
Generalized Method-of-Moments for Rank
Aggregation

Hossein Azari Soufiani
SEAS

Harvard University
azari@fas.harvard.edu

William Chen
Statistics Department
Harvard University

wchen@college.harvard.edu

David C. Parkes
SEAS

Harvard University
parkes@eecs.harvard.edu

Lirong Xia
Computer Science Department

Rensselaer Polytechnic Institute
Troy, NY 12180, USA

xial@cs.rpi.edu

Abstract

In this paper we propose a class of efficient Generalized Method-of-Moments
(GMM) algorithms for computing parameters of the Plackett-Luce model, where
the data consists of full rankings over alternatives. Our technique is based on
breaking the full rankings into pairwise comparisons, and then computing param-
eters that satisfy a set of generalized moment conditions. We identify conditions
for the output of GMM to be unique, and identify a general class of consistent
and inconsistent breakings. We then show by theory and experiments that our al-
gorithms run significantly faster than the classical Minorize-Maximization (MM)
algorithm, while achieving competitive statistical efficiency.

1 Introduction

In many applications, we need to aggregate the preferences of agents over a set of alternatives to
produce a joint ranking. For example, in systems for ranking the quality of products, restaurants, or
other services, we can generate an aggregate rank through feedback from individual users. This idea
of rank aggregation also plays an important role in multiagent systems [5], meta-search engines [4],
belief merging [6], crowdsourcing [15], and many other e-commerce applications.

A standard approach towards rank aggregation is to treat input rankings as data generated from
a probabilistic model, and then learn the MLE of the input data. This idea has been explored in
both the machine learning community and the (computational) social choice community. The most
popular statistical models are the Bradley-Terry-Luce model (BTL for short) [2, 13], the Plackett-
Luce model (PL for short) [17, 13], the random utility model [18], and the Mallows (Condorcet)
model [14, 3]. In machine learning, researchers have focused on designing efficient algorithms to
estimate parameters for popular models; e.g. [9, 12, 1]. This line of research is sometimes referred
to as learning to rank [11].

Recently, Negahban et al. [16] proposed a rank aggregation algorithm, called Rank Centrality (RC),
based on computing the stationary distribution of a Markov chain whose transition matrix is defined
according to the data (pairwise comparisons among alternatives). The authors describe the approach
as being model independent, and prove that for data generated according to BTL, the output of RC
converges to the ground truth, and the performance of RC is almost identical to the performance of
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MLE for BTL. Moreover, they characterized the convergence rate and showed experimental com-
parisons.

Our Contributions. In this paper, we take a generalized method-of-moments (GMM) point of view
towards rank aggregation. We first reveal a new and natural connection between the random walk
approach [16] and the BTL model by showing that RC is indeed a GMM applied to the BTL model.
Under this interpretation, surprisingly, even though the RC algorithm was designed independent of
the assumption of a model in the first place, it in effect implicitly assumes the BTL Model.

The main technical contribution of this paper is a class of efficient GMMs for parameter estima-
tion under the PL model, which generalizes BTL and the input consists of full rankings instead of
pairwise comparisons as in the case of BTL. Our algorithms first break full rankings into pairwise
comparisons, and then solve the generalized moment conditions to find the parameters. Each of our
GMMs is characterized by a way of breaking full rankings. We characterize conditions for the out-
put of the algorithm to be unique, and we also obtain some general characterizations that help us to
determine which method of breaking leads to a consistent GMM. Specifically, full breaking (which
uses all pairwise comparisons in the ranking) is consistent, but adjacent breaking (which only uses
pairwise comparisons in adjacent positions) is inconsistent.

We characterize the computational complexity of our GMMs, and show that the asymptotic com-
plexity is better than for the classical Minorize-Maximization (MM) algorithm for PL [9]. We also
compare statistical efficiency and running time of these methods experimentally using both synthetic
and real-world data, showing that all GMMs run much faster than the MM algorithm. For the syn-
thetic data, we observe that many consistent GMMs converge as fast as the MM algorithm, while
there exists a clear tradeoff between computational complexity and statistical efficiency among con-
sistent GMMs.

Technically our technique is related to the random walk approach [16]. However, we note that our
algorithms aggregate full rankings under PL, while the RC algorithm aggregates pairwise compar-
isons. Therefore, it is quite hard to directly compare our GMMs and RC fairly since they are for
different models. Moreover, by taking a GMM point of view, we prove the consistency of our al-
gorithms on top of theories for GMMs, while Negahban et al. proved the consistency of RC using
quite involved mathematics.

2 Preliminaries

Let C = {c1, .., cm} denote the set of m alternatives. Let D = {d1, . . . , dn} denote the data, where
each dj is a full ranking over C. The PL model is a parametric model where each alternative ci is
parameterized by γi ∈ (0, 1), such that

∑m
i=1 γi = 1. Let ~γ = (γ1, . . . , γm) and Ω denote the

parameter space. Let Ω̄ denote the closure of Ω. That is, Ω̄ = {~γ : ∀i, γi ≥ 0 and
∑m
i=1 γi = 1}.

Given ~γ∗ ∈ Ω, the probability for a ranking d = [ci1 � ci2 � · · · � cim ] is defined as follows.

PrPL(d|~γ) =
γi1∑m
l=1 γil

× γi2∑m
l=2 γil

× · · · ×
γim−1

γim−1
+ γim

In the BTL model, the data is composed of pairwise comparisons instead of rankings, and the
model is parameterized in the same way as PL, such that PrBTL(ci1 � ci2 |~γ) =

γi1
γi1 + γi2

.

BTL can be thought of as a special case of PL via marginalization, since PrBTL(ci1 � ci2 |~γ) =∑
d:ci1�cc2

PrPL(d|~γ). In the rest of the paper, we denote Pr = PrPL.

Generalized Method-of-Moments (GMM) provides a wide class of algorithms for parameter estima-
tion. In GMM, we are given a parametric model whose parametric space is Ω ⊆ Rm, an infinite
series of q × q matrices W = {Wt : t ≥ 1}, and a column-vector-valued function g(d,~γ) ∈ Rq .
For any vector ~a ∈ Rq and any q × q matrix W , we let ‖~a‖W = (~a)TW~a. For any data D, let
g(D,~γ) = 1

n

∑
d∈D g(d,~γ), and the GMM method computes parameters ~γ′ ∈ Ω that minimize

‖g(D,~γ′)‖Wn
, formally defined as follows:

GMMg(D,W) = {~γ′ ∈ Ω : ‖g(D,~γ′)‖Wn
= inf
~γ∈Ω
‖g(D,~γ)‖Wn

} (1)
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Since Ω may not be compact (as is the case for PL), the set of parameters GMMg(D,W) can be
empty. A GMM is consistent if and only if for any ~γ∗ ∈ Ω, GMMg(D,W) converges in probability
to ~γ∗ as n→∞ and the data is drawn i.i.d. given ~γ∗. Consistency is a desirable property for GMMs.

It is well-known that GMMg(D,W) is consistent if it satisfies some regularity conditions plus the
following condition [8]:
Condition 1. Ed|~γ∗ [g(d,~γ)] = 0 if and only if ~γ = ~γ∗.
Example 1. MLE as a consistent GMM: Suppose the likelihood function is twice-differentiable,
then the MLE is a consistent GMM where g(d,~γ) = 5~γ log Pr(d,~γ) and Wn = I .
Example 2. Negahban et al. [16] proposed the Rank Centrality (RC) algorithm that aggregates
pairwise comparisons DP = {Y1, . . . , Yn}.1 Let aij denote the number of ci � cj in DP and it is
assumed that for any i 6= j, aij + aji = k. Let dmax denote the maximum pairwise defeats for an
alternative. RC first computes the following m×m column stochastic matrix:

PRC(DP )ij =

{
aij/(kdmax) if i 6= j

1−
∑
l 6=i ali/(kdmax) if i = j

Then, RC computes (PRC(DP ))T ’s stationary distribution ~γ as the output.

Let Xci�cj (Y ) =

{
1 if Y = [ci � cj ]
0 otherwise and P ∗RC(Y ) =

{
Xci�cj if i 6= j

−
∑
l 6=iX

cl�ci if i = j .

Let gRC(d,~γ) = P ∗RC(d) ·~γ. It is not hard to check that the output of RC is the output of GMMgRC
.

Moreover, GMMgRC
satisfies Condition 1 under the BTL model, and as we will show later in Corol-

lary 4, GMMgRC
is consistent for BTL.

3 Generalized Method-of-Moments for the Plakett-Luce model
In this section we introduce our GMMs for rank aggregation under PL. In our methods, q = m,
Wn = I and g is linear in ~γ. We start with a simple special case to illustrate the idea.
Example 3. For any full ranking d over C, we let

• Xci�cj (d) =

{
1 ci �d cj
0 otherwise

• P (d) be an m×m matrix where P (d)ij =

{
Xci�cj (d) if i 6= j

−
∑
l 6=iX

cl�ci(d) if i = j

• gF (d,~γ) = P (d) · ~γ and P (D) = 1
n

∑
d∈D P (d)

For example, let m = 3, D = {[c1 � c2 � c3], [c2 � c3 � c1]}. Then P (D) =[ −1 1/2 1/2
1/2 −1/2 1
1/2 0 −3/2

]
. The corresponding GMM seeks to minimize ‖P (D) · ~γ‖22 for ~γ ∈ Ω.

It is not hard to verify that (Ed|~γ∗ [P (d)])ij =


γ∗
i

γ∗
i +γ∗

j
if i 6= j

−
∑
l 6=i

γ∗
l

γ∗
i +γ∗

l
if i = j

, which means that

Ed|~γ∗ [gF (d,~γ∗)] = Ed|~γ∗ [P (d)] · ~γ∗ = 0. It is not hard to verify that ~γ∗ is the only solution
to Ed|~γ∗ [gF (d,~γ)] = 0. Therefore, GMMgF satisfies Condition 1. Moreover, we will show in
Corollary 3 that GMMgF is consistent for PL.

In the above example, we count all pairwise comparisons in a full ranking d to build P (d), and define
g = P (D) · ~γ to be linear in ~γ. In general, we may consider some subset of pairwise comparisons.
This leads to the definition of our class of GMMs based on the notion of breakings. Intuitively, a
breaking is an undirected graph over the m positions in a ranking, such that for any full ranking
d, the pairwise comparisons between alternatives in the ith position and jth position are counted to
construct PG(d) if and only if {i, j} ∈ G.

1The BTL model in [16] is slightly different from that in this paper. Therefore, in this example we adopt an
equivalent description of the RC algorithm.
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Definition 1. A breaking is a non-empty undirected graph G whose vertices are {1, . . . ,m}. Given
any breaking G, any full ranking d over C, and any ci, cj ∈ C, we let

• Xci�cj
G (d) =

{
1 {Pos(ci, d),Pos(cj , d)} ∈ G and ci �d cj
0 otherwise , where Pos(ci, d) is the posi-

tion of ci in d.

• PG(d) be an m×m matrix where PG(d)ij =

{
X
ci�cj
G (d) if i 6= j

−
∑
l 6=iX

cl�ci
G (d) if i = j

• gG(d,~γ) = PG(d) · ~γ
• GMMG(D) be the GMM method that solves Equation (1) for gG and Wn = I .2

In this paper, we focus on the following breakings, illustrated in Figure 1.

• Full breaking: GF is the complete graph. Example 3 is the GMM with full breaking.

• Top-k breaking: for any k ≤ m, GkT = {{i, j} : i ≤ k, j 6= i}.

• Bottom-k breaking: for any k ≥ 2, GkB = {{i, j} : i, j ≥ m+ 1− k, j 6= i}.3

• Adjacent breaking: GA = {{1, 2}, {2, 3}, . . . , {m− 1,m}}.
• Position-k breaking: for any k ≥ 2, GkP = {{k, i} : i 6= k}.

6	

 3	



4	

5	



2	

1	



6	

 3	



4	

5	



2	

1	



6	

 3	



4	

5	



2	

1	



(a) Full breaking. (b) Top-3 breaking. (c) Bottom-3 breaking.
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(d) Adjacent breaking. (e) Position-2 breaking.

Figure 1: Example breakings for m = 6.

Intuitively, the full breaking contains all information in the ranking; the top-k breaking contains
information when an agent only reveals her top k alternatives and the ranking among them; the
bottom-k breaking can be computed when an agent only reveals her bottom k alternatives and the
ranking among them; and the position-k breaking can be computed when the agent only reveals the
alternative that is ranked at the kth position and the set of alternatives ranked in lower positions.

We note that GmT = GmB = GF , G1
T = G1

P , and for any k ≤ m − 1, GkT ∪ G
m−k
B = GF , and

GkT =
⋃k
l=1G

l
P .

We are now ready to present our GMM algorithm (Algorithm 1) parameterized by a breaking G.

2To simplify notation, we use GMMG instead of GMMgG .
3We need k ≥ 2 since Gk

B is empty.
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Algorithm 1: GMMG(D)

Input: A breaking G and data D = {d1, . . . , dn} composed of full rankings.
Output: Estimation GMMG(D) of parameters under PL.

1 Compute PG(D) = 1
n

∑
d∈D PG(d) in Definition 1.

2 Compute GMMG(D) according to (1).
3 return GMMG(D).

Step 2 can be further simplified according to the following theorem. Due to the space constraints,
most proofs are relegated to the appendix.
Theorem 1. For any breaking G and any data D, there exists ~γ ∈ Ω̄ such that PG(D) · ~γ = 0.

Theorem 1 implies that in Equation (1), inf~γ∈Ω g(D,~γ)TWng(D,~γ)} = 0. Therefore, Step 2 can
be replaced by: 2∗ Let GMMG = {~γ ∈ Ω : PG(D) · ~γ = 0}.

3.1 Uniqueness of Solution
It is possible that for some data D, GMMG(D) is empty or non-unique. Our next theorem charac-
terizes conditions for |GMMG(D)| = 1 and |GMMG(D)| 6= ∅. A Markov chain (row stochastic
matrix) M is irreducible, if any state can be reached from any other state. That is, M only has one
communicating class.
Theorem 2. Among the following three conditions, 1 and 2 are equivalent for any breaking G and
any dataD. Moreover, conditions 1 and 2 are equivalent to condition 3 if and only ifG is connected.

1. (I + PG(D)/m)T is irreducible.

2. |GMMG(D)| = 1.

3. GMMG(D) 6= ∅.
Corollary 1. For the full breaking, adjacent breaking, and any top-k breaking, the three statements
in Theorem 2 are equivalent for any data D. For any position-k (with k ≥ 2) and any bottom-k
(with k ≤ m− 1), 1 and 2 are not equivalent to 3 for some data D.

Ford, Jr. [7] identified a necessary and sufficient condition on data D for the MLE under PL to be
unique, which is equivalent to condition 1 in Theorem 2. Therefore, we have the following corollary.
Corollary 2. For the full breaking GF , |GMMGF

(D)| = 1 if and only if |MLEPL(D)| = 1.

3.2 Consistency
We say a breaking G is consistent (for PL), if GMMG is consistent (for PL). Below, we show that
some breakings defined in the last subsection are consistent. We start with general results.
Theorem 3. A breaking G is consistent if and only if Ed|~γ∗ [g(d,~γ∗)] = 0, which is equivalent to
the following equalities:

for all i 6= j,
Pr(ci � cj |{Pos(ci, d),Pos(cj , d)} ∈ G)

Pr(cj � ci|{Pos(ci),Pos(cj)} ∈ G)
=
γi
γj
. (2)

Theorem 4. Let G1, G2 be a pair of consistent breakings.

1. If G1 ∩G2 = ∅, then G1 ∪G2 is also consistent.

2. If G1 ( G2 and (G2 \G1) 6= ∅, then (G2 \G1) is also consistent.

Continuing, we show that position-k breakings are consistent, then use this and Theorem 4 as build-
ing blocks to prove additional consistency results.
Proposition 1. For any k ≥ 1, the position-k breaking GkP is consistent.

We recall that GkT =
⋃k
l=1G

l
P , GF = GmT , and GkB = GF \ Gm−kT . Therefore, we have the

following corollary.
Corollary 3. The full breaking GF is consistent; for any k, GkT is consistent, and for any k ≥ 2,
GkB is consistent.
Theorem 5. Adjacent breaking GA is consistent if and only if all components in ~γ∗ are the same.
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Lastly, the technique developed in this section can also provide an independent proof that the RC
algorithm is consistent for BTL, which is implied by the main theorem in [16]:

Corollary 4. [16] The RC algorithm is consistent for BTL.

The results in this section suggest that if we want to learn the parameters of PL, we should use
consistent breakings, including full breaking, top-k breakings, bottom-k breakings, and position-k
breakings. The adjacent breaking seems quite natural, but it is not consistent, thus will not provide a
good estimate to the parameters of PL. This will also be verified by experimental results in Section 4.

3.3 Complexity

We first characterize the computational complexity of our GMMs.

Proposition 2. The computational complexity of the MM algorithm for PL [9] and our GMMs are
listed below.

•MM: O(m3n) per iteration.

• GMM (Algorithm 1) with full breaking: O(m2n + m2.376), with O(m2n) for breaking and
O(m2.376) for computing step 2∗ in Algorithm 1 (matrix inversion).

• GMM with adjacent breaking: O(mn + m2.376), with O(mn) for breaking and O(m2.376)
for computing step 2∗ in Algorithm 1.

• GMM with top-k breaking: O((m + k)kn + m2.376), with O((m + k)kn) for breaking and
O(m2.376) for computing step 2∗ in Algorithm 1.

It follows that the asymptotic complexity of the GMM algorithms is better than for the classical MM
algorithm. In particular, the GMM with adjacent breaking and top-k breaking for constant k’s are
the fastest. However, we recall that the GMM with adjacent breaking is not consistent, while the
other algorithms are consistent. We would expect that as data size grows, the GMM with adjacent
breaking will provide a relatively poor estimation to ~γ∗ compared to the other methods.

Among GMMs with top-k breakings, the larger the k is, the more information we use in a single
ranking, which comes at a higher computational cost. Therefore, it is natural to conjecture that for
the same data, GMMGk

T
with large k converges faster than GMMGk

T
with small k. In other words,

we expect to see the following time-efficiency tradeoff among GMMGk
T

for different k’s, which is
verified by the experimental results in the next section.

Conjecture 1. (time-efficiency tradeoff) for any k1 < k2, GMM
G

k1
T

runs faster, while GMM
G

k2
T

provides a better estimate to the ground truth.

4 Experiments
The running time and statistical efficiency of MM and our GMMs are examined for both synthetic
data and a real-world sushi dataset [10]. The synthetic datasets are generated as follows.

• Generating the ground truth: for m ≤ 300, the ground truth ~γ∗ is generated from the Dirichlet
distribution Dir(~1).

• Generating data: given a ground truth ~γ∗, we generate up to 1000 full rankings from PL.

We implemented MM [9] for 1, 3, 10 iterations, as well as GMMs with full breaking, adjacent
breaking, and top-k breaking for all k ≤ m− 1.

We focus on the following representative criteria. Let ~γ denote the output of the algorithm.

• Mean Squared Error: MSE = E(‖~γ − ~γ∗‖22).

• Kendall Rank Correlation Coefficient: Let K(~γ,~γ∗) denote the Kendall tau distance between
the ranking over components in ~γ and the ranking over components in ~γ∗. The Kendall correlation
is 1− 2 K(~γ,~γ∗)

m(m−1)/2 .

All experiments are run on a 1.86 GHz Intel Core 2 Duo MacBook Air.
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4.1 Synthetic Data
In this subsection we focus on comparisons among MM, GMM (full breaking), and GMM (adjacent
breaking). The running time is presented in Figure 2. We observe that GMM (adjacent breaking) is
the fastest and MM is the slowest, even for one iteration.

The statistical efficiency is shown in Figure 3. We observe that in regard to the MSE criterion, GMM
(full breaking) performs as well as MM for 10 iterations (which converges), and that these are both
better than GMM (adjacent breaking). For the Kendall correlation criterion, GMM (full breaking)
has the best performance and GMM (adjacent breaking) has the worst performance. Statistics are
calculated over 1840 trials. In all cases except one, GMM (full breaking) outperforms MM which
outperforms GMM (adjacent breaking) with statistical significance at 95% confidence. The only
exception is between GMM (full breaking) and MM for Kendall correlation at n = 1000.
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Figure 2: The running time of MM (one iteration), GMM (full breaking), and GMM (adjacent breaking),
plotted in log-scale. On the left, m is fixed at 10. On the right, n is fixed at 10. 95% confidence intervals are
too small to be seen. Times are calculated over 20 datasets.
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Figure 3: The MSE and Kendall correlation of MM (10 iterations), GMM (full breaking), and GMM (adjacent
breaking). Error bars are 95% confidence intervals.

4.2 Time-Efficiency Tradeoff among Top-k Breakings

Results on the running time and statistical efficiency for top-k breakings are shown in Figure 4. We
recall that top-1 is equivalent to position-1, and top-(m− 1) is equivalent to the full breaking.

For n = 1000, MSE comparisons between successive top-k breakings are statistically significant
at 95% level from (top-1, top-2) to (top-6, top-7). For n = 1000, Kendall correlation comparisons
between successive top-k breakings are significant at 95% confidence level for (top-1, top-2) and
(top-2, top-3). The comparisons in running time are all significant at 95% confidence level. On
average, we observe that top-k breakings with smaller k run faster, while top-k breakings with larger
k have higher statistical efficiency in both MSE and Kendall correlation. This justifies Conjecture 1.
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4.3 Experiments for Real Data
In the sushi dataset [10], there are 10 kinds of sushi (m = 10) and the amount of data n is varied,
randomly sampling with replacement. We set the ground truth to be the output of MM applied to
all 5000 data points. For the running time, we observe the same as for the synthetic data: GMM
(adjacent breaking) runs faster than GMM (full breaking), which runs faster than MM.4

Comparisons for MSE and Kendall correlation are shown in Figure 5. In both figures, 95% confi-
dence intervals are plotted but too small to be seen. Statistics are calculated over 1970 trials.
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(a) m = 10, n = 100. (b) m = 10, n = 1000.
Figure 4: Comparison of GMM with top-k breakings as k is varied. The x-axis represents the running time.
Error bars are 95% confidence intervals.
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Figure 5: The MSE and Kendall correlation criteria for MM (10 iterations), GMM (full breaking), and GMM
(adjacent breaking).

For MSE and Kendall correlation, we observe that MM converges fastest, followed by GMM (full
breaking), which outperforms GMM (adjacent breaking). Differences between performances are all
statistically significant with 95% confidence (with exception of Kendall correlation and both GMM
methods for n = 200, where p = 0.07). This is different from comparisons for synthetic data
(Figure 3). We believe that the main reason is because PL does not fit sushi data well, which is a

4The results on running time can be found in Appendix ??.
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fact recently observed by Azari et al. [1]. Therefore, we cannot expect that GMM converges to the
output of MM on the sushi dataset, since the consistency results (Corollary 3) assumes that the data
is generated under PL.

5 Future Work
For future work, we plan to extend the GMM algorithms to other models, including (generalized)
random utility models, where agents may report partial rankings. It would be interesting to obtain
a full characterization on consistent breakings, and we may also study more general types of break-
ings, for example, breakings defined as a function from rankings to pairwise comparisons. Also the
consistency results for breakings is closely related to the notion of ignorability in statistics, which
we plan to explore in more depth. We plan to work on the connection between consistent breakings
and preference elicitation.
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