shown as solid red circles.

Figure 2: Illustrating the execution of the algorithm in The-
orem 2 on a toy example.

To compute the desired proxy arrangement, our algorithm
(see Anshelevich et al. 2020) computes a set of proxy bisec-



tors between adjacent proxies, according to the following
strategy. Starting from the leftmost candidate as the refer-
ence, the bisector between the furthest θ-close and the clos-
est θ-far candidates from the reference on the right is chosen
as the first proxy bisector. (In Figure 2b, this is the bisector
between c2 and c3.) In the next iteration, the candidate im-
mediately to the right of the previous proxy bisector is cho-
sen as the new reference in order to compute the next proxy
bisector. (Thus, when c3 is the reference in the next itera-
tion, the furthest θ-close candidate from c3 on the right is
c3 itself, and c4 is the closest θ-far candidate. Therefore, the
proxy bisector is chosen as the candidate bisector between
c3 and c4.) This process repeats until the rightmost candi-
date cm either becomes a reference or is θ-close to one.

Since, by construction, all proxy bisectors coincide with
candidate bisectors, the desired proxy arrangement is real-
ized by placing proxies on the equidistant candidates next
to each proxy bisector. It is easy to show that the number
of proxy bisectors is at most b 1θ c, and therefore the num-
ber of proxies is at most 2b 1θ c. The θ-representation of this
proxy arrangement follows from the fact that all candidates
between consecutive proxy bisectors are θ-close. q

Proposition 1 shows that the upper bound derived in The-
orem 2 is tight.

Proposition 1 (Lower bound under restricted position-
ing). Given any θ ∈ (0, 1), there exists an instance for
which any θ-representative proxy arrangement under re-
stricted positioning requires at least 2( 1θ − 1) proxies if
1
θ ∈ N, and 2b 1θ c proxies otherwise.

Proof. Let p ∈ N denote the unique positive integer such
that 1

p ≤ θ < 1
p−1 . Observe that p − 1 equals 1

θ − 1 when
1
θ ∈ N, and equals b 1θ c otherwise. Therefore, it suffices to
show that any θ-representative arrangement requires 2p− 2
proxies.

Our construction of the lower bound instance will depend
on whether p is even or odd. Specifically, let ε := 1−(p−1)θ

5(p−1)/2

(if p is odd) or ε := 1−(p−1)θ
(5p/2−3) (if p is even), and observe that

ε > 0 in both cases. The distinction between even and odd
cases is made in order to ensure that the distance between
the extreme candidates is equal to 1.

c1 c2 c3 c4 c5 c6 c7

θ + ε ε θ + ε 2ε θ + ε ε

c1 c2 c3 c4 c5 c6 c7 c8 c9

θ + ε ε θ + ε 2ε θ + ε ε θ + ε 2ε

Figure 3: Lower bound instance in Proposition 1 when 1
4 ≤

θ < 1
3 (top) and 1

5 ≤ θ <
1
4 (bottom).

The instance consists of the candidate c1 on the left, fol-
lowed by a sequence of pairs of candidates {c2i, c2i+1} for
i ∈ N such that each pair is at a distance of θ + ε from the
preceding pair, and the gap between the candidates in each

pair alternates between ε and 2ε (see Figure 3 for an ex-
ample). In other words, the sequence of distances between
adjacent pair of candidates from left to right is given by
θ + ε, ε, θ + ε, 2ε, θ + ε, ε and so on. The rightmost can-
didate is c2p−1. It is easy to see that all candidate locations
are rational, and that the distance between the extreme can-
didates is equal to 1.

The fact that the candidate pairs {c1, c2}, {c3, c4},
{c5, c6}, and so on are each θ-far necessitates that for every
candidate bisector between these pairs, there must exist a
proxy bisector between adjacent proxies that coincides with
it (contrapositive of Lemma 1). Furthermore, due to the al-
ternating gaps property, any θ-representative proxy arrange-
ment is required to place proxies on every candidate except
for the last candidate c2p−1 (see Anshelevich et al. 2020 for
a detailed argument). This implies that any θ-representative
proxy arrangement for the above instance requires at least
2p− 2 proxies. q

Unrestricted Positioning of Proxies
Let us now turn our attention to the unrestricted setting
wherein the proxies can be placed anywhere on the real line.
Clearly, any feasible proxy arrangement in the restricted
model is also feasible under the unrestricted model. There-
fore, the optimal number of proxies under the latter setting
is at most that under the former; in fact, Example 2 shows
that the separation between the two models can be strict.
Example 2 (Unrestricted positioning uses fewer proxies
than restricted). Fix θ = 1

3 and let ε > 0 be sufficiently
small. Consider the instance shown in Figure 4 consisting of
four candidates c1 = 0, c2 = 1

3 + ε, c3 = 2
3 − ε, and c4 =

1. Notice that the adjacent candidate pairs {c1, c2} and
{c3, c4} are θ-far. Thus, by the contrapositive of Lemma 1,
any θ-representative proxy arrangement must have bisectors
between adjacent proxies that coincide with the candidate
bisectors between these pairs.

c1 c2 c3 c4

θ + ε θ − 2ε θ + ε

c1 c2 c3 c4

θ + ε θ − 2ε θ + ε

Figure 4: Unrestricted positioning (bottom) requires strictly
fewer proxies than restricted positioning (top). The proxies
in each case are shown as solid red circles.

Under restricted positioning, a θ-representative proxy ar-
rangement must place proxies on all candidates, using four
proxies in total (see top figure in Figure 4). By contrast, un-
der unrestricted positioning, there exists a feasible proxy ar-
rangement that only uses three proxies, namely p1 = − 1

6+ε,
p2 = 0.5, and p3 = 7

6 + ε (see bottom figure in Figure 4).
Notice that the saving in the number of proxies in the un-

restricted case was achieved by “merging” the second and
the third proxies. This, in turn, forces the first and the fourth



proxies to fall outside of [0, 1], thus highlighting the impor-
tance of allowing the proxies to be anywhere on the real line.

Algorithm for Computing Optimal Number of
Unrestricted Proxies
Let us now state our main result for unrestricted proxies.

Theorem 3 (Optimal proxy arrangement under unre-
stricted positioning). There is a polynomial-time algorithm
that, given any instance 〈C, θ〉 of PROXY VOTING as in-
put, terminates in polynomial time and returns an optimal
θ-representative proxy arrangement.

The proof of Theorem 3 is technically the most involved
part of the paper and is presented in (Anshelevich et al.
2020). Here we will outline a brief sketch of the proof.

Proof Sketch. For any fixed k ∈ [m], our algorithm de-
cides whether there exists a feasible (i.e., θ-representative)
arrangement of k proxies for the given instance. The small-
est k with a positive answer is returned as the output.

Given a proxy arrangement P = {p1, . . . , pk}, let us de-
fine the Voronoi cell Wj of proxy pj as the set of all loca-
tions of voters whose closest proxy is pj , i.e., Wj := {v ∈
[0, 1] : |v−pj | ≤ |v−p`| for any ` 6= j}, where ties are bro-
ken according to a directionally-consistent tie-breaking rule
(Definition 1). Notice that v ∈Wj if and only if pj = pv .

At a high level, the algorithm uses dynamic programming
to compute the set of feasible locations (or the feasibility set)
of the proxy pj+1 using the feasibility set of the preceding
proxy pj . It maintains the property that for each point s in the
feasibility set of proxy pj+1, there exists some point s′ < s
in the feasibility set of proxy pj such that θ-representation
is satisfied for all voters in Wj (see Anshelevich et al. 2020
for a formal characterization result). Such a pair of locations
{s′, s} is said to be mutually feasible.

To begin with, the feasibility set F 1 of the leftmost proxy
p1 is initialized as the union of the Voronoi cells of all can-
didates that are θ-close to the leftmost candidate c1, along
with the region (−∞, 0).3 This corresponds to the set of all
positions of the leftmost proxy such that θ-representation is
satisfied for the leftmost voter.

The feasibility set F j+1 of the proxy pj+1 is computed
using F j as follows: Consider the restriction of F j to the
Voronoi cell of candidate ch (denoted by F j,h), as illustrated
by the interval [x, y] in Figure 5 (thus, top(pj) = ch). We
will use F j,h to compute F j+1,i, which is the restriction of
F j+1 to the Voronoi cell of candidate ci.

Let bh denote the candidate bisector between the furthest
θ-close and closest θ-far candidates to the right of ch. Sim-
ilarly, let bi denote the candidate bisector between the fur-
thest θ-close and closest θ-far candidates to the left of ci.

By our characterization result, it follows that any point
z ∈ F j+1,i that is mutually feasible with some point in F j,h
must be (weakly) to the left of the mirror image of the point
x about the bisector bh (namely, x′). This is because the
proxy bisector between pj and pj+1 has to be (weakly) to

3Recall from Example 2 that proxies can lie outside [0, 1] in an
optimal arrangement under unrestricted positioning.

the left of bh. Similarly, z must be (weakly) to the right of
the mirror image of point y about the bisector bi (namely,
y′). The contribution of the set [x, y] to F j+1,i is given by
Vi ∩ [y′, x′]. In general, the restriction F j,h could comprise
of several disjoint intervals. In the full version of the pa-
per (Anshelevich et al. 2020), we describe how the feasibil-
ity set F j+1 can nevertheless be efficiently computed.

ch ci
bi bh

x y y′ x′θ θ

Figure 5

Having computed the feasibility set F k of the rightmost
proxy, the algorithm now checks whether it overlaps with the
union of the Voronoi cells of candidates that are θ-close to
the rightmost candidate cm along with the region (1,∞). If
yes, then there exists a feasible location of the proxy pk that
is θ-representative for the rightmost voter. By the aforemen-
tioned property, there must exist a feasible location pk−1 of
the previous proxy such that pk−1 and pk are mutually feasi-
ble, thus implying θ-representation for the voters in Wk−1.
Similarly, there must exist a feasible location of the proxy
pk−2 that is mutually feasible with pk−1, and so on. Con-
tinuing backwards in this manner, we obtain a set of proxy
locations p1, . . . , pk wherein the adjacent pairs are mutu-
ally feasible, which immediately implies θ-representation.
On the other hand, the absence of an overlap certifies that
with k proxies, there is no θ-representative proxy arrange-
ment in the given instance. q

Upper and Lower Bounds for Unrestricted
Positioning of Proxies
To compute an upper bound on the number of proxies, we
will show that an algorithm similar to that for the restricted
setting turns out to be useful. We will defer the detailed de-
scription of our algorithm and its formal analysis to the full
version of the paper (Anshelevich et al. 2020), and instead
revisit the example from Figure 2 considered previously in
the restricted case.

Our algorithm proceeds in two phases. The first phase is
identical to that of the algorithm for the restricted case (The-
orem 2), and returns a set of proxy bisectors. In the second
phase, the algorithm starts with a proxy arrangement that is
consistent with the proxy bisectors computed in Phase 1 by
placing a pair of equidistant proxies on either side of each bi-
sector. This results in twice as many proxies as there are bi-
sectors. To shrink this number down to 3/2 times the number
of bisectors, the algorithm utilizes the additional flexibility
of the unrestricted setting via an “expand and merge” step.
Specifically, the algorithm pulls all the proxies away from
their bisectors at equal speeds until there is a “collision”
event in some interval (recall that an interval is the area be-
tween adjacent proxy bisectors). At this point, the two prox-
ies in that interval can be merged into a single proxy, and the
locations of their ‘partner’ proxies are frozen (see Figure 6).
This process is repeated until all proxies are frozen.



c1 c2 c3 c4 c5

Collision Collision

Figure 6: Illustrating the execution of the algorithm in Theo-
rem 4 on a toy example. The initial and the final proxy loca-
tions are shown as empty and solid red circles, respectively.

By construction, all candidates within each interval are
θ-close. Furthermore, since each voter is in the same inter-
val as its closest proxy, θ-representation is satisfied for all
voters. By an analysis similar to that in Theorem 2, it fol-
lows that the number of proxy bisectors is at most d 1θ e. The
expand-and-merge step ensures that no two consecutive in-
tervals can have two proxies each. This readily implies the
desired bound of 3

2d
1
θ e for the number of proxies.

Theorem 4 (Upper bound under unrestricted position-
ing). Given any instance 〈C, θ〉 of PROXY VOTING as in-
put, there exists a θ-representative arrangement consisting
of at most 3

2d
1
θ e proxies. Furthermore, such an arrangement

can be computed in polynomial time.

Notice that Theorem 4 can be used to obtain upper bounds
for the dual problem to PROXY VOTING wherein the input
consists of a proxy budget k and the goal is to provide an
upper bound on θ. Indeed, given as input a budget of k > 1
proxies, we can invoke our algorithm with θ = 1/b 2k3 c.
Then, by Theorem 4, we know that the proxy arrangement
returned by the algorithm is

(
1/b 2k3 c

)
-representative and

uses at most 3
2d

1
θ e ≤ k proxies, which is within the given

budget. Corollary 1 formalizes this observation.

Corollary 1 (Upper bound on θ). There is a polynomial-
time algorithm that, given any positive integer k ∈ N as
input, returns an arrangement of at most k proxies that is(
1/b 2k3 c

)
-representative.

Next, we will show that the dependence on θ in the upper
bound cannot be improved.

Proposition 2 (Lower bound under unrestricted position-
ing). Given any θ ∈ (0, 1), there exists an instance such that
any θ-representative proxy arrangement requires at least
d 1θ e proxies.

Proof. Define θ′ ∈ (0, 1) as follows:

θ′ :=

{
1
p−1 , if θ = 1

p for some positive integer p
1
p , if 1

p+1 < θ < 1
p for some positive integer p.

Observe that θ′ > θ. Consider an instance where the
candidates are evenly spaced at a distance of θ′, as shown
in Figure 7. Notice that the total number of candidates is
m = 1

θ′ + 1 = d 1θ e.
Since any pair of adjacent candidates are θ-far, it must be

that each candidate is the favorite candidate of some proxy.
Indeed, in any arrangement with fewer thanm proxies, there
must exist a candidate, say c, that is not the favorite candi-
date of any proxy. Consider a voter v that is located at c. The
distance between the favorite candidate of v and that of v’s

c1 c2 c3 cm−1 cm
. . .

θ′ θ′ θ′

Figure 7: Lower bound on the number of proxies under un-
restricted positioning (Proposition 2)

nearest proxy must then be strictly greater than θ, which vio-
lates θ-representation. Thus,m proxies are necessary, which
gives the desired bound. q

Representative Election Outcomes
So far, we have focused on achieving θ-representation for
each individual voter. A natural question is whether the vot-
ing outcome by proxies is a good representation of the direct
voting outcome. This is formally defined as follows.
Definition 4. An arrangement of proxies is said to be θ-
representative under a voting rule r, if for any preference
profile P ∈ [0, 1]n, r(P ) is θ-close to r({pv : v ∈ P}).

In Definition 4, r(P ) is the outcome of direct voting and
{pv : v ∈ P} is the multiset of proxy votes. It turns out that
θ-representation of an arrangement implies θ-representation
under any strict-Condorcet rule with consistent tie-breaking
(i.e., any strict-Condorcet rule which must choose a weak
Condorcet winner as the winner, and in case there is more
than one weak Condorcet winner, the leftmost (or, the right-
most) one must be chosen).
Proposition 3. Let r be a strict-Condorcet rule with con-
sistent tie-breaking. If an arrangement of proxies is θ-
representative, then it is θ-representative under the rule r.

In light of Proposition 3, all θ-representation results
proved in this paper (see Table 1) naturally extend to θ-
representation under strict-Condorcet rules. The proof of
Proposition 3 is presented in (Anshelevich et al. 2020).

Concluding Remarks
In this paper, we gave efficient algorithms for computing
optimal sets of θ-representative proxies, as well as proved
upper and lower bounds on the number of proxies needed to
achieve this property. Unlike in most related work, our proxy
arrangements do not depend on the voter locations, and will
remain representative for any set of voters. In fact, all our
results hold (although some of the proofs become far more
complex) even with additional requirements on the proxy ar-
rangement, such as requiring that for every voter v ∈ [0, 1],
its closest proxy is within a distance θ, in addition to them
being θ-representative.

Many interesting open problems remain, however, be-
ginning with closing the gap between the upper and lower
bounds for the number of proxies under unrestricted posi-
tioning, and analysing the ability to form θ-representative
proxies in more general metric spaces. More generally, it
would be interesting to expand the scope of θ-representation
from “representing the top candidate well” to “representing
the top-k candidates well”, or to more general fairness prop-
erties.
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