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ABSTRACT
We introduce a class of voting rules calledgeneralized scoring
rules. Under such a rule, each vote generates a vector ofk scores,
and the outcome of the voting rule is based only on the sum of these
vectors—more specifically, only on the order (in terms of score) of
the sum’s components. This class is extremely general: we donot
know of any commonly studied rule that is not a generalized scor-
ing rule.

We then study the coalitional manipulation problem for gener-
alized scoring rules. We prove that under certain natural assump-
tions, if the number of manipulators isO(np) (for anyp < 1

2
), then

the probability that a random profile is manipulable isO(np− 1
2 ),

wheren is the number of voters. We also prove that under another
set of natural assumptions, if the number of manipulators isΩ(np)
(for anyp > 1

2
) ando(n), then the probability that a random pro-

file is manipulable (to any possible winner under the voting rule) is

1 − O(e−Ω(n2p−1)). We also show that common voting rules sat-
isfy these conditions (for the uniform distribution). These results
generalize earlier results by Procaccia and Rosenschein aswell as
even earlier results on the probability of an election beingtied.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics; I.2.11 [Distributed Artificial Intelligence ]: Multia-
gent Systems

General Terms
Algorithms, Economics, Theory
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1. INTRODUCTION
In mechanism design, often, various assumptions about the space

of possible outcomes and the agents’ preferences are made. For
example, it is often assumed that the agents can make payments,
and that their utilities arequasilinear(that is, the contribution of
payment to utility is linear and independent of the outcome chosen).
However, these assumptions are not always reasonable. In contrast,
in a generalsocial choiceor votingsetting, every agent (orvoter)
can rank the outcomes (oralternatives) in any possible way. A
mechanism (orvoting rule) takes every agent’s reported ranking of
the alternatives as input, and produces one of the alternatives as
output.

Unfortunately, considering such an unrestricted setting comes at
a price. It turns out that any reasonable voting rule is vulnerable
to manipulation, that is, a voter can sometimes make herself bet-
ter off by declaring her preferences insincerely. A rule that is not
vulnerable to manipulation is calledstrategy-proof. The Gibbard-
Satterthwaite theorem [13, 18] states that when there are three or
more alternatives, there is no strategy-proof voting rule that sat-
isfies non-imposition (for every alternative, there exist votes that
would make that alternative win) and non-dictatorship (therule
does not simply always choose the most-preferred alternative of a
single fixed voter). This is in sharp contrast to settings with quasi-
linear preferences, where, for example, VCG mechanisms [20, 6,
14] are strategy-proof.

Although a manipulation is guaranteed to exist (for reasonable
rules), in order for the manipulating agent to use it, she must also
be able to find it. Recent research has studied whether findinga
manipulation can be made computationally hard, thereby erecting
a computational barrier against manipulation. A number of results
have been obtained that show that finding a successful manipulation
is NP-hard [3, 2, 7, 11, 9, 15]. Some of these results consider
manipulation by an individual voter, whereas others consider the
more general case of manipulation by a coalition of voters.

However, all of these hardness results areworst-caseresults.
That is, they suggest that any algorithm will require superpolyno-
mial time to solvesomeinstances. However, this does not mean
that there is no efficient algorithm that can find a manipulation for
mostinstances. Several recent results seem to suggest that indeed,
in various senses, hard instances of the manipulation problem are
the exception rather than the rule [17, 8, 16, 21].

The results in this paper add to the body of work that suggests
that the manipulation problem is usually easy to solve. For avery
large class of voting rules, we show that in most cases, as thenum-
ber of voters gets large, either the probability that the manipulators
can change the outcome is very small, or the probability thatthey
can (easily) make any alternative win is very large. Which ofthese
two cases holds depends on the relative size of the coalitionof ma-



nipulators, and there is a small boundary between these two cases
for which we have no result, when the size of the manipulating
coalition is on the order of

√
n, wheren is the total number of vot-

ers. Hence, for almost all cases, a simple inspection of relative size
of the manipulating coalition suffices to decide the manipulation
problem (and finding the actual manipulation is not hard).

More specifically, given the nonmanipulators’ votes, thereis some
set of alternatives that can still win. That is, an alternative c is a
possible winnerwith respect to a given set of (nonmanipulators’)
votes and some set of manipulators if there exist votes for the ma-
nipulators that makec win. In this paper, we consider a setting
in which the nonmanipulators’ votes are drawn at random, andwe
are interested in how large the set of possible winners is. What is
the probability that the manipulators cannot change the outcome
(there is only one possible winner)? What is the probabilitythat
the manipulators can make any alternative win (all alternatives are
possible winners)? For a very general class of voting rules,we will
show conditions under which the former probability is high,and
conditions under which the latter probability is high. Under the lat-
ter set of conditions, we also showhow the manipulators can make
any alternative win (with a high probability).

These results are very similar to the results by Proacaccia and
Rosenschein [16], but our results are significantly more general.
Specifically, Proacaccia and Rosenschein only show their result
for positional scoring rules (which we will define shortly).They
also mention without proof that they can extend the results to the
Copeland and maximin rules, and they conjecture that the results
can be extended to other rules as well. Our results serve to prove
this informal conjecture: we introduce a new class of votingrules
calledgeneralized scoring rules, and we prove the results for this
class of rules. This class is extremely general: we are not aware
of any commonly studied voting rule that cannot be expressedas a
generalized scoring rule.

While we feel that our main contribution is to introduce the class
of generalized scoring rules and prove the results for theserules, we
also characterize the probability of manipulability more precisely
rather than saying it converges to 1 or 0.1 This characterization
constitutes a general version of various results on the probability
that an election ends up (roughly) in a tie, that is, a single voter
can change the winner; this probability is also called thevoting
power [4, 12]. Knowing this probability is also interesting from
the perspective of a voter who is determining her incentive to vote.
Again, all of the existing results consider only the much smaller
class of positional scoring rules. Specifically, Baharad and Nee-
man [1] showed that under some local correlation conditions, when
the number of manipulators is no more than a constant, the prob-
ability that manipulation can be done isO( 1√

n
), wheren is the

number of voters, under any positional scoring rule. Slinko[19]
showed that under a particular condition on the probabilitydistri-
bution, under any faithful positional scoring rule (that is, all the
scores in the scoring vector are different) the ratio of the number of
manipulable profiles to the number of all profiles isO( k√

n
), where

k is the number of manipulators.
The rest of this paper is laid out as follows. After covering some

preliminaries in Section 2, in Section 3, we introducegeneralized
scoring rules, in which every vote generates a vector ofk scores,
and the outcome of the voting rule is based only on the sum of these
vectors—more specifically, only on the order (in terms of score)
of the sum’s components. This class is extremely general: wedo

1For the result where the manipulators can probably make any al-
ternative win, Procaccia and Rosenschein do give an expression for
this probability in their proof (for positional scoring rules).

not know of any commonly studied rule that is not a generalized
scoring rule. In the subsequent sections, we study the coalitional
manipulation problem for generalized scoring rules. In Section 4
we prove that under certain natural assumptions, if the number of
manipulators isO(np) (for anyp < 1

2
), then the probability that a

random profile is manipulable isO(np− 1
2 ), wheren is the number

of voters. In Section 5, we prove that, under another set of natu-
ral assumptions, if the number of manipulators isΩ(np) (for any
1
2

< p < 1) ando(n), then the probability that a random profile is
manipulable (to any possible winning alternative under therule) is

1 − O(e−Ω(n2p−1)). Finally, in Section 6, we show how these re-
sults apply to any positional scoring rule, Copeland, STV, maximin,
and ranked pairs, under the uniform distribution over votes.

2. PRELIMINARIES
Let C = {c1, . . . , cm} be the set ofalternatives(or candidates).

A linear order onC is a transitive, antisymmetric, and total relation
on C. The set of all linear orders onC is denoted byL(C). An
n-voter profileP on C consists ofn linear orders onC. That is,
P = (V1, . . . , Vn), where for everyi ≤ n, Vi ∈ L(C). The set of
all profiles onC is denoted byP (C). In the remainder of the paper,
m denotes the number of alternatives andn denotes the number of
voters. Avoting ruler is a function from the set of all profiles on
C to C, that is,r : P (C) → C. The following are some common
voting rules.

1. (Positional) scoring rules: Given ascoring vector
~v = (v(1), . . . , v(m)), for any voteV ∈ L(C) and anyc ∈ C,
let s(V, c) = v(j), wherej is the rank ofc in V . For any profile

P = (V1, . . . , Vn), let s(P, c) =
n
∑

i=1

s(Vi, c). The rule will select

c ∈ C so thats(P, c) is maximized. Two examples of scoring rules
areBorda, for which the scoring vector is(m − 1, m − 2, . . . , 0),
andplurality, for which the scoring vector is(1, 0, . . . , 0).

2. Copeland: For any two alternativesci andcj , we can simu-
late apairwise electionbetween them, by seeing how many votes
preferci to cj , and how many prefercj to ci. Then, an alternative
receives one point for each win in a pairwise election. Typically,
an alternative also receives half a point for each pairwise tie. The
winner is the alternative who has the highest score.

3. STV: The election has|C| rounds. In each round, the alterna-
tive that gets the minimal plurality score drops out, and is removed
from all of the votes (so that votes for this alternative transfer to an-
other alternative in the next round). The last-remaining alternative
is the winner.

4. Maximin: Let N(ci, cj) denote the number of votes that rank
ci ahead ofcj . The winner is the alternativec that maximizes
min{N(c, c′) : c′ ∈ C, c′ 6= c}.

5. Ranked pairs: This rule first creates an entire ranking of all
the alternatives.N(ci, cj) is defined as for the maximin rule. In
each step, we will consider a pair of alternativesci, cj that we have
not previously considered; specifically, we choose the remaining
pair with the highestN(ci, cj). We then fix the orderci > cj , un-
less this contradicts previous orders that we fixed (that is,it violates
transitivity). We continue until we have considered all pairs of al-
ternatives (hence we have a full ranking). The alternative at the top
of the ranking wins.

In this paper, amanipulation instanceis defined as follows.
Definition 1 A manipulation instanceis a tuple(r, P NM , |M |),
consisting of a voting ruler, a profile of nonmanipulatorsP NM ,
and a number of manipulators|M |. A weighted manipulation in-
stanceis a tuple(r, P NM , WNM , WM), whereWNM and WM

are the weights of the nonmanipulators and the manipluators, re-
spectively.



3. GENERALIZED SCORING RULES
In this section, we define an extremely general class of voting

rules that we callgeneralized scoring rules. This is the class for
which we will prove our results. We do not know of any example
of a commonly studied rule that is not a generalized scoring rule.
A generalized scoring rule associates a vector ofk real numbers
with every vote, for somek that depends on (but is not necessarily
equal to)m. The decision that the rule makes is based only on the
sum of these vectors. Even more specifically, the decision isbased
only on comparisons among the components in this sum. That is, if
we know, for everyi, j ∈ {1, . . . , k}, whether theith component
in the sum is larger than thejth component, thejth is larger than
the ith, or they are the same, then we know enough to determine
the winner. Sometimes, the components can be partitioned sothat
the decision only depends on comparisons within elements ofthe
partition, which will be helpful.

3.1 Unweighted generalized scoring rules
Let k ∈ N, and letK = {K1, . . . , Kq} be a partition ofK =

{1, . . . , k}. That is, for anyi ≤ q, Ki ⊆ K, K = ∪q
l=1Kl, and for

anyi, j ≤ q, i 6= j, Ki∩Kj = ∅. We say that two vectors of length
k are equivalent with respect to a partition if, within each element
of the partition, they agree on which components are larger.

Definition 2 LetK be a partition ofK. For anya, b ∈ R
k, we say

thata andb areequivalent with respect toK , denoted bya ∼K b,
if for any l ≤ q, any i, j ∈ Kl, ai ≥ aj ⇔ bi ≥ bj (whereai

denotes theith component of the vectora, etc.).

For two partitionsK = {K1, . . . , Kq} andK
′ = {K′

1, . . . , K
′
p},

K
′ is a refinementof K if for any l ≤ q, any l′ ≤ p, K′

l′ ∩ Kl

is eitherK′
l′ or ∅. That is,K ′ is obtained fromK by partitioning

the sets inK . In this case, we say thatK is coarserthanK
′, and

K
′ is finer thanK .

Proposition 1 For any partitionsK , K ′ such thatK ′ is a refine-
ment ofK , and anya, b ∈ R

k, if a ∼K b, thena ∼K ′ b.

We note that{K} (the partition that only containsK itself) is the
coarsest partition.

Definition 3 LetK be a partition ofK. A functiong : R
k → C is

compatible withK if for anya, b ∈ R
k, a ∼K b ⇒ g(a) = g(b).

That is, for any mappingg that is compatible withK , g(a) is de-
termined (only) by comparisons within eachKl, l ≤ q. Namely,
we do not need to compare components across different elements
of the partition.

Now we are ready to define generalized scoring rules.

Definition 4 Let k ∈ N, f : L(C) → R
k andg : R

k → C, where
g is compatible with a partitionK of K. f and g determine the
(unweighted) generalized scoring ruleGS(f, g) as follows. For
any profile of votesV1, . . . , Vn ∈ L(C), GS(f, g)(V1, . . . , Vn) =
g(

∑n
i=1 f(Vi)). We say thatGS(f, g) is of orderk, andcompati-

ble withK .

The weighted version of generalized scoring rules is definedin Ap-
pendix 2. Below, unless otherwise specified, generalized scoring
rules refer to unweighted generalized scoring rules. From Proposi-
tion 1 we know that for any partitionsK , K

′ such thatK ′ is a
refinement ofK , GS(f, g) is compatible withK ′, thenGS(f, g)
is also compatible withK . Given a profileP of votes, we use
f(P ) as shorthand for

∑

V ∈P f(V ). We will call f(P ) the total
generalized score vector. By definition, any unweighted general-
ized scoring rule satisfiesanonymity(that is, every voter is treated

equally) andhomogeneity(that is, if we add any number of copies
of the profile to the profile, the winner does not change). Any gen-
eralized scoring rule is compatible with the partition{K}. Never-
theless, being compatible with{K} is not vacuous: if we modified
the definition so thatg is not required to be compatible with any
partition, then any anonymous voting rule would belong to the re-
sulting class of rules. If a generalized scoring rule is compatible
with a partition, this effectively means that, within each element
of the partition, the scores are of the same “type,” so that wecan
compare them.

We now illustrate how general the class of generalized scoring
rules is by showing how some standard rules belong to the class.
Many other rules can also be shown to belong to the class.

Proposition 2 All positional scoring rules, Copeland, STV, max-
imin, and ranked pairs are generalized scoring rules.

Proof of Proposition 2: We explicitly givek, f, g,K for each
of these rules. In the remainder of the proof, the number of alter-
natives is fixed to bem. Let V ∈ L(C) be a vote, and letP be a
profile of votes. Because it is ambiguous how ties should be broken
for the rules in the proposition, we will also not specify howties are
broken when we describe these rules as generalized scoring rules.
• Positional scoring rules:Suppose the scoring vector for the rule
is ~v = (v(1), . . . , v(m)). The total generalized score vector will
simply consist of the total scores of the individual alternatives. Let
– k~v = m.
– f~v(V ) = (s(V, c1), . . . , s(V, cm)).
– g~v(f~v(P )) = arg maxi(f~v(P ))i.
– K~v = {K}.
• Copeland: For Copeland, the total generalized score vector will
consist of the scores in the pairwise elections. Let
– kCopeland = m(m − 1); the components are indexed by pairs
(i, j) such thati, j ≤ m, i 6= j.

– (fCopeland(V ))(i,j) =

{

1 if ci �V cj

0 otherwise
– gCopeland selects the winner based onfCopeland(P ) as follows.
For each pairi 6= j, if (fCopeland(P ))(i,j) > (fCopeland(P ))(j,i),
then add 1 point toi’s Copeland score; if(fCopeland(P ))(j,i) >
(fCopeland(P ))(i,j), then add 1 point toj’s Copeland score; if tied,
then add 0.5 to bothi’s andj’s Copeland scores. The winner is the
alternative that gets the highest Copeland score.
– qCopeland = m(m−1)

2
(we recall thatq is the number of ele-

ments in the partition). The elements of the partition are indexed
by (i, j), i < j. For anyl = (i, j), i < j, let Kl = {(i, j), (j, i)}.
Let KCopeland = {Kl : l = (i, j), i < j}.
• STV: For STV, we will use a total generalized score vector with
many components. For every proper subsetS of alternatives, for
every alternativec outside ofS, there is a component in the vector
that contains the number of times thatc is ranked first if all of the
alternatives inS are removed. Let
– kSTV =

∑m−1
i=0

(

m
i

)

(m − i); the components are indexed by
(S, j), whereS is a proper subset ofC andj ≤ m, cj /∈ S.
– (fSTV (V ))(S,j) = 1, if after removingS from V , cj is at the
top; otherwise, let(fSTV (V ))(S,j) = 0.
– gSTV selects the winner based onfSTV (P ) as follows. In the
first round, findj1 = arg minj((fSTV (P ))(∅,j)). LetS1 = {cj1}.
Then, for any2 ≤ i ≤ m − 1, defineSi recursively as follows:
Si = Si−1 ∪ {ji}, whereji = arg minj(fSTV (P )(Si−1,j)); fi-
nally, the winner is the unique alternative inC − Sm−1.
– qSTV = 2m − 1. The elements of the partition are indexed by
the S ⊂ C. For anyS ⊂ C, let KS = {(S, j) : cj 6∈ S}. Let
KSTV = {KS : S ⊂ C}.
• Maximin: For maximin, we use the same total generalized score



vector as for Copeland, that is, the vector of all scores in pairwise
elections. Let
– kmaximin = m(m − 1); the components are indexed by pairs
(i, j) such thati, j ≤ m, i 6= j.

– (fmaximin(V ))(i,j) =

{

1 if ci �V cj

0 otherwise
– gmaximin(fmaximin(P )) is the ci such that for anyi′ ≤ m,
i′ 6= i, there existsj′ < m, j′ 6= i′ such that for anyj ≤ m, j 6= i,
we havefmaximin(P )(i,j) > (fmaximin(P ))(i′,j′).
– Kmaximin = {K}.
• Ranked pairs: We use the same total generalized score vector
as for Copeland and maximin, that is, the vector of all scoresin
pairwise elections. Let
– krp = m(m − 1); the components are indexed by pairs(i, j)
such thati, j ≤ m, i 6= j.

– (frp(V ))(i,j) =

{

1 if ci �V cj

0 otherwise
– grp selects the winner based onfrp(P ) as follows. In each step,
we consider a pair of alternativesci, cj that we have not previ-
ously considered; specifically, we choose the remaining pair with
the highest(frp(P ))(i,j). We then fix the orderci > cj , unless
this contradicts previous orders that we fixed (that is, it violates
transitivity). We continue until we have considered all pairs of al-
ternatives. The alternative at the top of the ranking wins.
– Krp = {K}. 2

We showed that STV, also known as instant run-off voting, is a
generalized scoring rule. In Appendix 1, we generalize thisand
show thatanymultiround run-off process where in each round, al-
ternatives are eliminated according to a generalized scoring rule (to
be precise, a correspondence) must itself be a generalized scoring
rule. (For STV, a version of plurality that just eliminates one alter-
native is used in every round.)

We stress that the class of generalized scoring rules is not equal
to the class of anonymous voting rules. To see this, we recallthat
any generalized scoring rule satisfies homogeneity. The next ex-
ample shows an anonymous voting rule that does not satisfy homo-
geneity.

Example 1 Let r be the voting rule that selects an alternativec if
the number of times thatc is ranked at the top is higher than that of
any other alternative by at least 2; if no such alternative exits, then
the first (default) alternativec1 is selected.

r is anonymous. We note thatr(c2 � c1) = c1 and r(2(c2 �
c1)) = c2. Hence,r does not satisfy homogeneity.

4. CONDITIONS UNDER WHICH COALI-
TIONAL MANIPULABILITY IS RARE

Let π be a probability distribution overL(C) that is positive ev-
erywhere. Letφπ,n be the distribution over profiles ofn voters in
which each vote is drawn i.i.d. according toπ. Given a manipula-
tion instance(r, P NM , |M |), if there is only one possible winner,
then we say that this manipulation instance isclosed; otherwise we
say this manipulation instance isopen[16].

Definition 5 A manipulation instance(r, P NM , |M |) is closedif
for any profilesP M

1 , P M
2 for the manipulators,r(P NM ∪ P M

1 ) =
r(P NM ∪ P M

2 ). An instance isopenif it is not closed.

Procaccia and Rosenschein [16] have shown that if
1. the rule is a positional scoring rule,
2. the number of manipulators|M | is o(

√
n),

3. the votes are drawn independently, and
4. there existsd > 0 such that for each vote’s distribution, the

variance of the difference in scores for any pair of alternatives is at
leastd,

then whenn → ∞, the probability that a weighted manipulation
instance is open is 0. In this section, we generalize this result to
generalized scoring rules; in addition, we characterize the rate of
convergence to0. (However, unlike Procaccia and Rosenschein,
we do assume that votes are drawn i.i.d.; this is needed to obtain
the convergence rate. Hence, strictly speaking, our resultis not a
generalization of their result. We can also obtain a strict generaliza-
tion of Procaccia and Rosenschein’s results to generalizedscoring
rules, but without proving a convergence rate; we will not doso in
this paper.)

Specifically, in this section, we study the probability thata ma-
nipulation instance is open when there areO(np) (0 ≤ p < 1

2
)

manipulators, and the nonmanipulator votes are drawn i.i.d. Here,
n is the total number of voters,|NM | + |M | (nonmanipulators
and manipulators). We will prove that for any generalized scoring
rule, this probability isO( 1√

n
). Let T (r,m, n, π, |M |) denote this

probability. That is,

T (r,m, n, π, |M |) = PrP NM∼φπ,|NM|{(r, P
NM , |M |) is open}

Lemma 1 Let N ∈ N. Let Y1, . . . , YN be i.i.d. random vari-
ables withE(Y1) < ∞, E((Y1 − E(Y1))

2) > 0, andE(|Y1 −
E(Y1)|3) < ∞. LetY =

∑N
ζ=1 Yζ . For any constant0 ≤ p < 1

2

that does not depend onN , and any functionf(N) that isΩ(1),
we have thatPr(|Y | ≤ f(N)) is O( f(N)√

N
).

Proof of Lemma 1: Let Φ(x) be the cumulative distribution func-
tion of the standard normal distributionN(0, 1). Letσ2 = E((Y1−
E(Y1))

2), ρ = E(|Y1 − E(Y1)|3). Then we have:

Pr(|Y | < f(N))

=Pr(−E(Y1)N

σ
√

N
− f(N)

σ
√

N
<

Y − E(Y1)N

σ
√

N
< −E(Y1)N

σ
√

N
+

f(N)

σ
√

N
)

Then by the Berry-Esséen theorem [10],

Pr(|Y | < f(N))

<Φ(−E(Y1)N

σ
√

N
+

f(N)

σ
√

N
) − Φ(−E(Y1)N

σ
√

N
− f(N)

σ
√

N
) +

Cρ

σ3
√

N

=

∫ − E(Y1)N

σ
√

N
+

f(N)

σ
√

N

− E(Y1)N

σ
√

N
− f(N)

σ
√

N

N(0, 1)(x)dx +
Cρ

σ3
√

N

<
2f(N)

σ
√

N
× 1√

2π
+

Cρ

σ3
√

N

which isO( f(N)√
N

), becauseC is a constant that does not depend on
N andf(N) = Ω(1). 2

Theorem 1 Let r = GS(f, g) be a generalized scoring rule of
order k. For any m ∈ N, any constant0 ≤ p < 1

2
, and any

constanth (where bothm andh do not depend onn), there exists
a constanttm,p,h > 0 (that does not depend onn) such that if
|M | ≤ hnp, then

T (r,m, n, π, |M |) ≤ tm,p,hnp− 1
2

Proof of Theorem 1: We recall that each vote is drawn i.i.d. ac-
cording to the probabilistic distributionπ. For any pairi1, i2 ≤ k,
i1 6= j2, and anyt > 0, let

R(i1, i2, t, π, |NM |) = Pr{|(f(P NM ))i1 − (f(P NM ))i2 | ≤ t}
We recall that(f(P NM ))i is theith component off(P NM ). In
other words,R(i1, i2, t, π, |NM |) is the probability of profiles of



nonmanipulators’ votesP NM such that the difference between the
i1th component and thei2th component off(P NM ) is no more
thant, when each vote is drawn i.i.d. according toπ. LetY i1,i2

1 , . . . ,

Y i1,i2
|NM| be|NM | i.i.d. random variables, where the distribution for

eachY i1,i2
ζ is the same as the distribution for(f(V ))i1−(f(V ))i2 ,

whereV is drawn according toπ. That is, for anyV ∈ L(C), with
probability π(V ), Y i1,i2

1 takes value(f(V ))i1 − (f(V ))i2 . Let
Y i1,i2 =

∑|NM|
ζ=1 Yζ .

Let vmax = max
i≤k,V ∈L(C)

(f(V ))i. That is,vmax is the maximum

component of all score vectors corresponding to a single vote. We
note thatvmax is a constant that does not depend onn. We also
note that since|M | is O(np) andp < 1

2
, it must be that|NM |

is Ω(n), so thatn is O(|NM |), vmaxhnp is O(|NM |p). There-
fore, by Lemma 1 (in which we letN = |NM |), we know that

Pr(|Y i1,i2 | ≤ vmaxhnp) is O( vmaxhnp√
|NM|

) = O(|NM |p− 1
2 ), so it

is O(np− 1
2 ). Hence, there exists a constantti1,i2 such that

Pr(|Y i1,i2 | ≤ vmaxhnp) < ti1,i2np− 1
2

We let tmax = maxi,j≤k,i6=j ti,j . If a manipulation instance is
open, then there exists a profileP M for the manipulators such that
GS(f, g)(P M ∪ P NM ) 6= GS(f, g)(P NM ), which means that
f(P M ∪ P NM ) 6∼ f(P NM ). In this case there must existi, j,
i 6= j, such that|(f(P NM ))i − (f(P NM ))j | ≤ vmax|M | ≤
vmaxhnp. Therefore,T (GS(f, g),m, n, π, |M |) ≤
∑

1≤i<j≤m R(i, j, vmaxhnp, π, |NM |).
We note that

R(i, j, vmaxhnp, π, |NM |) = Pr(|Y i,j | ≤ vmaxhnp). There-
fore, we have

T (GS(f, g), m,n, π, |M |) ≤
∑

i6=j

R(i, j, vmaxhnp, π, |NM |)

≤
∑

i6=j

ti,jn
p− 1

2 ≤ k(k − 1)

2
tmaxnp− 1

2

Let tm,p,h = k(k−1)
2

tmax. We know thattm,p,h is a constant that
does not depend onn.

(End of the proof of Theorem 1.) 2

From Proposition 2 and Theorem 1, we obtain the following
corollary.

Corollary 1 Let r be any positional scoring rule, Copeland, STV,
maximin, or ranked pairs. For anym ∈ N, any constant0 ≤ p <
1
2
, and any constanth (wherem, p, andh do not depend onn),

there exists a constanttm,p,h > 0 (that does not depend onn) such
that if |M | ≤ hnp, then

T (r,m, n, π, |M |) ≤ tm,p,hnp− 1
2

A profile is said to betied if a single additional voter can change
the outcome. By lettingp = 0 andh = 1 in Theorem 1, we have
that for any generalized scoring rule and any fixedm, the number
of tied profiles isO( 1√

n
).

We note that Theorem 1 does not apply toall anonymous voting
rules. For example, let us consider the voting ruler that selects the
first candidate,c1, if the number of times it is ranked at the top is
even; otherwise, the rule selects the second candidate,c2. For this
rule, even when there is only one manipulator, any profileP NM for
the non-manipulators is open, because the manipulator can always
determine whether the number of times thatc1 is ranked at the top
in the complete profile (that is, the profile that includes both the
non-manipulators and the manipulator) is odd or even, by casting a
vote that either ranksc1 at the top or not.

5. CONDITIONS UNDER WHICH COALI-
TIONS OF MANIPULATORS ARE ALL-
POWERFUL

Let us consider a positional scoring rule and a distributionover
nonmanipulator votes. Furthermore, let us consider each alter-
native’s expected score; letCmax be the set of alternatives with
the highest expected score. Procaccia and Rosenschein [16]have
shown that if

1. the number of manipulators is in bothω(
√

n) ando(n), and
2. votes are drawn i.i.d.,
then, the probability that the manipulators can make any alter-

native inCmax win converges to 1 asn → ∞. Hence, assuming
|Cmax| > 1, the probability that the instance is open converges to
1 (however, if|Cmax| = 1, it converges to0).

In this section, we prove a similar result for generalized scoring
rules; in addition, we characterize the rate of convergenceto 0. (In
fact, in this case, Procaccia and Rosenschein also characterize this
rate—for positional scoring rules.)

Specifically, in this section, we study the case where the num-
ber of manipulators isΩ(np) ( 1

2
< p < 1) ando(n), the votes

are drawn i.i.d. according toπ, and a generalized scoring rule is
used. We provide a sufficient condition under which the manipula-
tors can make any alternative in a particular set of alternatives win

with probability1 − O(e−Ω(n2p−1)). (We need theo(n) assump-
tion for a technical reason, as do Procaccia and Rosenschein.)

Definition 6 π is compatible withK w.r.t. f , if, for V ∼ π, for
any l ≤ q, anyi, j ∈ Kl (i 6= j), E((f(V ))i) = E((f(V ))j).

That is,π is compatible withK w.r.t. f if within each element of
the partitionK , the expectation of the components off(V ) are the
same (whereV is drawn according toπ).

GivenGS(f, g), it will be useful to have a profileP such that
for some partitionK thatGS(f, g) is compatible with, the com-
ponents off(P ) within eachKl (l ≤ q) are all different. The next
definition makes this precise.

Definition 7 For anyGS(f, g) compatible withK , a profileP is
said to bedistinctivew.r.t. GS(f, g) andK if for any l ≤ q, any
i, j ∈ Kl, i 6= j, (f(P ))i 6= (f(P ))j .

The next definition concerns the set of alternatives that canbe
made to win using a distinctive profile.

Definition 8 For anyGS(f, g) compatible withK , letWK (f, g)
be a subset of the alternatives defined as follows.

WK (f, g) = {GS(f, g)(P ) : P is distinctive w.r.tGS(f, g) andK }

For any profileP M of manipulators and any alternativec, we de-
fineT (m,n, π, c, P M ) = Pr(GS(f, g)(P M ∪P NM ) = c). That
is, given a profile of votesP M of the manipulators,T (m,n, π, c, P M )
is the probability that the winner of the profileP M ∪ P NM is c,
when the number of alternatives ism, the number of voters isn,
and the nonmanipulators’ votesP NM are drawn i.i.d. according to
π. Now we are ready to present the theorem.

Theorem 2 LetGS(f, g) be a generalized scoring rule that is com-
patible withK . LetπK be a distribution overL(C) such thatπK

is compatible withK w.r.t. f . For anym > 0, there exist con-
stantstm > 0 andum > 0 (neither of which depend onn) such
that for any constanth > 0 (that does not depend onn) and any al-
ternativec ∈ WK (f, g), if the number of manipulators is at least

hnp (
1

2
< p < 1) (as well aso(n)), then there exists a coalitional



manipulationP M such that

T (m,n, πK , c, P M ) > 1 − tme−umn2p−1

Theorem 2 states that when the number of alternatives is held
fixed, if the number of manipulators is large (Ω(np) for p > 1

2
, as

well aso(n)) then for any alternativec ∈ WK (f, g), there exists
a manipulationP M such that when the nonmanipulators’ votes are
drawn i.i.d. according toπK , thenc is the winner with a probabil-

ity of 1 − O(e−Ω(n2p−1)).
Proof of Theorem 2: Let |M | ≥ hnp. If WK (f, g) = ∅, then
Theorem 2 vacuously holds. So we assume thatWK (f, g) 6= ∅.
For eachc ∈ WK (f, g), we associatec with a distinctive profile
(w.r.t.f andX ), denoted byP ∗

c , such thatc = GS(f, g)(P ∗
c ). We

recall thatP ∗
c is distinctive if and only if for anyl ≤ q, i, j ∈ Kl,

i 6= j, (f(P ∗
c ))i 6= (f(P ∗

c ))j . Let
dmin = min

l≤q,i,j∈Kl,i6=j,c∈WK (f,g)
(|(f(P ∗

c ))i − (f(P ∗
c ))j |).

That is, dmin is the minimal difference between any two com-
ponents within the same element ofK of f(P ∗

c ), taken over all
c ∈ WK (f, g). Since|WK (f, g)| < m (which does not de-
pend onn), andP ∗

c is distinctive, we know thatdmin > 0 and
does not depend onn. Let pmax = maxc∈C |P ∗

c |. That is, for all
c ∈ WK (f, g), the number of votes inP ∗

c is no more thanpmax.
We note thatpmax does not depend onn.

For anyc ∈ C, define a profile of the manipulator votesP M
c as

follows. P M
c consists of two parts:

1. b |M |
|P ∗

c |
cP ∗

c , and

2. an arbitrary profile for the remaining|M |−b |M |
|P ∗

c |
c|P ∗

c | votes.

That is,P M
c consists mostly ofb |M |

|P ∗
c |

c copies ofP ∗
c ; the re-

maining votes (at most|P ∗
c |) are chosen arbitrarily. We note that

|P ∗
c | is a constant that does not depend onn, so that the second part

becomes negligible whenn → ∞.
The next claim provides a lower bound on the difference between

any two components off(P M
c ).

Claim 1 There exists a constantdc that does not depend onn such
that the minimum difference between components off(P M

c ) is at
leastdcn

p, whenn → ∞.

Proof of Claim 1: Since the minimal difference between any two
components ofP ∗

c is at leastdmin, the minimal difference between

any two components off(P M
c ) is at leastb |M |

|P ∗
c |

cdmin. We note

that the number of arbitrarily assigned votes inP M
c is no more than

|P ∗
c |, and the difference between any two components in a vote is

no more thanvmax. Therefore the minimal difference between any
two components off(P M ) is at least

b |M |
|P ∗

c |
cdmin − vmax|P ∗

c | ≥ (
|M |
pmax

− 1)dmin − vmaxpmax,

which isΩ(np) becausepmax, dmin, andvmax are constants that
do not depend onn, and|M | is Ω(np). Therefore, there exists adc

that does not depend onn such that the minimal difference between
any two components off(P M

c ) is at leastdcn
p, whenn → ∞.

(End of the proof of Claim 1.) 2

The next lemma is known asChernoff ’s inequality[5].

Lemma 2 (Chernoff’s inequality) Let N ∈ N. Let Y1, . . . , YN

beN i.i.d. random variables with varianceσ2. LetY =
∑N

ζ=1 Yζ .

For any0 ≤ k ≤ 2
√

Nσ, Pr(|Y −E(Y )| ≥ k
√

Nσ) ≤ 2e−k2/4.

For any profileP NM for the nonmanipulators, anyi1, i2 ≤ k,
i1 6= i2, let D(P NM , i1, i2) = |(f(P NM ))i1 − (f(P NM ))i2 |.

The next claim states that if each vote ofP NM is drawn i.i.d. ac-
cording toπK , then for any differenti1, i2 within the same el-
ementKl of the partitionK , the probability that the difference
between thei1th and thei2th component off(P NM ) is larger than

dcn
p is O(e−Ω(n2p−1)).

Claim 2 For any l ≤ q and anyi1, i2 ∈ Kl (i1 6= i2), there exists
a constantdc,i1,i2 > 0 that does not depend onn such that

Pr(D(P NM , i1, i2) > dcn
p) ≤ 2e−dc,i1,i2

n2p−1

Proof of Claim 2: Let Y i1,i2
1 , . . . , Y i1,i2

|NM| be |NM | i.i.d. random

variables such that the distribution for eachY i1,i2
ζ is the same as the

distribution for(f(V ))i1 − (f(V ))i2 , whereV is drawn according
to π. That is, for anyV ∈ L(C), with probabilityπ(V ), Y i1,i2

1

takes value(f(V ))i1 − (f(V ))i2 . Let Y i1,i2 =
∑|NM|

ζ=1 Y i1,i2
ζ .

Then,Pr(D(P NM , i1, i2) > dcn
p) = Pr(Y i1,i2 > dcn

p).
SinceπK is compatible withK , for anyl ≤ q, i1, i2 ∈ Kl, we

know thatE((f(V ))i1) = E((f(V ))i2), whereV is drawn ac-
cording toπ. Therefore,E(Y i1,i2

1 ) = 0. Letσ2
i1,i2 be the variance

of Y i1,i2
1 . We note thatσi1,i2 does not depend onn. If σ2

i1,i2 =
0, then for anyV ∈ L(C), (f(V ))i1 = (f(V ))i2 (because for
any V ∈ L(C), πK (V ) > 0), which means thatWK (f, g) =
∅. This contradicts the assumption thatWK (f, g) 6= ∅. Hence
σ2

i1,i2 > 0. Since|M | = o(n), |NM | = Ω(n), and for suffi-
ciently largen we have dcnp

σi1,i2

√
|NM|

≤ 2σi1,i2

√

|NM |. There-

fore, we can use Lemma 2 (in which we letN = |NM |) to bound
Pr(D(P NM , i1, i2) > dcn

p) above as follows.

Pr(D(P NM , i1, i2) > dcn
p)

=Pr(|Y i1,i2 | > dcn
p)

=Pr(|Y i1,i2 | >
dcn

p

σi1,i2

√

|NM |
× σi1,i2

√

|NM |)

≤2e
−( dcnp

σi1,i2

√
|NM|

)2/4

Lemma 2

≤2e
− d2

c

4σ2
i1,i2

n2p−1

|NM | ≤ n

We note that d2
c

4σ2
i1,i2

is a constant that does not depend onn.

Therefore, there existsuc,i1,i2 > 0 such thatPr(D(P NM , i1, i2) >

dcn
p) ≤ 2e−uc,i1,i2

n2p−1

.
(End of the proof of Claim 2.) 2

Let uc = min
l≤q,i,j∈Kl,i6=j

uc,i,j . Then uc > 0 and is a con-

stant (that does not depend onn). We note that for anyP NM ,
if f(P NM ∪P M

c ) 6∼K f(P M
c ), then there existsl ≤ q, i, j ∈ Kl,

i 6= j, such that|(f(P NM ))i − (f(P NM ))j | > |(f(P M
c ))i −

(f(P M
c ))j | > dcn

p. Therefore, we can bound the probability of
f(P NM ∪ P M

c ) ∼K f(P M
c ) below as follows.

Pr(f(P NM ∪ P M
c ) ∼K f(P M

c ))

=1 − Pr(f(P NM ∪ P M
c ) 6∼K f(P M

c ))



≥1 − Pr((∃l ≤ q)(∃i, j ∈ Kl)D(P NM , i, j) > dcn
p)

≥1 −
∑

l≤q

∑

i,j∈Kl,i6=j

Pr(D(P NM , i, j) > dcn
p)

≥1 −
∑

l≤q

∑

i,j∈Kl,i6=j

2e−uc,i,jn2p−1

≥1 −
∑

l≤q

∑

i,j∈Kl,i6=j

2e−ucn2p−1 ≥ 1 − m(m − 1)

2
× 2e−ucn2p−1

Whenn is sufficiently large,f(P M
c ) ∼K f(P ∗

c ). Therefore, we
know that there exists a constanttc > 0 (that does not depend onn)

such thatPr(f(P NM ∪ P M
c ) ∼K f(P ∗

c )) ≥ 1 − tce
−ucn2p−1

.
Hence

T (m,n, πK , c, P M )

≥Pr(f(P NM ∪ P M
c ) ∼K f(P ∗

c )) ≥ 1 − tce
−ucn2p−1

(End of the proof of Theorem 2.) 2

6. ALL-POWERFUL MANIPULATORS IN
COMMON RULES

We already showed how Theorem 1, which states a condition
under which manipulability is rare, can be applied to commonvot-
ing rules in Corollary 1. We have not yet done so for Theorem 2;
we will do so in this section. Specifically, we prove that if the
number of alternatives is fixed, then for any positional scoring rule,
Copeland, STV, ranked pairs, and maximin, if the number of ma-
nipulators isΩ(np) (p > 1

2
) ando(n), and the nonmanipulators’

votes are drawn i.i.d. according to the uniform distribution, then
for any alternativec, there exists a coalitional manipulation that

will make c win with a probability of1 − O(e−Ω(n2p−1)).
The next theorem provides a necessary and sufficient condition

for WK (f, g) to be nonempty.

Theorem 3 LetG(f, g) be compatible withK . WK (f, g) 6= ∅ if
and only if for anyl ≤ q, anyi, j ∈ Kl, i 6= j, there exists a vote
V ∈ L(C) such that(f(V ))i 6= (f(V ))j .

Proof of Theorem 3: First we prove the “if” part. Suppose that
for any l ≤ q, anyi, j ∈ Kl, i 6= j, there exists a voteV ∈ L(C)
such that(f(V ))i 6= (f(V ))j . For any l ≤ q, let hl,max =
maxi,j∈Kl,V ∈L(C){|(f(V ))i − (f(V ))j |}, hl,min =
mini,j∈Kl,V ∈L(C){|(f(V ))i−(f(V ))j | : |(f(V ))i−(f(V ))j | >
0}. That is,hl,max is the maximum difference between any two
components withinKl, for anyf(V ); hl,min is the minimumpos-
itive difference between any two components withinKl, for any
f(V ). Then, for anyl ≤ q, hl,max ≥ hl,min > 0. Let h be a
natural number such that for anyl ≤ q, h >

hl,max

hl,min
+ 1. Suppose

L(X ) = {L1, . . . , Lm!}. Then, letP =
∑m!

s=1 hm!−sLs. We now
show thatP is distinctive w.r.t.GS(f, g) andK .

For any l ≤ q, any i, j ∈ Kl, let t be the minimum natural
number such that(f(Lt))i 6= (f(Lt))j . W.l.o.g. let(f(Lt))i >
(f(Lt))j . Then

(f(P ))i − (f(P ))j =

m!
∑

s=1

hm!−s((f(Ls))i − (f(Ls))j)

=hm!−t((f(Lt))i − (f(Lt))j) +

m!
∑

s=t+1

h−s((f(Ls))i − (f(Ls))j)

≥hm!−thl,min −
m!
∑

s=t+1

hm!−shl,max

=hm!−t(hl,min − 1

h

1 − 1
hm!−t

1 − 1
h

hl,max)

>hm!−t(hl,min − 1

h − 1
hl,max) > 0

The last inequality holds becauseh >
hl,max

hl,min
+ 1. Therefore, we

know that for anyl ≤ q, anyi, j ∈ Kl, i 6= j, (f(P ))i 6= (f(P ))j .
Hence,P is distinctive w.r.t.GS(f, g) and K , completing the
proof of the “if” part.

Now we prove the “only if part. Suppose there existl ≤ q,
i, j ∈ Kl such that for anyV ∈ L(C), (f(V ))i = (f(V ))j . Then,
for any profileP , (f(P ))i = (f(P ))j , which means thatP is
not distinctive w.r.t.GS(f, g) andK . ThereforeWK (f, g) = ∅,
completing the proof of the “only if” part.

(End of the proof of Theorem 3.) 2

Now we show how the conditions in Theorem 2 are satisfied for
any positional scoring rule, STV, Copeland, maximin, and ranked
pairs, when the nonmanipulator votes are drawn from the uniform
distribution.

Proposition 3 Let πu be the uniform distribution. For any rule
r that is a positional scoring rule, Copeland, STV, maximin, or
ranked pairs, letkr, GS(fr, gr) andKr be defined as in Proposi-
tion 2. Then,πu is compatible withKr, and for anyl ≤ qr and
any i, j ≤ Kl (i 6= j), there exists a voteV ∈ L(C) such that
(fr(V ))i 6= (fr(V ))j .

Proof of Proposition 3: By simple calculation we have that when
r is a

positional scoring rule with scoring vector~v: for any i ≤
m, EV ∼πu((f~v(V ))i) =

∑m
j=1 v(j)

m
.

Copeland, maximin, or ranked pairs: for any i ≤ m, j ≤
m, i 6= j, EV ∼πu((fr(V ))(i,j)) = 1

2
.

STV: for any (S, j) such thatS ⊂ C, |S| = i, cj /∈ S,
EV ∼πu((fSTV (V ))(S,j)) = 1

m−i
.

Now we show, for any two given components (that lie within
the same element of the partition), the vote that makes thesetwo
components different. Whenr is a

positional scoring rulewith scoring vector~v: for anyi, j ≤
m, i 6= j, let V be the vote that ranksci at the top andcj at
the bottom; then,(f~v(V ))i = v(1) 6= v(m) = (f~v(V ))j .

Copeland, maximin, or ranked pairs: for any i1, i2 ≤ m,
j1, j2 ≤ m, i1 6= j1, i2 6= j2, and(i1, j1) 6= (i2, j2), let V
be any vote in whichci1 �V cj1 andcj2 �V ci2 . Because
(i1, j1) 6= (i2, j2), such aV exists. Then,

(fr(V ))(i1,j1) = 1 6= 0 = (fr(V ))(i2,j2)

STV: for anyS ⊂ C, j1 6= j2 such thatcj1 /∈ S, cj2 /∈ S, let
V be the vote in whichcj1 is at the top. Then(fSTV (V ))(S,j1) =
1 6= 0 = (fSTV (V ))(S,j2).

(End of the proof of Proposition 3.) 2

By combining Proposition 3 and Theorem 3, we know that for
any of the rules in Proposition 3, there exists a distinctiveprofile;
hence,WKr (f, g) is nonempty (some alternative will win under
the distinctive profile, without any tie). Also, all of theserules



are neutral (they treat every alternative in the same way) when
restricted to profiles that do not cause a tie, so ifWKr (f, g) is
nonempty, it must be thatWKr (f, g) = C.

Corollary 2 Letπu be the uniform distribution overL(C). For any
rule r that is a positional scoring rule, Copeland, STV, maximin, or

ranked pairs, if the number of manipulators isΩ(np) (
1

2
< p ≤

1) as well aso(n), then for anyc ∈ C, there exists a coalitional
manipulationP M such that the probability thatr(P M ∪P NM ) =

c is 1 − O(e−Ω(n2p−1)).

7. CONCLUSIONS
In this paper, we introduced generalized scoring rules. Allof

the common voting rules we know are generalized scoring rules.
We studied the coalitional manipulation problem under generalized
scoring rules, and we proved that when the number of manipula-
tors is small (O(np), p < 1

2
), and the votes are drawn i.i.d. from

a distribution that is positive everywhere, then the probability of a
manipulable instance isO(np− 1

2 ). We also proved that when the
number of manipulators is large (O(np), p > 1

2
, ando(n)), and

the votes are drawn i.i.d. from a distribution satisfying some nat-
ural assumptions with respect to the rule, then with a probability
of 1 − O(e−Ω(n2p−1)), the manipulators can make any alternative
win (assuming that it is possible for the alternative to win under the
rule). To show that the assumptions used in the results are natu-
ral, we proved that they are satisfied by any positional scoring rule,
Copeland, STV, maximin, and ranked pairs under the uniform dis-
tribution over votes.

While in this paper, we have focused on the frequency of coali-
tional manipulability, generalized scoring rules offer a general frame-
work within which to study common voting rules. The idea of gen-
eralized scoring can be easily extended to social welfare functions
(for example, the Kemeny and Slater social welfare functions). We
pointed out that the class of generalized scoring rules is not equal to
the class of anonymous voting rules; we believe that we know how
to show that it is not equal to the class of anonymous voting rules
that also satisfy homogeneity. Finding alternative characterizations
of the class of generalized scoring rules is an exciting direction for
future research.
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Appendix 1: Run-off rules that use generalized
scoring rules
In a multiround run-off rule (or, more generally, acorrespondence,
which possibly selects more than one winner), there are multiple
rounds; in each round, some of the alternatives are removed from
all of the votes based on a (sub)correspondence, after whichthe
next round proceeds with the rankings of the remaining alterna-
tives. After the last round, some number of alternatives (typically
one) is left; these alternatives are the winners. STV is an exam-
ple of a multiround run-off rule where in each round the “plurality
loser” is eliminated.

We prove that for any voting correspondence with finitely many
run-off rounds, if in each step the correspondence used is a gen-
eralized scoring correspondence (it is straightforward togeneral-
ize the definition of generalized scoring rules to correspondences),
then the multiround run-off correspondence is a generalized scor-
ing correspondence. In fact, we only need to show this for a run-off
correspondence with two rounds; the result will follow for an arbi-
trary (fixed) number of rounds by induction.

In the remainder of this appendix, we assume that the correspon-
dence that we use in the second round is neutral, that is, it treats all
alternatives equally; it seems unnatural to have a multiround run-off
correspondence for which this is not the case.



Definition 9 Letr1, r2 be two voting correspondences (wherer2 is
neutral), both defined on any set of alternatives. For any setof al-
ternativesC, any profileP , the run-off correspondenceR(r1, r2)(P )
is defined as follows.

1. LetC1 = r1(P ). LetP1 = P |C1 . That is,P1 is obtained by
removing the alternatives not inC1 from each vote inP .

2. LetR(r1, r2)(P ) = r2(P1) = r2(P |(r1(P ))).

Theorem 4 If r1 and r2 are both generalized scoring correspon-
dences, thenR(r1, r2) is also a generalized scoring rule corre-
spondence.

Proof of Theorem 4: Let m be the number of alternatives. For
i = 1, 2, let ri = GS(fi, gi) be of orderki,m and compatible with
Ki,m. The proof is similar to the one that shows that STV is a gen-
eralized scoring rule. Unlike STV,R(r1, r2) consists of only two
rounds, and in each round, multiple alternatives are eliminated (in
contrast, STV eliminates one alternative in each round). Let
• kR(r1,r2) = k1,m +

∑m
i=1

(

m
i

)

k2,i. The vector consists of two
parts: the first partK1 is indexed byi1 ≤ k1,m, and the second
partK2 is indexed byS, i2 whereS ⊆ C, S 6= ∅, andi2 ≤ k2,|S|.
(Here,S corresponds to the set of alternatives that survive the first
round.)
• For anyi1 ≤ k1,m, (fR(r1,r2)(V ))i1 = (f1(V ))i1 . That is,
for any voteV , the first part of the vectorfR(r1,r2)(V ) is exactly
f1(V ). For anyS ⊆ C, S 6= ∅, let V |S denote therestrictionof V
to S, that is,V |S is obtained fromV by removing all alternatives
not inS. Let (fR(r1,r2)(V ))(S,i2) = (f2(V |S))i2 .
• gR(r1,r2) selects the winner based onfR(r1,r2)(P ) as follows. In
the first round, letS1 = g1((fR(r1,r2)(P ))K1), where
(fR(r1,r2)(P ))K1 is the score vector that consists of all compo-
nents inK1 of fR(r1,r2)(P ). Then, let

gR(r1,r2)(fR(r1,r2)(P )) = g2((fR(r1,r2)(P ))(S1,K2))

where(fR(r1,r2)(P ))(S1,K2) is the score vector that consists of all
components(S1, i2) (i2 ≤ k2,|S1|) of fR(r1,r2)(P ).
• qR(r1,r2) = 2m. For anyS ⊆ C, S 6= ∅, let KS = {(S, i2) :
i2 ≤ k2,|S|}. Let KR(r1,r2) = {K1} ∪ {KS : S ⊆ C, S 6= ∅}. 2

The purpose of our next result is to show that if the conditions
in Theorem 2 hold for the individual correspondences used inthe
run-off (for the uniform distribution), then these conditions are also
satisfied for the run-off rule as a whole.

Theorem 5 Let πu,m be the uniform distribution over the set of
linear orders ofm alternatives. Fori = 1, 2, let ri = GS(fi, gi)
be of orderki,m and compatible withKi,m. Then, there exists a
partition K

′
R(r1,r2) thatR(r1, r2) is compatible with, such that

1. If for all m, i = 1, 2, πu,m is compatible withKi,m, then for
all m, πu,m is compatible withK ′

R(r1,r2).
2. If for i = 1, 2, WKi

(fi, gi) 6= ∅, then

WK ′
R(r1,r2)

(fR(r1,r2), gR(r1,r2)) 6= ∅

Proof of Theorem 5: All of the notation is defined in the same
way as in the proof of Theorem 4. First we show how to construct
K

′
R(r1,r2). For anyS ⊆ C, S 6= ∅, there exists a way to partition

K2,|S|—the set of components in the score vector underr2 when
there are|S| alternatives—intoK2,|S| such thatπu,|S| is compati-
ble with K2,|S| w.r.t. f2. That is,K2,|S| is the partition thatr2 is
compatible with when the set of alternatives isS. Let K

′
R(r1,r2)

be a refinement ofKR(r1,r2) such thatK1 is refined according to
K1,m, that is, the partition thatr1 is compatible with, and for any
S ⊆ C, S 6= ∅, KS is refined according toK2,|S|.

Becauseπu,m is compatible withK1, for any i1, i
′
1 ∈ K1, we

know thatEV ((fR(r1,r2)(V ))i1) = EV ((fR(r1,r2)(V ))i′1
). For

any S ⊆ C, S 6= ∅, any (S, i2), (S, i′2) in the same element of
K2,S (here,K2,S is the partition of the components of the run-off
score vector thatr2 uses when only the alternativesS remain; this
partition has the same structure asK2,|S|), we have the following
chain of equalities:

EV ∼πu,m((fR(r1,r2)(V ))(S,i2)) = EV|S|∼πu,|S| ((f2(V|S|))i2)

=EV|S|∼πu,|S|((f2(V|S|))i′2
) = EV ∼πu,m ((fR(r1,r2)(V ))(S,i′2))

Therefore, we know thatπu,m is compatible with
K

′
R(r1,r2) w.r.t.R(r1, r2), proving the first part of the theorem.
If for i = 1, 2, WKi

(fi, gi) 6= ∅, then by Theorem 3, for any
i1, i

′
1 in the same element of the partition ofK1, there exists a

voteV ∈ L(C) such that(f1(V ))i1 6= (f1(V ))i′1
, which means

that (fR(r1,r2)(V ))i1 6= (fR(r1,r2)(V ))i2 . Again by Theorem 3,
for any S ⊆ C, S 6= ∅, any i2, i

′
2 in the same element of the

partition ofK2,|S|, there existsVS ∈ L(S) such that(f2(VS))i2 6=
(f2(VS))i′2

. Let V ∈ L(C) be any vote such thatV |S = VS .
Then, we have that(fR(r1,r2)(V ))(S,i2) 6= (fR(r1,r2)(V ))(S,i′2).
By Theorem 3 we know thatWK ′

R(r1,r2)
(fR(r1,r2), gR(r1,r2)) 6=

∅. This proves the second part of the theorem.
(End of the proof of Theorem 5.) 2

This implies that, if we take some of the correspondences for
which we have shown in Proposition 3 that the conditions of Theo-
rem 2 hold, and construct a run-off correspondence for them,then
the resulting run-off correspondence also satisfies the conditions of
Theorem 2. (In Proposition 3, we referred to voting rules, but in
fact all of these become correspondences if we do not break ties.
So, an example would be to run plurality first, then eliminatefrom
the votes all the alternatives except those that are tied forthe win,
then run ranked pairs on the remaining alternatives, and so on.)

Corollary 3 For any multiround run-off voting correspondence with
finitely many run-off rounds, if in each round the voting correspon-
dence used is one of those in Proposition 3, then Theorem 2 applies
to the multiround run-off voting correspondence.

Appendix 2: Weighted generalized scoring rules
Weighted generalized scoring rulesare a slight generalization of
unweighted generalized scoring rules. Letn ∈ N be the number
of voters, and letw : {1, . . . , n} → R

+ be a function assigning
weights to the voters. We define a weighted generalized scoring
rule by GS(w, f, g)(V1, . . . , Vn) = g(

∑n
i=1 w(i)f(Vi)). When

all the weights are equal (that is, the rule is unweighted), gener-
alized scoring rules are anonymous. However, the converse is not
true, that is, a rule can still be anonymous even if the weights are
not equal. This is illustrated in the following example.

Example 2 Letm = 3, n = 3, f(c1 � c2 � c3) = f(c1 � c3 �
c2) = (1, 0, 0), f(c2 � c1 � c3) = f(c2 � c3 � c1) = (0, 3, 0),
f(c3 � c1 � c2) = f(c3 � c2 � c1) = (0, 0, 9). For any
profileP , g(f(P )) is theci such thati is the maximum component
of f(P ). (Effectively, the rule is a version of plurality that is biased
towardsc3 and biased againstc1.) It is easy to check that for any
profile consisting of three votes, the maximum component off(P )
is higher than any other component by at least 1.

Letw = (1.1, 1, 1), so that the weight of the first voter is slightly
higher than that of the other two voters. The additional0.1 weight
of the first voter will only affect the difference between anytwo
components by at most9 × 0.1 < 1. Therefore, for anyP =
(V1, V2, V3),

∑3
i=1 w(i)f(Vi) ∼

∑3
i=1 f(Vi), so thatGS(w, f, g) =

GS(f, g). HenceGS(w, f, g) is anonymous.



We can also extend the definition of weighted generalized scor-
ing rules so that voters are allowed to divide their votes into frac-
tions, that is, submitfractional votes. In such a setting, each voter
submits a convex combination of linear orders (that is, an element
of Conv(L(C)). Such a voteVi is given asVi =

∑

V ∈L(C) tV
i V

wheretV
i ≥ 0 and

∑

V ∈S tV
i = 1. Let P = (V1, . . . , Vn) be a

profile of fractional votes. We define

fw(P ) =

n
∑

i=1

w(i)
∑

V ∈L(C)

tV
i f(V )

We letGS(w, f, g)(P ) = g(fw(P )). Now, in contrast to the pre-
vious result, we show that if voters are allowed to submit fractional
votes, then (under an assumption) a weighted generalized scoring
rule is anonymous if and only if all the weights are the same.

Theorem 6 Suppose there exist two profilesP1, P2 such that:
1. GS(w, f, g)(P1) 6= GS(w, f, g)(P2), and
2. the components offw(P1) are all different, and so are the com-
ponents offw(P2),
then GS(w, f, g) is anonymous if and only if for anyi, j ≤ n,
w(i) = w(j).

Proof of Theorem 6: The “if” part is obvious. We now prove the
“only if” part. Suppose there existi1, i2 ≤ n such thatw(i1) >
w(i2). Let f(L(C)) = {f(V ) : V ∈ L(C)}, that is,f(L(C)) is
the set of all (generalized) score vectors. Letws =

∑n
i=1 w(i),

that is,ws is the sum of all weights. The next claim states that
the set of sums of weighted score vectors that can be obtainedby a
fractional profile is exactly the convex hull off(L(C)) multiplied
by ws.

Claim 3 fw(Conv(L(C))n) = wsConv(f(L(C))). Here,
wsConv(f(L(C))) is obtained by multiplying each vector in
Conv(f(L(C))) by a factor ofws.

Proof of Claim 3: First we prove thatfw(Conv(L(C))n) ⊆
wsConv(f(L(C))). For anyP ∈ Conv(L(C))n, let
P = (V1, . . . , Vn) andVi =

∑

V ∈L(C)

tV
i V such thattV

i ≥ 0 and

∑

V ∈L(C)

tV
i = 1. Thenfw(P ) can be written as follows.

fw(P ) =
n

∑

i=1

∑

V ∈L(C)

w(i)tV
i f(V )

=
∑

V ∈L(C)

n
∑

i=1

w(i)tV
i f(V ) = ws

∑

V ∈L(C)

∑n
i=1 w(i)tV

i

ws
f(V )

For anyV ∈ L(C), let tV =
∑n

i=1 w(i)tV
i

ws
. Then:

∑

V ∈L(C)

tV =
∑

V ∈L(C)

∑n
i=1 w(i)tV

i

ws
=

1

ws

n
∑

i=1

∑

V ∈L(C)

w(i)tV
i

=
1

ws

n
∑

i=1

w(i)
∑

V ∈L(C)

tV
i =

1

ws

n
∑

i=1

w(i) = 1

Therefore,fw(P ) = ws(
∑

V ∈L(C) tV f(V )) ∈ wsConv(f(L(C))),
which means thatfw(Conv(L(C))n) ⊆ wsConv(f(L(C))).

Next, we prove thatwsConv(f(L(C))) ⊆ fw(Conv(L(C))n).
For any element~p in wsConv(f(L(C))), suppose
~p = ws

∑

V ∈L(C) tV f(V ), wheretV ≥ 0 and
∑

V ∈L(C) tV = 1.

Then, letV1 = . . . = Vn =
∑

V ∈L(C) tV V .

fw(V1, . . . , Vn) =

n
∑

i=1

w(i)f(V1, . . . , Vn)

=ws

∑

V ∈L(C)

tV f(V ) = ws~p

Therefore, we know that~p ∈ fw(Conv(L(C))n), which means
thatwsConv(f(L(C))) ⊆ fw(Conv(L(C))n). Hence
wsConv(f(L(C))) = fw(Conv(L(C))n).

(End of the proof of Claim 3.) 2

Suppose there existP1, P2 such that
GS(w, f, g)(P1) 6= GS(w, f, g)(P2), and all the components are
different within fw(P1), as well as withinfw(P2), respectively.
Let ~vP = fw(P1) − fw(P2). Let l(λ) = fw(P2) + λ~vP , 0 ≤
λ ≤ 1. From Claim 3 we know thatfw(Conv(L(C))n) is convex.
Therefore, for any0 ≤ λ ≤ 1, we havel(λ) ∈ fw(Conv(L(C))n) =
wsConv(f(L(C))), which means that there exists a fractional vote
Vλ such thatwsf(Vλ) = l(λ). For any total preorderO (that is,
a binary relation that is complete, reflexive, and transitive) over
the components, defineS(O) to be a subspace ofR

k such that the
order of the components of any element inS(O) is O. That is,
S(O) = {~v ∈ R

k : (∀i, j)((~v)i ≥ (~v)j ⇔ i �O j)}. Then
it is easy to check that for anyO, S(O) is convex, and for any
~v1, ~v2 ∈ S(O), ~v1 ∼ ~v2, which means thatg(~v1) = g(~v2). Let
g(S(O)) = g(~v1). For anyO, letI(O) be the intersection ofS(O)
and the linel(λ). Since both of them are convex,I(O) is convex.
Therefore, eitherI(O) is an interval (that is,I(O) is described by
two ends0 ≤ λ1 < λ2 ≤ 1, such that for allλ1 < λ < λ2,
l(λ) ∈ I(O), and for anyλ < λ1 or λ2 < λ, l(λ) 6∈ I(O)) or a
single point. We note that for anyO1 6= O2, S(O1) ∩ S(O2) = ∅,
henceI(O1) ∩ I(O2) = ∅.

For anyO that is a linear order,I(O) is an interval inl(λ) (that
is, I(O) has more than one point), because for any~v ∈ S(O), a
small perturbation would not change the order. LetOP1 , OP2 be
the linear orders thatfw(P1) andfw(P2) are compatible with, re-
spectively. Sinceg(OP1) 6= g(OP2) and there are only finitely
many total preorders overK, there must exist two adjacent inter-
valsI(O1) andI(O2), such thatg(O1) 6= g(O2). More precisely,
there exist0 < λ′ < 1 andd > 0 such that for all0 < ε < d,
l(λ′ − ε) ∈ I(O1) andl(λ′ + ε) ∈ I(O2). Let 0 < d∗ < d. Then,
let V + be the fractional vote such thatwsf(V +) = l(λ′ +d∗) (the
existence of such aV + is guaranteed by Claim 3); letV − be the
fractional vote such thatwsf(V −) = l(λ′−d∗); letV 0 be the frac-
tional vote such thatwsf(V 0) = l(λ′). Then, letP1 be the profile
whereVi1 = V −, Vi2 = V + (we recall thatw(i1) > w(i2)), and
for any1 ≤ s ≤ n, s 6= i1, s 6= i2, let Vs = V 0. Then we have

fw(V1, . . . , Vn)

=(ws − w(i1) − w(i2))f(V 0) + w(i1)f(V −) + w(i2)f(V +)

=wsf(V 0) + w(i1)(f(V −) − f(V 0)) + w(i2)(f(V +) − f(V 0))

=l(λ) − w(i1)d
∗

ws
~vP +

w(i2)d
∗

ws
~vP = l(λ − w(i1) − w(i2)

ws
d∗)

Since0 < w(i1)−w(i2)
ws

d∗ ≤ d∗ < d, it must be thatfw(P1) ∈
I(O1), which means thatGS(f, g)(P1) = g(O1). Let P2 be the
profile whereVi1 = V +, Vi2 = V −, and for any1 ≤ s ≤ n,
s 6= i1, s 6= i2, let Vs = V 0. Similarly, we have thatfw(P2) ∈
I(O2) and GS(f, g)(P2) = g(O2). Hence,GS(f, g)(P1) 6=
GS(f, g)(P2). However,P2 is obtained by exchanging the votes
of voteri1 andi2. Therefore,GS(f, g) does not satisfy anonymity.

(End of the proof of Theorem 6.) 2


