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ABSTRACT

The Gibbard-Satterthwaite Theorem states that (in uricestrset-
tings) any reasonable voting rule is manipulable. Receattjuan-
titative version of this theorem was proved by Ehud Fried@it
Kalai, and Noam Nisan: when the number of alternatives isethr
for any neutral voting rule that is far from any dictatorshilpere
exists a voter such that a random manipulation—that is, rine t
preferences and the strategic vote are all drawn i.i.dfpumiy at
random—uwill succeed with a probability 6(), wheren is the
number of voters. However, it seems that the techniques tgsed
prove this theorem can not be fully extended to more tharethre
alternatives. In this paper, we give a more limited resudt tfoes
apply to four or more alternatives. We give a sufficient ctindi
for a voting rule to be randomly manipulable with a probapitf
Q(2) for at least one voter, when the number of alternatives is hel
fixed. Specifically, our theorem states that if a voting ruatisfies
1. homogeneity, 2. anonymity, 3. non-imposition, 4. a cinge
out condition, and 5. there exists a stable profile that iksséible
after one given alternative is uniformly moved to differguusi-
tions; then there exists a voter such that a random manipnldr
that voter will succeed with a probability 6f(<). We show that
many common voting rules satisfy these conditions, for edam
any positional scoring rule, Copeland, STV, maximin, antkeal
pairs.
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1. INTRODUCTION

If a group of agents needs to decide among a set of altersative
they can do so byoting over the alternatives. First, agents are
asked to submit their preferences (usually in the form afdimor-
ders over the alternatives); then, the winner is selecteddan the
reported preferences according teating rule One complication
in this process imanipulation that is, a voter can sometimes obtain
a better result for herself by declaring her preferencesdesely.
One may try to prevent this by creating a rule thadtiategy-proaof
thatis, a rule in which reporting one’s true preferencesiags op-
timal. Unfortunately, when there are three or more altévaatand
preferences are unrestricted, no rule that satisfies nposition
(for every alternative, there exist votes that would makat -
ternative win) and non-dictatorship (the rule does not $mnab-
ways choose the most-preferred alternative of a single fioter)
is strategy-proof, that is, a manipulation always existhisTun-
damental impossibility result in mechanism design is knasthe
Gibbard-Satterthwaite theorem [10, 13].

Although a manipulation is guaranteed to exist (for reablma
rules), in order for the manipulating agent to use it, shetrals®
be able to find it. Recent research has studied whether firaling
manipulation can be made computationally hard, therebgtiege
a computational barrier against manipulation. In earlykn@r 1],
it was shown that when the number of alternatives is not bednd
the second-order Copeland and STV rules are hard to matépula
respectively. More recent research has studied how to mottier
existing rules to make them hard to manipulate [3, 7]. Algo, i
has been shown that richer variants of the manipulationlenob
(manipulation by coalitions of weighted voters) can be haren
with a constant number of alternatives [5, 11].

However, all of these hardness results amrst-caseresults.
That is, they suggest that any algorithm will require supbmpo-
mial time to solvesomeanstances. However, this does not mean that
there is no efficient algorithm that can find a manipulatiomhost
instances. Indeed, several recent results suggest thaidinta-
nipulations is usually easy. Procaccia and Rosenschemdtawn
that, when the number of alternatives is a constant, maatipul
of positional scoring rules is easy even with respect totguis-
tributions, which arguably focus on hard instances [12]niGer
and Sandholm have given some sufficient conditions undectwhi
manipulation is easy and argue that these conditions ar@lysu
satisfied in practice [4]. Zuckermaat al. have given manipulation
algorithms with the property that if they fail to find a maniigtion
when one exists, then, if the manipulators are given somitiawial
vote weights, the algorithm will succeed [14].

Following this line of research, a quantitative versionhef Gibbard-
Satterthwaite theorem was recently proved [9]. This thexstates
that, when there are three alternatives, for any neutrahgatile



that is far from any dictatorship, a random manipulationattis,
the true preferences and the strategic vote are all drawdn, Lini-
formly at random—uwiill succeed with a probability ﬂf(;lL), where
n is the number of voters. This is perhaps one of the nicest ap-
proaches so far in trying to show that it is usually easy to fived
nipulations; unfortunately, it seems that the techniquedus the
proof of the theorem cannot be easily extended to four or rabre
ternatives. In this paper, we obtain a similar result tha&sdextend
to four or more alternatives, albeit under different asstiong.
After recalling some basic definitions and notations in Bec2,
we prove our main result in Section 3. Instead of considemniegr
tral voting rules that are far from a dictatorship, our tleompplies
to all voting rules that satisfy the following five conditi@nl. ho-
mogeneity (if all the votes are multiplied by the same factoe
outcome does not change), 2. anonymity (the rule treattry
equally), 3. non-imposition, 4. a canceling-out condit{drthe set
of all linear orders is added to the votes, then the outcones dot
change), and 5. there exists a stable profile that is stiilletaf-
ter one given alternative is uniformly moved to differenspions
(and a profile is stable if slight perturbations do not chatige
winner). Our theorem states that for any fixed number of @dter
tives, if a voting rule satisfies the five conditions, therréhexists a
voter such that a random manipulation for that voter succegth
a probability of (). Finally, in Section 5, we show that some
common voting rules, including all positional scoring JJISTV,
Copeland, maximin, and ranked pairs, satisfy the five camtt

2. PRELIMINARIES

LetC = {ci1,...,cm } be the set olternatives(or candidatey
A linear order orC is a transitive, antisymmetric, and total relation
onC. The set of all linear orders of is denoted byL(C). An
n-voter profile P on C consists ofn linear orders orC. That is,
P = (Vi,...,Vy), where for everyi < n, V; € L(C). The set of
all profiles onC is denoted byP(C). In the remainder of the paper,
m denotes the number of alternatives andenotes the number of
voters.

A voting ruler is a function from the set of all profiles @ahto
C, thatis,r : P(C) — C. The following are some common voting
rules.

1. (Positional) scoring rulesGiven ascoring vector
7 = (v(1),...,v(m)), for any voteV € L(C) and any
c e C,lets(V,c) = v(j), wherej is the rank ofc in V.. For

n

Vo), lets(P,c) = > s(Vi,c).

any profilepP = (V4,...,

The rule will select € C so thats(P, ¢) is maximized. Two
examples of scoring rules aBorda, for which the scoring
vectoris(m — 1, m —2,...,0), andplurality, for which the
scoring vector i§1,0,...,0).

Copeland For any two alternatives; andc;, we can simu-
late apairwise electiorbetween them, by seeing how many
votes prefer; to ¢;, and how many prefet; to ¢;. Then,

an alternative receives one point for each win in a pairwise
election. Typically, an alternative also receives half &po
for each pairwise tie. The winner is the alternative who has
the highest score.

STV, The election ha$C| rounds. In each round, the alter-
native that gets the minimal plurality score drops out, and i
removed from all of the votes (so that votes for this alterna-
tive transfer to another alternative in the next round). The
last-remaining alternative is the winner.

4. Maximin Let N(c;, ¢;) denote the number of votes that rank
¢; ahead ot;. The winner is the alternativethat maximizes
min{N(c,c'): ¢ € C,c # c}.

Bucklin An alternativer's Bucklin score is the smallest num-
ber k such that more than half of the votes rankmong the

top k alternatives. The winner is the alternative who has the
smallest Bucklin score. (Sometimes, ties are broken by the
number of votes that rank an alternative among thektdp

Ranked pairs This rule first creates an entire ranking of all
the alternativesN (c;, ¢;) is defined as for the maximin rule.

In each step, we will consider a pair of alternativgs:; that

we have not previously considered; specifically, we choose
the remaining pair with the highe®{(c;, c;). We then fix

the ordere; > c¢;, unless this contradicts previous orders that
we fixed (that is, it violates transitivity). We continue iint

we have considered all pairs of alternatives (hence we have a
full ranking). The alternative at the top of the ranking wins

Dictatorship For each votet, the rule wheré is the dictator
always chooses the alternative at the topy/pf

A manipulationfor voteri is a tuple(V_;, V;, V), whereV_;
corresponds to the true preferences of all the voters excépt
corresponds to the true preferences of votandV; is the strate-
gic vote of voter;. A manipulation issuccessfulinder voting rule
rif r(Vos, Vi) =v, r(V_i, Vi). Thatis, if voteri submitsV;’ in-
stead ofV;, this results in a winner that is more preferred by voter
i. In this paper,V_; is drawn uniformly fromL(C)"~!, andV;
andV; are drawn uniformly fromL(C); in this case(V_;, V;, V;')
is arandom manipulatiorfor voteri. Let M; ., »(r) denote the
probability that a random manipulation for voteis successful.

For two voting rulesf and g, let A, »(f, g) be the distance
between two voting ruleg andg w.r.t.m alternatives and voters,
defined as follows:

Am,7b(f7 g) = PTPEL(C)"’(f(P) # g(P))

Here, P is drawn uniformly fromL(C)™. The following theorem
(proved by Friedguet al. [9]) states that when there are three al-
ternatives, if the distance between a neutral voting ruéed any
dictatorship is at least > 0, thenY_, M; 3., (r) is Q(€°).

Theorem 1 (Theorem 1 in [9]) Whenm = 3, there exists a con-
stantC such that if there exists> 0 such that for any dictatorship
dict, Asn(r,dict) > €, theny""" | M;s.n(r) > Ce.

This theorem implies that for any voting rule thatifar away from
any dictatorship for any number of voters, there exists anictuch

. - 1 . .
that with a probability om(g), a random manipulation for voter
is successful.

3. MAIN THEOREM

In the remainder of this paper, we assume that all the distrib
tions are uniform. For any sé, let L(.S) be all the linear orders
over S. Given a linear ordel over S andS;,, C S, let Vs, be
the restriction ofi” to S;,. Similarly, let P|s; be the restriction of
the profile P to S;,. For any subset of agenfsC {1,...,n} and
anyn-voter profileP = {Vi,...,V,,},let P(I) = {V; : i € I}.
In this paper, we focus oanonymousules (that is, rules that do
not distinguish among the voters), so that we can represprd-a
file as a (multi)set rather than a vector. L&t be the profile that is
obtained fromP by replacing each vote withcopies of it. A rule
r is homogenou§ for any P andi, r(P) = r(iP).



Definition 1 Given a voting rule- that satisfies anonymity and ho-
mogeneity, a profile® is stableif there exists > 0 such that for
anyi € N and any profileP’ with |P’'| < €i| P|,

r(iPUP’) =r(P)

We emphasize that stability is a property of a profile withpess
to a rule, not just of a rule. If fractional votes are allow#ign a
profile is stable (with respect to a rule) if there exists &uch that
if we add a set of votes whose size is at mosimes the size of
the original set, then the winner does not change. Howeweane
interested in the case where fractional votes are not atlowais
is the reason that we need thim the definition.

Definition 2 Let us consider a social choice setting withalter-
natives andh voters, where social choice ruteis being used. Also
suppose we draw, ..., V,, and V; uniformly at random. Then,
for anyi < n, let M; . »(r) be the probability that

r(Va,..., Vi ..., Vo) =v, r(Va,...,V,)—thatis,V{ is a suc-
cessful manipulation fo.

LetCp, = {cu1, ..., cm} be the set of alternatives.

Definition 3 Define the merging function
M : L(Cm)" x {1,...,m}" — L(Cy)" such that

M((Vi,... Vo), (i1, .o yin))) = (M(Vi,i1), ..o, M(Vayin))

whereM (V;, ;) is the vote that results from movieg, to thei;th
position. (We note that we allow/ to be applied both to vectors
and to individual elements.)

For example M ((c1 = c2 = c3,¢2 = ¢3 = ¢1),(1,3)) = (¢c3 =
C1 > C2,C2 > C1 » 03).

We now define a functiorD,,, that maps any profilé® of n
votes to another profil®,,, (P) such that the position af,, is uni-
formly redistributed, while keeping the restriction of thefile to
Cm—-1 = {c1,...,em—1} unchanged. The size of the resulting
profile is stilln; however, some of the votes in the resulting profile
are fractional. The sek(Cy,) of linear orders of the alternatives
hasm! elements; let; denote theth linear order { < i < m!).
Then, any profileP can be written aigﬁl pil;, for somep; that
indicate how many times each linear order occurs. (This isimga
use of the fact that we only consider anonymous rules.)

Definition 4 For any profileP = Z;ﬁl pili, let

=55

Definition 5 Let P’ = L(C,,) be the profile of all linear orders,
each appearing exactly once. We say a rulsatisfiescanceling
outif for any profile P, r(P U P') = r(P).

3%

We are now ready to present our main result. This resultstate
that any rule that satisfies certain conditions is, in a sefise
quently manipulable. (The precise definition of “frequgntha-
nipulable” is the same as that used by Friedgjl.)

Theorem 2 Suppose that a voting rutethat chooses an alterna-
tive fromC,,, = {ci, ..., & } satisfies the following properties:

1. Homogeneity.
2. Anonymity.

3. Non-imposition, which means that for amyany alternative
ci, there exists a profilé® of n votes such that(P) = ¢;.

4. Canceling out.

5. There exists a profilé such that: (a)P and D,,,(P) are
both stable, (b} (P) = ci1, and (C)r(Dm (P)) = ca.

Then, there exists> O such thatforany, € N, >°"_ | M; m n(r) >
e. Here,e does not depend om.

We note that Theorem 1 [9] relates the frequency of manijmuiat
under any neutral voting rule to the distance between treeant
dictatorships, when the number of alternatives is threeofrirast,
the main theorem in this paper (Theorem 2) applies to any num-
ber of alternatives, and implies that the frequency of malaijon
under any voting rule satisfying the five conditions in Theor2
is non-negligible. The conditions in Theorem 1 and Theorem 2
are not comparable. Theorem 1 assumes neutrality, and dinedr
does not. The assumption of anonymity in Theorem 2 is refated
the dependence on the distance to the dictatorships in &mebr
Admittedly, Condition 5 in Theorem 2 is less natural thantlad
other conditions. In Section 5, we will show that many of the
common rules satisfy the five conditions (including Coruitb)
in Theorem 2.

4. PROOF OF MAIN THEOREM

The proof of our main theorem follows the line of the proof of
Theorem 1in [9]. First, for any voting rule we define the quantity
M~ *(r) to be the probability that the winners undefor two
randomly drawn profiles are the same, given that the resingbf
the two profiles ta@’,,,—1 = {cu1, ..., cm—1} are the same. Second,
we prove that, for any voting rulesatisfying the five conditions in
Theorem 2 and any fixed number of alternatives M, (r) is
non-negligible, meaning that it is always strictly largean some
positive constant (Lemma 2). Third, we bound the frequerfcy o
manipulation below by~ (r).

The first and third steps are natural extensions of their teoun
parts in [9]. However, the technique used to prove the sepanid
is quite different. For this part, we bound the probabilitatt a
randomly drawn profile satisfies the following two condisolpe-
low by a constant. 1. The profile is approximately multiplpies
of the profile P in Condition 5. 2. After “shifting”c,, in each
vote in the profile to a random position in the vote, the newvfilero
is approximately multiple copies dp,, (P) with a non-negligible
probability.

We first present a basic result in probability theory that vile w
need in the proof. The result is a corollary of a known mutiate
version of the central limit theorem; this multivariate sien can
be found in Dudley [6].

Lemma 1 Suppose each random variablg (1 < i < n) is uni-
formly (i.i.d.) drawn from{z1,...,zm}. LetP = (X1,..., Xn),
t;(P) be the number of times occurs inP. Then, foranyy, ..., gm €
R such thatgs + ... + ¢» = 0 and anye > 0, there exists
Oqr,.. > 0 (which does not depend or) such that

-qm

m

lim Pr((")(|t:(P)

n— o0 !
i=1

n
- qiv/n| < ev/n)) > gy am

Proof of Lemma 1: We first note that

m

Pr((\(ts(P) = 2 — qu/] < ev/m)

i=1

>Pr(() 6(P) ~ 2~ ao/l < Sy

We thank Sayan Mukherjee for referring us to this result.



This inequality holds becausg!” , (ti(P) — & — ¢iy/n) = 0,
which means that ift;(P) — X — ¢iy/nl| is small for alli =
1,...,m—1,then|t, (P )—E—qm\/_| |Z;’;1(ti(P)—%—
giv/n)| is also small. For each< n, let Z; be drawn uniformly
and i.i.d. from the following set ofn — 1-dimensional vectors:
{(1,...,0),(0,1,...,0),...,(0,...,1),(0,...,0)}. By defini-
tion, .2; is a vector-valued random variable Ri*~!. Let 2 =
Yo Zi. Then

m—1

Pr([] e

m—1

—pr() %+Qi\/ﬁ—%\/ﬁ<z@(i)< %+qi\/ﬁ+ =)

i=1

GVl < )

m—1 .
P()— L&
® m<q@'+i)
m

€
r(gq m< Jr

whereZ (i) is thei-th component of”. Itis easy to check that the
covariance matrix of2” is positive definite, which means its rank
is m — 1. Therefore from Theorem 9.5.6 (the central limit theo-

rem) and Theorem 9.5.7 in [6], whengoes to infinity,a—\/%%
converges to a multivariate normal distribution®f*—*,
N(0,%) = fx(x1,...,Tm-1)
1 1 LTl 2)

= (2m)(m-D/2]5[1/2 exp(—

Similarly to the proof of Theorem 9.3.6 in [6], because thebar
bility density function of a multivariate normal distrilvan is con-
tinuous, we can prove that whengoes to infinity,

m—1 .
e  2U)- =& €
P — — < - m i —
T(Dl g NG g+ )
a1+ Im—1+7g
:/ / JV(O7 E)dmmfl...dm
a—5 Im—1—75

Slncefq1+ IR N0, 8w

dm_1— = ..dx1 > 0, there
existsdy, ..

> 0 such that

m

lim Pr((") [t i(P) - — L givnl < evin)) >

n—oo
i=1

This lemma tells us that given “displacemenis . . . , ¢, there
is somedy, .....q,, Such that whem goes to infinity, the probability
that for eachi, t;(P) (the number of times; occurs inP) is within
ey/n of its expectatiom/m plus the displacement/n, is at least
6511 ~~~~~ qm *

We now define a quantity/~*(r). We recall that for any pro-
file P over the set of alternatives,, = {ci,...,cm}, Plc,,_, IS
the profile obtained by removing,, from each vote inP.

Definition 6 Suppose we draw profileB;, P» uniformly at ran-
dom. Letd"~! (r) denote the conditional probability thaf Py ) =
c1 andr(P,) = ¢z, given thatPi|c,, , = P|c,,

We will first show that whem goes to infinity, M~ (r) is
bounded below by a quantity that does not depend.ohhen, we
will relate M7~ (r) t0 37| M; m,n(r), which will show that
the latter is bounded below by a quantity that does not depend
n.

Lemma 2 If r satisfies all five conditions in Theorem 2, then there
existsn’ € N and§ > 0 (which does not depend or) such that
foranyn > n', M~ (r) > 4.

Proof of Lemma 2: Suppose- satisfies all five conditions. Let
the stable profile in Condition 5. of Theorem 2 Be = ¢l +
.+ gmilm, and lete > 0 be such thatP and D,,(Ps) are

Ez 1q2

both stable with respect to Letg = ,andq, = ¢; — q.
Also let S,, denote the profile® of n voters such that the number
of occurrenceg;(P) of each votel; in P is within m\/_ of

n , .

pon + gi+/m, that is,

Sy = {P : foreveryi <ml, |t:(P) — — — ¢iv/n| < #\/ﬁ}
By Lemma 1 we know that there exisig; ...,

lim Pr(P € Sp) > dqy,...

a4, such that

»dm!

We first make the following claim.

Claim1 ForanyP € S,,r(P) =ci.

Proof of Claim 1: Since for any profiIeP € Sy, anyi < ml!,

the number of; in P is more than— —qyn— L\/_ we can
m!
decomposeP into the following three parts.

1. The “canceling-out” partC'P(P) C {1,...,n}, such that
P(CP(P))is (= = (@+ 7))V (l + -+ L).

2. The “main” partM P(P): from the definition of theS, in

P(CP(P)) we can findP(MP(P)) = /(3™ qils).
3. The “negligible” partN P(P): all the remainingﬁ\/ﬁ .
m:
= i\/ﬁ votes.
Therefore
r(P) =r(P(MP(P))+ P(NP(P))) canceling out
=r(v/nPs + NP(P)) anonymity ofr
=r(vnPs)) stability
=r(Ps) homogeneity
=C1
(End of the proof of Claim 1.) O
For any pair(Py, P2) such thatPi|c,, , = P2|c,, ., we can
represent this pair ag”1, K2) where K, € {1,...,m}". Here,

theith component of<; indicates the position af,, in theith vote
in P,. We remember that for the earlier-defined merging function
M, M (P, K2) = Pa.

For anyP; € S, we further decompose the canceling-out part
and the main part as follows.

1. Foreachi; andi < m!, let A(P1,1;) denote the subscripts of
all the votes in the canceling-out p&tP(P;) that are equal
tol;, that is,

A(P17 ) = {j <n: j S CP(P1) andPl( ) = lL}

2. Foreach;,i < ml!, let B(P1,l;) denote the subscripts of all
the votes in the main pai/ P(P;) that are equal té;, that
is,

.B(.Pl7 )—{j<n jeMP(Pl)andPl() l}



We note thal J7"', A(P1,1;) = CP(Py) andJ™, B(P1,1;) =
MP(Py).

What we will do next is to define a functic, : S,, — 253",
That is, for every profile?, € S, and everyK, € {1,...,m}",
the functionS;, determines whether or néf, € S;,(P1). We want
this function to have the following properties:

1. There exists some’ and somes’ > 0 such that for any

n > n', ‘Si‘fb#)‘ > ¢’ (that is, if we are drawing an ele-
ment uniformly at random fror{1,...,m}", then with a

probability of at leas$’ the element we draw is ifi;, (P1) ).

2. ForeveryKs € S, (P1), 7(M(P1, K2)) = ca.

Again we make use of Lemma 1. This time we apply the lemma

to the K> component. We recall thédf, takes values g1, ..., m}".
We require that for every?; € S, for everyK, € S, (P), for ev-
eryl;, eachj € {1,...,m} occurs approximately the same num-
ber of times ian(A(Pl, i)), and eachy € {1,...,m} occurs
approximately the same number of timeskn (B (Ph i)). (For
anyC C {1,...,n}, K2(C) is the subvector of, consisting of
the components ig'.)

We will first definesS;, 4, (P1) € {1,...,m}*"4) and
Shoea,(Pr) C{1,..., }B(Pl’”), which are the projections of
the K, € S;,(P1) onto the components iA(Py, ;) and B( Py, 1),
respectively. The definition is as followss is in S, 4 ;. (P1) if
and only if for anyj < m, '

eV/TA(P1, 1i)] Ph 2l

4m/! -

o A(PLL
15 (1) — AL

K;isin S;, g, (P1)ifand only if for anyj < m,

|B(P1, )]
4m N \/qmacv ’

' |B(Px1, 1) €
ty(I3) — = <
wheregma> = max{qi,...,qm'}.

We are now ready to defing,. We defineS;, (P;) to be the set
of profiles such thak» € S;,(P1) if and only if for any: < m!,
each of{1,...,m} occurs approximately equally many times in
KQ(A(Pl, )) andKz( (P17 )) That is:

S, (P) ={K>e{l,...,m}": foreveryi <m!,
KQ(A(PL 7«)) € Sn Al (Pl) andKQ( (P17 )) € Sn B.l; (Pl)}

We note that we are ignoring the tli& component of the neg-
ligible part NP(P1).

We will now prove that properties 1 and 2 above hold. For prop-

erty 1, since each element &f; is drawn independentlyi(> can
be determined in the followingm! + 1 steps: first draw thé(s
component ofA(P1, 1), then that ofA(P,12), and so on, until

B(P1,lm), inthe last step draw all the remaining components (the

ones in the negligible part) arbitrarily. By Lemma 1, thekists
do,...,0 such that whem goes to infinity, for the step concerning
A(P1,1;), the probability that itsk> component is inS;, 4 ;. (Pr)

is larger thany,. o (and similarly for theB(P, 1;)). Hence,

70)2777,!

,,,,,

lim Pr(Ks € S, (P1)) > (o,...

Therefore there exists@ > 0 that does not depend onsuch
that

lim Pr((P,S,(Py)):Pi € Sy) >0

n— oo

Specifically,d = &4,.....q,., - (J0.....0)°>™. We now make the fol-
lowing claim.

Claim2 Forany Py € S,,, anyK; € S, (P1),
C2.

r(M(Py, K2)) =

Proof of Claim 2: We first prove that for anyx, € S}, (P1),
M(P1, K2)(CP(Fy)) (that is, the projection of the profile result-
ing from the merge operator onto the elements that origireah-
celed out) still approximately cancels out. Then, we prdwat t
M(Py, K2)(MP(Py)) (the projection of the new profile onto the
elements that were originally in the main part) consistsraxip
mately of multiple copies oD, (Ps). Then, by a similar argument
as the one in Claim 1, it follows tha{ M (P1, K2)) = ca.

First, for anyl;, the number of votek in M (Py, K2)(CP(Py))
can be bounded below as follows:

evn

ti(M(P1, K2)(CP(P1))) > am)

ti(CP(P1)) —

This is because for any< m!, the votes; in M (P1, K2)(CP(Py))
result fromm sets in the original profile: if we ld, = M(l;, j)
be the order that agrees withon C,,,—1 but places:,, in the jth
position, then for each, votesl; in the new profile result from the
votes inP1 (A(P,1;;)) in the original profile. For example, if =
c1 > ...>=cm thenly, =cm >=c1 > ... = cm-1,li, =1 >
Cm = C2 >« > Cm—1, .- li,, =1li =c1 > ... = cm. Be-

APy,
causd; occurs inM (Pr, K2)(A(P1,1;;))) at Ieast% —

e\/IA(PL, 1))
4m!-m

cause|A(Pr,1;
which means

times by the definition of5}, 4 ;; (Pl), and be-

YARL om

< n, we have
)| m!-m 4m!-m

ti(M(Pr, K2)(CP(P1)))

=t;(CP(P,)) — m?

So, we can construct a new canceling-out pariii Py, K»)
that contains most of the old canceling-out pai®(P;). That is,
there existsVC'P(Py, K2) C CP(P:) such that

M(P, K2)(NCP(P1, K2))

T VI(Vi +

n _
:(m—(q+2'4m' --+V;rzl)

The part of the old canceling-out part that is not in the nemceing-
out part will turn out to be negligible.

Second, the number of times that any ortlerccurs in
M (P, K2)(MP(Py)) can be bounded below as follows:

ey

ti(M (P, K2)(MP(P1))) > v/nti(Dm(Ps)) — ——

This is true by a similar argument as before: for any m!, the
votesl; in M (P1, K2)(M P(Pr)) result fromm sets in the original
profile: for eachj, votesl; in the new profile result from the votes



in P1(B(P1,1;;)) inthe original profile. Therefore
ti(M(Pr, Ko)(MP(Pr)))

m B(P1,l;.
e i B
4m'\/Q7naac
_Z qz]\/_ 5\/%1
* v/ Admaz
7Zn qu\/_ €/ Qmax
am - \/Qm(ur
:Z qi; /1 - eYn
° m dm
Jj=1
Vit (D (P) —

The first equality follows from the fact that
MP(Py) = /n Y™ qil;, whichmeans thaB(Py, li,) = g, /7.
The last inequality follows from the fact thgfn > /n.

So, we can construct a new main partlifi P;, K») that con-
tains most of the old main pat/ P(P;). That is, there exists
NMP(Pi, K2) C MP(P1)such that

M(Py, K2)(NMP(Py, K3)) = v/fDu (P Zl

We letN N P( P, K») denote the set of all the remaining votes—

consisting of the votes from the old canceling-out part #ratnot
in the new canceling-out part, the votes from the old mair fheat
are not in the new main part, and the votes from the old négégi

part. We knowW| NN P (P, K2)| < % < ey/n. By definition

NCP(Py, K2)UNMP(Py, K2)UNNP(Py, K2) = {1,...,n}.
It follows that:

r(M (P, K2))

:r(e\iﬁ i li + M(P1, K2)(NMP(P1, K>))

+ M(P1,K2)(NNP(P1, K2)))

=r(v/nDp(Ps) + M (P, K2)(NNP(P1,K2))) anonymity ofr

=r(v/nDm (Ps)) stability

=r(Ps) homogeneity
=Co

(End of the proof of Claim 2.) a

To conclude, there exists@> 0 which does not depend on
such that

lim PT((P17S:L(P1)) :Pe Sn) > (5,

n—oo

and for anyP, € S,, any K> € S, (P1), r(P1) = ¢ and
r(M(P1, K2)) = ca. So there exists’ € N s.t. whenn > n/,

Pr((Py, S, (P)) : Py € Sy,) > g Notice that for anyn € N,
M= Y(r) > Pr((P1,S,(P1)) : Pi € Sy), we know that for any

n>n',

M) > Pr((Py, Sy(Py)) : Pr € Sp) >

N>

(End of the proof for Lemma 3.) a

canceling out

We now obtain a lower bound on}}"_, M; m,»(r) that depends
on M (r).
Lemma3 >0 | Mimn(r) > M7 (r).

Proof of Lemma 3: This is an extension of Lemma 3 in [9]. For
eachz™ ! € L(Cre1)™, let A(z™" 1) and B(2™ 1) be two sub-
sets of{1,...,m}" defined as follows:

A" N ={ye{l,....m}" :r(M(:="""y) =1}

BE""Y={ye{l,....m}" :r(M(="""y)) = 2}

That is, A(z™1) (B(z™ 1)) consists of the vectors of positions
such that if we extend™ ™" to includec.,, in those positions, then
c1 (c2) wins. First we show that

IA(xLi;nfl)l . IB(wa:q)l] )

(here,x is a vector ofn votes drawn uniformly at random), as fol-
lows:

M ()
1
e

am=1eL(Cpy_1)™

r(M(z™ ", a)) = c1,r(M(z™ 7, b)) = ca}
1
= =D - )

am=1eL(Cpy_1)™

M~ r) = By

{(a,b) :a,be{l,...,m}",

|A($7n71)| . |B($7n71)|

Now, we have that

1
(e

am=1EL(Cry1)"

1
:mz

z€L(Cpp)™

|A@™ D] - 1B@™ )

|A(z]e,, 1)l - 1B

(@[cy )]

because for eacti” ™, there aren” different vectors: € L(C,,)"

that, when restricted t6",, 1, coincide withz™~'. Finally, we
have that
1
m Z lA(@|c,, )| - 1B, )]
zEL(Cpm)™
_ 1 ) |A(z]c,, )| |B(zle,, )
(m!)» mn mn
zEL(Cpm )™
A B
:Ex[I (rLj:fl)I N (ij:fl)l]
as claimed.

Given anyX C {1,...,m}", we define thaipper edges ofX
in direction i to be the set of pairév, v;) such thatv € X, and
after increasing théh component of) to v, the resulting element
will be out of X.

Definition 7 Forany X C {1,...,m}", anyi < n, let theupper
edges); (X) in direction: be defined as follows:

0i(X) = {(v_i,vi,vi) s v—; € {1,...,m}
:m}v(v*ivvi) S Xv (v*i:
Uiz 0:(X).

We now make the following claim to relate; ...,» (1) to
9i(A(z|c,,,)) andd;(B(z[c,, ,))-

nl

vi,vp € {1,...
Also, letd(X) =

vz‘) g X7 v; < 'U;}



Claim 3

Mi,m,n(r) 2 %mf"Ex[lai(A(wlcmfl))l +10:(B(zlc,, )]

Proof of Claim 3: First, given a vector™ ! of orders ofC,,, 1,
we define an injective functiop; that maps everyv_;, v;,v;) €
9;(A(z™™ 1)) (wherev;, v} are positions i1, ..., m}, withv; <
v}, andv_; is a vector ofn — 1 such positions) to a successful ma-
nipulationg™ (z™ " v_;, v;,v}) = (P, V) for voteri, whereP
is a profile representing the agents’ true preferences)znd the
manipulation for voteti. Letr(M(z™ ' v_;,v})) = c;, where
j # 1. Then, let

gfl(w 17’072'7’02'7’02,')

(M(mm717 V—q, U’i)v M(m”kl (7')7 Ué))7
if Cj >']M(zm*1(i),u7;) Cc1
(M (2™ v—g, vf), M (2™ (), vs)),
if C1 >_]M(zm*1(i),u7;) Cj

That is, we consider the ordéd (z™ ' (3),v;) that results from
taking theith order inz™ ', and inserting:,,, in positionv;. If, in
this order; is ranked higher tham , then we make/ (=™~ (i), v;)
the true preference af andM (z™ ' (i), v}) (where we place,,

in the v/th position instead)'s false report of his preferences. If
c; is ranked lower than,, then we makeVl (z™ (i), v}) the true
preference, and/ (z™ (i), v;) the false report of his preferences.
We now show that this manipulatigsf* (™, v_;, v;, v}) is in-
deed successful. There atalifferent cases that we need to con-
sider.

1. j # mandc; »,m-1(; c1: by changing his vote from
M (™ (i), v;) to M (™ *(4), v}), voteri changes the out-
come frome; to ¢;, and he prefers the latter.

2. j # mandc =,m-14; c¢;: by changing his vote from
M (2™ 1 (3),v}) to M (™ * (i), v;), voteri changes the out-
come frome; to ¢, and he prefers the latter.

3. j =mandcn =arem-13:),0;) C1: Dy changing his vote
from M (=™~ (i), v;) to M (=™~ (i), v]), voteri changes
the outcome frona; to ¢,,,, and he prefers the latter because
his true preference i3/ (z™ (i), v;).

4. j = mandci = em-1(),0;) Cm: DYy changing his vote
from M (z™ (i), v}) to M (z™ (i), v;), voteri changes
the outcome frone,, to ¢1, and he prefers the latter, for the

following reason. By assumption, even an agent with prefer-

encesM (z™ (i), v;) preferse; 1o ¢,,; andi’s true prefer-
encesM (z™ (i), v}) are different fromM (x™~* (i), v;)
only in thatc,, is ranked even lower id/ (™ * (i), v}).

Now, for every(v_;, v;,v}) € 8;(B(z™ ")), we can analogously
defineg® (z™ ", v_;, v;,v}), which is a successful manipulation
for voteri. Additionally, for anyz™~",y™ " € L(C,,_1)™ such
thatz™ " # y™ ', any(v_s, v, v}) € i A(x™ ), (wi, w;, w}) €
9; B(y™™'), we have

1,w,i,wi,w§)

gz"jl (l’m717 V—i, Vs, 'U:) 7é 92‘22 (ym7

That is, all of the manipulations are distinct. Therefore,

Mi,m,n(?“)
ZW > (0:AGE™ ] +10:BE™ )
:m > (18iA(le,, )|+ 18:B(zle,, )

1
_W‘EwﬂaiA(x'Cmfl)l +10:B(z|c,,_1))
(End of the proof of Claim 3.) |
Summing oveli, we obtain

Z Mi,m,n (7')

1=1

= Z %m*"EwH@i(A(xlcmﬂ))l +10:(B(zlc,,_,))] @
1

=—m " Eu[|0(A(zlc,, ) + [0(B(@lc,,—.))l]
Next, we prove an extension of Lemma 8 in [9].

Claim 4 For any disjointA, B C {1,...,m}", we havdd(A)|+
|0(B)| = m™"[A||B].

Proof of Claim 4: The proof is an easy generalization of the proof
of Lemma 8 in [9]. The only difference is that in our claim the
lattice is{1,...,m}" instead of{0, 1,2}", and the coefficient of
the FKG [8] inequality isn™".

We now present the proof in full.1,...,m}" can be organized
as a distributive lattice in the following way:

1. (a1,...,an) < (b1,...
ajgbj.

2. (a17.“

,by) if and only if for all j < n,

,an)A(b1, ..., bp) = (min(ai,b1),...,min(an, bn)).

For anyA, we will find a monotonic sett’—that is, for anyu € A’
anda’ = a, d’ is also inA’—in this lattice such thatd’| = |A|,
and there exists a one-to-one correspondehicetween4 and A’
with the following properties. For any € A, there is a patlp(a)
from a to d(a). (In a path over the lattice, any two adjacent ele-
ments(a1, az) differ only in one component, angh < a2. For
example,(1,1,1),(1,3,1),(1, 3,2) is a path.) We will show that
for our definitions ofd(a) andp(a), for anya # o', any adjacent
pairai < a2z onp(a) and any adjacent pait; < a5 onp(a’), ei-
thera; # a} oras # ab. Thatis, if we choose one pair of adjacent
elements from the path af, and choose another pair of adjacent
elements from the path af, then the two pairs of elements are not
equal. We will similarly definel(b) andp(b) for anyb € B, with
the same properties.

To do this, we use a variant of the “component-wise shiftipgj u
from [9]. Given A, we will define amn-step path, starting ato =
A. In stepi, for anyv_;, let N,,_, denote the set of all elements in
{1,...,m} thatextendr_; to an element of{; 1, thatis,N,_, =
{vi : (vi,v—i) € Ai_1}. Letn, , = |N,_,|. We also define a
function f; such thatf; (vi, v—;) = (m—k-+1,v_;), wherev; is the
kth largest element iV, _,. For example, itV, , = {m—1,m—
3, m—4},thenf;(m—1,v_;) = (m,v_;), fi(m—3,v_;) = (m—
1,v_3), film —4,v_;) = (m — 2,v_;). In other words f; shifts
(Ny;—i,v—i) up such thatf;(N,_,,v—;) is “locally monotonic” ,
which means that it is monotonic i{1,...,m},v_;). Then let
A; = U,Li fi(Ny_,,v—;). Finally, we letA’ = A,. The path of
a is defined to be its trace in the shifting-up process, and tite e



of the trace (which is im") is defined to bel(a). We note that the
length of a path can be less thanbecause it is possible that in
some step, theith component is not shifted up.

We now prove the property (stated more precisely above pifvat
jacent pairs of elements in different paths are never e@igipose,
for the sake of contradiction, that it does not hold. Thearetexist
a # a’,anadjacent pair; < a2 inp(a), and an adjacent paif, <
ay inp(a’), such thaty = a’, as = a5. Then, since; andas are
adjacent, they differ in exactly one component—Ilet us dag;th
component. Forany < nanda € A, letp;(a) be thejth element
along the trace ai, thatis, f; (f;—1(. .. fi(a)...)). (We note that,
unlike thepath starting ata, the trace starting ata can have du-
plicates.) We now know that; = a} = pi;—1(a) = pi—1(a’)
andaz = a5 = p;(a) = pi(a’) (otherwise, theith component
could not have shifted). However, this is impossible, beedfor
anyj < n, f; is a one-one function, which implies that for any
a # o' and anyj < n, pj(a) # p,(a’). Thus we have derived
the desired contradiction, thereby proving the adjaceairsgare-
never-equal property. We can similarly prove the propestyH.

We now prove thatd” is monotonic. We prove the following
claim by induction on the step of the shifting-up processe ¢laim
states that in any step< n, forany, ; € {1,...,m}{Fhn}
the restriction ofA; to ¢,,—; is monotonic. Here, the restriction of
A; to ¥, s, denoted byA|s, ,, is defined as follows:

A1|5n71 = {177, (S {1, .. .,m}i : (1_)‘7,,1_)‘»,177,) € Al}

Claim 5 For anyi < n and anyw,—; € {1,...,m}tFbn},
Ailg, , Is monotonic.

Proof of Claim 5: We prove the claim by induction. When= 1,
for any #,—1 € {1,...,m}{2"} Az  is monotonic be-
cause the first component of each elemenfiin= A has been
shifted up. Now suppose the claim is true for k; we will show
itis true fori = k + 1. To prove this, we only need to check that
given anyv,—x—1 € {1,...,m}* " anyad € Ayiils, , .,
and anyl_; > @ whereb differs from @ only in one component,
be Agsils, ., We will consider two different cases.

We first consider the case whebediffers from @ in the (k +
1)th component. In this case the claim follows directly frone th
definition of Ay 1.

We next consider the case whérdiffers froma in theth com-
ponent, forl < k + 1. For anyo < k + 1, let a, be theoth
component of7, and letd—, = (a1,..., 001, G041, -, Ak+1)-
We defineb, andl_LO similarly. Thenb_ ;1) > a_(x41), ar 7# bi,
and for anyo # [, a, = b,. Specifically,ap+1 = br+1. By the
definition of Ax41, for anyar1 < j < m, (G_(k11),7) € Ars1,

. . m—apq1+1
which means that there exist , ,,...,a; """ €{1,...,m}
suchthatforany < ¢ < m-—apt141, (@—(ki1)s Qhy1s Unk—1) €
Ay. Therefore, foranyl <t < m — a1 + 1, a_(p41) €

Ao, o, aby ) Now, the induction assumption states that
Ak|(’”n—k—lﬁaz+1) is monotonic; therefore, forany < ¢t < m —

ar+1+ 1, b_(x41) € Ak|(vn7k717a§c+]), which means that

(5,(k+1), g1, Un—k—1) € Ag. Hence, there are more tham —

ak41 elements inN@(kH) 5, ) Which means that

b= (1_7;(“1), ak+1) € Agsils, .. Hence, the claim holds for
i = k + 1, and we have proven the induction step. Thus, the claim
holds for alli < n.
(End of the proof of Claim 5.) O
Similarly, B’ is monotonic. Now we can apply the FKG inequal-
ity [8] to A" and B’. It follows that|A" N B'|/m™ > |A’|/m™ -

|B’'|/m™ = |A|/m™ - |B|/m"™. BecauseA N B = ), it follows

that A’ N B’ C (A"\A) U (B’\B), and hence

0(A)|+]0(B)| = [(AN\A)U(B\B)| > |[A'NB'| >m™"|A|| B
(End of the proof of Claim 4.) |

For anyr satisfying all the five conditions, we now apply In-
equality (2), Claim 4, and Equation (1) to obtain:

Z Mi,m,n(r)
=1

>—5 -m " ER[|0(A(z]e,,_1))| + 10(B(@]c,, )] Ineq.(2)

_% -m” B, [|0(A(z]e,, 1)) - [0(B(z]c,, )] Claim4

:%Ez[la(A(ﬂiTI;m,l))l , Ia(B(zLim,l))l]

= M) Eq. (1)
(End of the proof of Lemma 3.) O

We are ready to prove the main result.

Proof of Theorem 2: By the Gibbard-Satterthwaite theorem
and condition 2 and 3, we know that for any numbeof voters,
there exists a successful manipulation, which means thanfpn,

Yis Mimn(r) 2 g

know that there exists som€ € N and a constand (that does
not depend om) such that for anys > n', >0 | Mimn(r) >

d. Therefore, for any:, 7" | M m n(r) > min{

From Lemma 2 and Lemma 3 we

O
and the right-hand side of the inequality is a constant tbasadot
depend om. O

5. APPLYING THE RESULT TO SOME COM-
MON VOTING RULES

In this section, we show that farontrivial positional scoring
rules (with4 or more alternatives), Copeland (wishor more al-
ternatives), STV, maximin, and ranked pairs (all wittor more
alternatives), the conditions in Theorem 2 hold (therebywshg
that those rules are frequently manipulable). (We note [8al-
ready proves a quite general result for the case of neutes with
exactly 3 alternatives.) For the results in this section, ties can be
broken in any way that is consistent with anonymity. A pasitil
scoring rule isnontrivial, if the components of its scoring vector
(v(1),...,v(m)) are not all equal, that is,(1) > v(m).

Proposition 1 Any (nontrivial) positional scoring rule, Copeland,
STV, maximin, and ranked pairs satisfy anonymity, homatyene
every alternative can win, and canceling out. However, Bock
does not satisfy canceling out.

All that remains to show is that Condition 5 holds for (novitt)
positional scoring rules, Copeland with 5 or more altexmet STV,
maximin, and ranked pairs. We recall Condition 5: Theretsxas
profile P such that: (a)p andD,, (P) are both stable, (b)(P) =
c1, and (C)r(Dm (P)) = ca.

A positional scoring rule isontrivial if it is defined by a score
vector(si, ..., Sm) for whichs; > sy,.

Proposition 2 For any nontrivial positional scoring rule,, when
there are4 or more alternatives, there exists a profile that satisfies
Condition 5 in Theorem 2.



Proof of Proposition 2: We will consider two cases. The first case
is thatss, . .., s», are not all equal. In other wordsz > s,,,. In
this case, lek > 2 be the smallest number such tBatis different
from si_1. Thatis,so = ... = sx_1 > si. Let the profilePs
consists of two partsP, and P>. Let P = a(c1 = ¢m = ¢c3 =

..Ck—1 > C2 > others) + b(ca = c3 = ... > cp—1 > €1 >
cm > others), wherea andb satisfy the following conditions:

1. asy + bse > asy + bsy
2.b>a

Since 1 is equivalent ta(s; — si) > b(s1 — s2) ands; — s >
s1 — s2 > 0, there exist, b > 0 that satisfy both conditions. Let

M. be the permutation that cycl€ss, . .., cn }, thatis,
ci ifi=1,2
Mc(Ci) = Ci+1 If3§z§m—1
cs3 ifi=m

LetVi =c1 = c2 = c3. = Cm,Va=Cy>=c¢C1 =¢C3...
Then, letP; = am 37 S(M,f(Vl) + M:(Va)).

We now show thaP’s = P, + P, satisfies Condition 5 in The-
orem 2. We need to check that(Ps) = c1, rs(Dm (Ps)) = ca,
and bothP; and D, (Ps) are stable.

Itis easy to check that;(Ps) = c¢1. We now show that
7s(Dm (Ps)) c2. The score ofez in Dy, (Ps) is higher than
the score ofc; in D, (Ps), because they get the same score in
Dm(PQ) c2 getSa(m*k“ < S9 +k71 S}J-‘rb(mil 81-|—— 52)in
D (P1), ande; getsh( =5+ .5, +km1 sp)ta(Ztesi+Losy)
in D,,(P1). Hence, because > a ands; > s2 > si, we know
that the score of; is higher than that of; in D, (Ps).

Also, the score o€ is higher than the score of,,, because the
score ofcy is:

> Cm.

a(m_k '32+%'3k)+b(m_1 ~81+%~82)
+ U2 (g 1)+ (= 1)sa +250)
>asg —|—b(m— ! -s1+ i s2) +a(m—2)((m —1)s1

+ (m — 1)s2 + 2s3)

=a((m —2)(m _1)31 + (m—=2)(m —1)s2 + 2(m — 2)s3 + si)
+ b( —1 - 81 + — )
>a((2m — 4+ %) > s +b(% > s

=the score of;,,,

The last inequality follows from the facts that > 4 ands; >
S92 > ... > Sm.

Similarly, we can prove that for any > 3, the score ot is
higher than the score af,. Since the inequality is strict in each
case, we know thaP, and D,,(Ps) are stable. This completes the
proof of the first casesg > s,,,).

In the second case,; > s2 = ... = s, (the plurality rule).
In this case letP; = 3(c1 > c2 > ¢m > others) + 2(c2 >
€1 > ¢m = others) 4+ 2(cm > c2 > c1 > others). Itis easy to
check thatrs(Ps) = ¢1 andrs (D (Ps)) = c2, and for bothP»
and D, (Ps), the scores of the winners are strictly larger than the
scores of other alternatives, which means thaand D, (P ) are
stable.

So any nontrivial positional scoring rule satisfies Cordits in
Theorem 2. O

Proposition 3 For the Copeland rule with 5 or more alternatives,
there exists a profile that satisfies Condition 5 in Theorem 2.

Proof of Proposition 3: The profile iSPs = ¢1 = ¢m > c2 >
c3 > c4 > others +m(c2 > ca = c1 > ¢m > c3 > others) +
m(cs = ca > others = c1 = cm > c2). It follows that
Copeland(Ps) = ci1. In Dy, (Ps), the Copeland score af; is
m — 3 because it only loses t@,, andcs in pairwise elections.
However, the Copeland score @f is m — 2 because it only loses
to ¢;. The Copeland score of any otheris less thann — 2. So
Copeland(Dy,(Ps)) = c2. Since none of the pairwise elections
result in a tie, the result of each pairwise election is nosi#ve to
a small fraction of additional votes, which means that b@ftand
D, (Ps) are stable. |

Proposition 4 For the maximin, ranked pairs, and STV rules, with
3 or more alternatives, there exists a profile that satisfiesdition
5.in Theorem 2.

Proof of Proposition 4: Let Ps = 3(c1 > ¢m = c2 > others) +
2(cm > c2 = c1 = others) + 2(ca = c¢1 = cm > others).
Then, STV (P;) = Maximin(Ps) = RankedPairs(Ps) = c1.
In D, (Ps), the minimum pairwise score @f is no more thars,
because; is ahead ot in only 3 votes. The minimum pairwise
score ofc, is more thanl— because: is ahead ot in 4 votes, and
ahead ot in 3. =2 9. 7 M2 Mo > 3.542.342.2 = 4
votes. ¢z also defeats all the other alternatlves ( cm 1) in
their pairwise elections. Say; is the Condorcet winner, which
means that\laximin(D., (Ps)) = RankedPairs(Dy,(Ps)) =
c2. For STV, in the first round, all ofs, . . ., ¢, —1 are eliminated,;
then, in the second round, sineg is ranked first (among the re-
maining alternatives) the greatest number of times, either c,,
will be eliminated. In either case; is still ranked first (among
the remaining alternatives) the greatest number of timéseithird
round. ThereforeST'V (D, (Ps)) = c2. Both P and D, (Ps)
are stable because there is no tie in any pairwise electiomamy
step of STV. m|
We summarize the results of this section as follows:

Theorem 3 Any nontrivial positional scoring rule (with 4 or more
alternatives), Copeland (with 5 or more alternatives), Six-
imin, and ranked pairs (all of the three rules with 3 or moréea
natives) are frequently manipulable.

6. CONCLUSIONS

By the Gibbard-Satterthwaite theorem, for any voting rilat t
satisfies non-dictatorship and non-imposition, if ther three or
more alternatives, then there exists a successful matiquleaRe-
cently, a quantitative version of this result was proved bgdgut
et al.[9]. This new theorem relates the distance between a neutral
voting rule and the set of dictatorships to the probabiliigtta ran-
dom manipulation (from a random profile) will succeed, whes t
number of alternatives is three. (Here, “random” meansourmify
random.) Unfortunately, it does not seem that the proof lat t
result can be easily extended to more than three altersative

In this paper, we considered a different (incomparable)o$et
conditions under which a similar result holds for more thiareé
alternatives. We showed that if a voting rule satisfies hamneg
ity, anonymity, non-imposition, a canceling-out conditicand a
stability condition, then there exists at least one votehsihat a
random manipulation for this voter will succeed with a prioitity

of Q(l). (We note that we did not assume neutrality.) We showed

that any positional scoring rule, STV, Copeland with five aren
alternatives, maximin, and ranked pairs satisfy theseitiond.



Apart from the fact that it is restricted to three alternasivthe
theorem by Friedguét al. is a very general result about voting
rules: it only requires that the voting rule is neutral (ahd te-
sult depends on the distance to dictatorial rules). The itiond
for our theorem are technically incomparable because weotlo n
assume neutrality, but in practice they seem more restictil-
though some common voting rules satisfy them, other rulesodo
Therefore, we still consider it an important open problenge¢o-
eralize the theorem by Friedget al. to four or more alternatives,
perhaps with some additional assumptions that are legsctast
than the ones in this paper. Additionally, in this paper, reated
m, the number of alternatives, as a constant, and becauseatof th
we did not consider the dependence of the probability of ssgc
onm. Another interesting question is how these results geizeral
to coalitional manipulation. Once all these questions atdesl,
we should re-evaluate the agenda of preventing manipuldtjo
making it computationally hard.
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