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Abstract. Region Connection Calculus (RCC) is one primary formaligmualitative spatial rea-
soning. Standard RCC models are continuous ones where egici lis infinitely divisible. This
contrasts sharply with the predominant use of finite, diecreodels in applications. In a recent
paper, Li et al. (2004) initiate a study of countable modbkt tan be constructed step by step
from finite models. Of course, some basic problems are lefolwed, for example, how many non-
isomorphic countable RCC models are there? This papertigagss these problems and obtains the
following results: (i) theexoticRCC model described by Gotts (1996) is isomorphic to the mméhi
model given by Li and Ying (2004); (ii) there are continuumnyanon-isomorphic minimal RCC
models, where a model is minimal if it can be isomorphicattypbedded in each RCC model.
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1. Introduction

Region Connection Calculus (RCC) is one primary formaligmgualitative spatial reasoning. As a first
order theory, RCC is based on one primitive contact relatiiat satisfies several axioms. Models of
RCC have been studied by several authors, see e.g. [3, %41526].
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Given a topological spac&, write RC(X) for the regular closed Boolean algebraf For two
regionsa, b, that is, two nonempty sets RC(X), « is said to be incontactwith b, written aCxc, if
anNb# @. If X happens to be connected and regular, then Gotts [3] showBE& ) is indeed an
RCC model. Later, Liand Ying [4] also show tH&€(X ) is an RCC model if and only iX is connected
and the open set lattice &f is inexhaustible in the sense of Stell [9]. Recently, Déntand Winter [2]
show that, under the mild condition th&tis semi-regularRC(X) is an RCC model if and only iX is
weakly regular connectedThey further show that any RCC model can be isomorphicallpesded in
a connected weakly regular space.

Standard models of RCC are continuous, that is, regionsendrerinfinitely divisible. This contrasts
sharply with finite, discrete models predominantly usedgpligation. In a recent paper, Li et al. [6]
initiate a study of countable models that can be construstieyl by step from finite models. Of course,
some basic problems are left unsolved, for example, how manyisomorphic countable RCC mod-
els are there? This paper investigates these problems d@aith®lthe following results: (i) the exotic
RCC model described by Gotts [3] is isomorphic to the minimaldel given by Li and Ying [5]; (ii)
there are continuum many non-isomorphic minimal RCC moaehere a model is minimal if it can be
isomorphically embedded in each RCC model.

The structure of this paper is as follows. Section 2 rech#scbncept of RCC models and introduces
the minimal RCC mode®3,, given in Li and Ying [5]. Then in Section 3 we show that Gottade! is
isomorphic to Li and Ying's minimal model. Section 4 intradis a sequence of sub-RCC modelSof.
The key notion of-chain is also defined here. We then show these sub-RCC nmargai®n-isomorphic.
Based on this result, we in Section 5 construct for each pinastring a sub-RCC model ¢§,,, and
show that they are non-isomorphic. Conclusions are givedertion 6.

2. A minimal RCC model

2.1. Models of the Region Connection Calculus

The RCC theory was initially described in [7, 8], we here ddopequivalent formulation given by Stell
[9].

Definition 2.1. ([9])
An RCC model is a Boolean algehdacontaining more than two elements, together with a binanjaazi
relationC on A — { L} that satisfies the following conditions:

Al. Cis reflexive and symmetric;
A2, (Ve A—{L, T}HC(z,—zx);
A3. (Vzyz € A—{L})C(z,yV z) <> C(z,y) or C(z, 2);

Ad. (Vo€ A—{L,THEz € A—{L, T})-C(z,z2).

A topological space is called semi-regularif has a basis of regular open sets; and a semi-regular spaateid weakly
regular if for each nonempty open sethere is another nonempty open setuch that the closure afis contained inu [2].
This last condition is precisely the so called “inexhaubtij of the open lattice ofX given in [4].
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where L andT are, respectively, the bottom and the top elemem of x is the complement of in A,
z V z is the least upper bound (lub) ofandz in A.

Given an RCC modglA, C), aregionin A is an element other thah. For two regions:, b € A, we
write DC(a, b) if they are not in contact; writ€C(a, b) if a, b are inexternal contagti.e. C(a, b) but
aNb= 1. We calla apart of b, write P(a, b), if a < b, and calla a proper partof b, write PP (a, b),
if a < b. Fora < b, we sayu is atangential proper par{tpp for short) ofb, write TPP (a, b), if there
is a third regiorn: such thatEC(c, a) andEC(c, b); otherwise, we say is anon-tangential proper part
(ntpp for short) ofb, write NTPP(a,b) (or a < b for short). It is easy to show that for ahy# T,
a < bifand only if DC(a, —b).

Lemma 2.1. For regionss, b, cin an RCC mode(A4, C), if a < b, thenEC(c, b) only if EC(c¢,b — a).

Proof:
SupposeEC(c,b) andDC(c,b — a). Then by A3. of Definition 2.1, we havEC(c,a) sinceb =
aV (b— a). This contradicts < b. O

In what follows we calb — a a boundary ob if « < b. In other words, for two regions, b, we calla a
boundaryof b if b — a < b. Notice that by Lemma 2.1 we know a boundaryba$ in contact with all
regions that are in external contact withThis justifies the wordboundary

Another important concept is connectedness of a region.

Definition 2.2. A regiona in an RCC mode( A, C) is connectedf

For any two region$, ¢ in A, if bV ¢ = a thenC(b, ¢) Q)
By the definition of RCC models, we know particularly, the universe, is connected.
Lemma 2.2. Given an RCC modelA, C), supposé, - - - , b, arem regions inA with DC(b;, b;) for

1 <i# j < m. Foraconnected regianc 4, if a is covered by, - , by, i.e.a < /", by, thena is
a part of someé,.

Proof:
If not so, then the sefa A b; : a A b; # L} contains at least two regions. Any two such regions are
clearly not in contact, this contradicts the assumptiom déha connected. O

Given an RCC mode(A4, C), supposeB is a subalgebra aoft containing more than two elements. We
now consider the sub-structure éh Using Cp, the restriction ofC on B, and<, we can define all
aforementioned RCC relations @h Interestingly, these relations @hcoincide with the corresponding
relation defined imd. In other words, for any two regiorg, bs € B, R(b1, b2) holds inB if and only if
R (b1, b2) holds inA, whereR € {C,EC,DC, TPP,NTPP, PP} [6, Proposition 3.1}

For a sub-modeB of A, we say a regioh € B is connectedn B if for any two regions,, b, € B,
b1 V by = bonlyif C(by,be). Forb € B, itis clear that is connected i3 only if it is connected inA.
The converse, however, is not always true.

2This property, however, cannot apply to all binary relasiolefinable byC [6].
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2.2. Standard RCC models

Given a topological spack, denote byRC(X ) the complete Boolean algebra of regular closed subsets of
X. Two regions, that is, two nonempty regular closed setsdb in RC(X), are incontactif aNb # @.

If this is the case, we writ€ x (a, b). Itis well-known that, ifX is a connected regular topological space,
thenRC(X) is an RCC model [3]. We caRC(X), together with the contact relatiddiy, the standard
RCC model overX. Note that each standard RCC model is a complete (uncoejtBbblean algebra.
This suggests that regions in these models can not be cotegtrivom basic ones in finite steps. In [5],
Liand Ying provide a general approach for constructing tabie (thushon-standary RCC models step

by step from sequences of finite models. We next recall thénmalnrRCC model described there.

2.3. Arepresentation of the atomless countable Boolean agra

Let {0,1}* be the set of finite binary strings ové0,1}. As usual, we write for the empty string.
For a strings € {0,1}*, we denote bys| its length. Now for each string € {0,1}*, we associate a
left-closed-and-right-open sub-interval[0f 1) as follows: Take

z. =1[0,1); 2o =[0,1/2), z; = [1/2,1);
oo = [0,1/4), zo1 = [1/4,1/2), 10 = [1/2,3/4), z11 = [3/4,1); and so on.

In general, suppose; has been defined for a strizge {0,1}*, we definez,, to be the first half left-
closed-and-right-open sub-interval ©f, andz,, the second half. WriteX,, = {z, : s € {0,1}*}.
ThenX,,, with the ordering of set inclusion, can be visualized asrdimite complete binary tree (See
Figure 1).

Write 98, for the subalgebra of the powerset algebfd) generated byX,,. Clearly®B,, is countable.

Lemma 2.3. For each regiom € ‘B, there exists some > 1 such that eithe; C aoranzs = @
for any strings with |s| = n.

Proof:
Follows directly from the definition o®,,. O

Definition 2.3. ([5])
DefineC,, to be the smallest binary reflexive and symmetric relatiofsgnthat satisfies the following
conditions:

C,1 Fortwo different binary strings, t with same lengthC,(zs, ;) if and only if there exists a binary
string s; such that{s, ¢} = {s,01", s;11™} for somen > 0, wherel™ denotes the (sub-)string
1---1.

n

C.2 For any two nonempty. b € B,,, C,(a,b) if and only ifa N b # & or there exist binary strings
s,t such thates C a, z; C bandC,(xs, z;).

Then(®8,, C,) is a countable RCC model [5]. In what follows we simply wiig, for this model. It
was shown in [5] thaf3,, is a minimal model, that is, it can be isomorphically embetsleany RCC
model.
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Figure 1. The infinite complete binary tree
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Figure 2. Construction of the contact relati@y,

Proposition 2.1. For any nonempty binary string and any regioru € B, aECzy if and only if
zs0Na =@ andz,; C aforsomel > 1.

As a consequence, any two regions that are in external domiificthe samer o intersect.

Proposition 2.2. ([6])
For any binary string;, z, is connected if53,,.

Proposition 2.3. Given a nonempty binary stringand a regionr C z, in 8, = is a boundary of,
ie.zxs — o < x4, iff 2,4 C o for somel > 1; or, equivalentlyz is an ntpp ofx, iff =, Z « for any
[>1.

Proof:
Notice thatz,ECy only if z,;;ECy for anyy € B, and anyl > 1. This follows from the definition of
boundary. O

Proposition 2.4. Given a nonempty binary stringandn regionsy;, - - - , y,, in B, SUPPOSE Y1, -+ , Yn }
forms a partition ofrs. Then there is exactly onesuch thaty; is a boundary of;.

Proof:
Follows from Proposition 2.3. O
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Proposition 2.5. Supposer is a connected region i%,,, ands is a binary string such that,, C z.
Thenxz — x4 is also connected i%B,,.

Proof:

Because of the connectednesscpive knowC(zy, 2 — z59). Now supposer — x is disconnected.
Then we can findi;, ay € B, such thatr — zs9 = a1 U ag butDC(a1,as). Becauser is connected,

we haveEC(z 4 U ag, az) andEC(z4 U ag, a1). Thus by Definition 2.1 A3z, is in contact with both

a1 anday. This is impossible, since, by Proposition 2.1, bathanda, would contain a boundary of
Tgl- O

3. Gotts’ model

The first countable (heng®n-standarl RCC model was constructed by Gotts in [3]. We in this section
show this model turns out to be isomorphic to the minimal nhéglg.

LetU = [0, 1]? be the unit Euclidean square. S (U) to be the standard RCC model bn Recall
regions in this model are just nonempty regular closed $stadé/, and two regions, b € RC(U) are
in contactif ¢ N'b # &. We next describe how to construct Gotts’ model step by step.

Figure 3 (left) illustrates the result of the first few stageuilding this model. The first stage in
construction is to draw a unit squave The second is to draw a sub-squaré/dadit the center with length
%. In the third stage five more sub-squares of Ienﬁtlare added; the fourth adds 25 more, smaller still.
Continue this process and wrifefor the set of all squares produced after some finite numbstagfes.
The Gotts’ model, denoted ¥, is therefore the sub-model BIC(U) generated by these squaresin
That is, a region ir® will be any square ift7, any finite sum of such squares, and the difference between
any two such sums of squares. Notice that each nonemptynreg® contains at least one squareGn
as a non-tangential proper part. This sub-model clearip REGC model.

To show®s,, is isomorphic to®, we need to establish a Boolean isomorphigits, — &. To this
end, we now give a correspondence between squaK@simd binary strings.

First, writey(U) for all sub-squares i that are maximally connected. That is, for each sub-square
g in~(U), no square other thaii containsg. Clearly,y(U) is countable infinite. We write these squares
as a sequence

90,91:92,93,° " 2 9ns " °

Figure 3 (right) gives an illustration of such an ordering.

We associate a binary string for each 0 as7(g;) = 1°0.

For each square € G, write y(a) for all sub-squares contained dgrthat are maximally connected.
Clearly there is a natural corresponding between squarg&:inand squares in(U). We write squares
invy(a) as

g(()lvg(llaggaggv"' aggv"' 5
whereg is the corresponding squaregfin y(a). Note also that any € -y(a) is a non-tangential proper
part ofa.

Next, we classify squares i@ into groups. We denoté&, = v(U) andG1 = J,eq, 7(a), and,
in general, ifG), has been defined for sonte> 1, we defineGy1 = [J,cq, 7(a). Thenitis clear
G = ey G and thesdy, are pairwise disjoint.
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Figure 3. First few steps of Gotts’ model (left) and an ondgef maximal squares (right).

For each regioru in G, suppose: € Gy for somek > 0. Then there existy € Gy = v(U),
a1 € Gy, -+-,ax_1 € Gi_1 such thau € y(a,_1) anda; € vy(a;_1) foranyl < i < k. Suppose is
the A(0)-th square iny(U), a; is theA(7)-th square iny(a;_1) for 1 <14 < k, and suppose is the \(k)-
th square iny(ax_1). Then this regiom is uniquely determined by the sequend@)A(1)A(2) - - - A(k).
Definen(a) = 101X M 01M2)0 . .. 1A *)0, This gives an injectiom : G — {0, 1}*.

On the other hand, given a nonempty binary stdn¢f s ends with &), thens has form

; (2

if s ends with al and there is n6 appearing irs, thens = 1*(91; if s ends with al and there is some
appearing irs, thens has form

1901212 2)g... 1Ak

1201212 2) . .. 1A E) g1 AR+ ()

whereA(i) > 0forall0 < i <k + 1.
Now definef : X, — & as follows, whereX,, = {zs: s € {0,1}*}:

o f(z) =U;

e f(zs) = aif sis astring with form (2) angj(a) = s;

o f(zs)=U—go—g1—-—gaoif s = 1201

o flzs) = a—gf — 91 = = 94y If s is with form (3) andr(a) = s1, wheres, =
1MO) 12 M1 M2)0 .. . 1A K)

It is straightforward to show that satisfies the following conditions:
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(@) f(zs) C f(ay) iff 5 C x4, i€, iff ¢ is an initial segment of; and

(b) z;Coz iff f(x5) N f(zi) # @, 1., iff f(zs)Cf (7).

Notice that®s,, is generated by, f can be extended t%, in a natural way. Write alsg for the
resulted mapping. Then it’s straightforward to show tfiat8, — & is a Boolean isomorphism and
f(a)Cf(b) iff aC,bforanya,b € B,,.

4. How many minimal RCC models are there?

A minimal RCC model is a model that can be embedded into argratiodels. Li and Ying [5] show
that the RCC model,, (see Definition 2.3) is a minimal model. Naturally, we ask®5,, the unique
minimal model? and “How many minimal models are thefePhe rest of this paper is devoted to the
solution of this problem.

We first note that each minimal model is countable. Recal #iat there is up to isomorphism
only one atomless countable Boolean algebra. Now, singe tire at most continuum many different
contact relations on the atomless countable Boolean algtiere are at most continuum many different
countable RCC models. As a result, there are at most comtimnany minimal RCC models.

In the rest of this paper, we show that there are exactly woath many non-isomorphic minimal
RCC models. This is justified by constructing for each binasstring$ a minimal RCC modefs.

To make the construction more comprehensible, we give alskdtthe proof.

4.1. A sketch of the proof

The basic idea is to construct for each binamstring $ over {0,1} an RCC modelBg, which is a
sub-model of the minimal modé&s,,. This model is clearly minimal. We then need show that any two
modelsBg, andBg, are non-isomorphic i§; # $,.

To this end, we introduce the key notion foithain ¢ > 1). This is an invariant property of RCC
models, i.e. for two isomorphic RCC modelsand B, A contains &-chain if and only ifB does.

Next, we construct a sequence of sub-RCC models

By, = A1, Ay, Agy oo (4)

of 9B, such that, for twdk, i > 2, A;, contains a-chain if and only ifk = k.

Given a binaryw-string$ = wywows - - -, the minimal modefs¢ can be constructed, roughly speak-
ing, as follows: for eachi > 1, if w; = 1, then replace the local structure 9, at z;i-1, with A;.
Then we proveBg contains ak-chain ¢ > 2) if and only if w, = 1. As a result, for two string
$ = wiwows - - - and$’ = wiwywy - - -, if they differ at thek-th (£ > 2) symbol, i.e.w;, # wy, thenBg
and®Bg are non-isomorphic since one contains-ehain but the other doesn't.

In the following sections, we first construct sub-modgfs; } >, of B, then we show these models
can be differentiated by the notion #fchain. Using these non-isomorphic models, we construct fo
each binaryw-string a minimal model.
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Figure 4. Left edges of the complete binary tree

4.2. A sequence of sub-models &,

For eachk > 1, we in this subsection construct a subalgehgeof 5,,.
We need some additional notations concerrithg For each > 1, write

LErL = {$1i—10n n Z ].}

Note in Fig 4,LE; contains regions in théth left edge of the complete binary tree. For example, the
second left edgeE, contains regiong1g, 100, - - -
For eachi > 1 and any region: € B,,, definea(®) to be the largest region (possibly empty)LiB;
contained im, i.e.
al) = U{:z:s € LE; : zs C a}.

Clearlya) € LE; if and only if a(?) # @. Notice that no region other than the univessecan contain
somez: (7 > 0) as an ntpp. We call each: aboundaryof the universe. For any regiane B, write

) = U{xll cxi Ca,i >0}

Thena(>®) # & if and only if a contains a boundary of the universe.
The following two simple properties will be useful in latasdussion.

Lemma 4.1. For any regioru € B, anyi > 1, a\Y) = @ if and only if (—a)) # @, where—a is the
complement o in z. = [0, 1).

Proof:

Notice that by Lemma 2.3, there exists somg 0 such thatz; C a ora Nz, = @ for any strings with
length> n. In particular,z{i-1g» C a Or zyi-1gn N a = @. Thatis,zi-1¢» iS contained in eithes or
—a. This shows one of(¥ and—a(* is nonempty. Since N —a = @, only one can be nonempty. O
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Lemma 4.2. For two regionsi, b € B, anyi > 1, (aUb)) # & iff either o) or b is nonempty, and
(a Nb)® £ & iff both o) andb() are nonempty.

Proof:
This follows from the similar argument as given in Lemma 4.1. O

Next, we define a subalgebra s, for eachk > 1.

Definition 4.1. For eachk > 1, defineA; to be a subset dB,, such that a region € B, is in A, if
one of the following two conditions is satisfied:

() Foralll <j <k, a9 # @;or
(i) Forall1<j <k, a) = &,

By Lemma 4.1 and Lemma 4.2, we know eathis a subalgebra dB,,, and A, is a subalgebra of
Ag.

Proposition 4.1. For eachk > 1, A is a subalgebra dB,,. Moreover, we havel; = B, and Ay, is
a subalgebra ofi;, for anyk,l > 1.

The key character ofl;, is its uniformity on left edged.E;, LE,, - - - , LE,. By the definition ofAy,
for a regiona € B, a is in Ay if and only if {a(i) : 1 <4 < k} are collectively empty or nonempty.
Take A, as example. Then regian= z; Uz iS NOt inA,. This is because) = &, buta? = z1¢.
Butb = x99 U z1p IS in Ag, Sinceb(l) = Zoo andb(2) = 9.

What should be stressed is, a connected regiofikiyy may be disconnected i, hence discon-
nected inB,,. Take the abové = x¢y U 19 as an example. Sincgy is not in contact witheg in B,
we knowb is not a connected region i8,,. But the next proposition shows thats a connected region
in As.

Proposition 4.2. For eachk > 1 and any regiom € Ay, we have
1) If o) = 6@ = ... = a®) = g, thena is connected iM, if and only if « is connected inB,,.
2) fa=aVua® u---Ua®, thena is connected iM,.

Proof:
For the first case, i = bU ¢, then we know, ¢ are also ind;,. This is becausé®) = ¢() = & for each
1 <4 < k. Thereforeb andc are in contact i3, if and only if they are so iM,. So, by the definition
of connectedness, is connected ifB,, if and only if it is connected M.

For the second case, suppose C a are two regions ird; such thab U ¢ = a. By Lemma 4.2 and
aV) £ @, we know eitheb™) or (V) is nonempty.

Suppose bott®) andc(!) are nonempty. Then bytY) is a connected region i#%,,, we knowb(!)
andcV) are in contact if8,,. So areh ande. Moreover, sincé, ¢ € Ay, they are also in contact idy.

Supposé!) is empty. Then by, ¢ € A;, all b are empty and all®) are nonempty fot < i < k.
Clearly ¢ = ¢ cannot be true for all < i < k. This is because = ¢! Ua® U--- U a® and
¢ # a. Without loss of generality, we assurdé) G a(l). Thenc N a!) # @, sincec!) C c. Note that
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bn e is also nonempty. This is because otherwise we shall have)) = (), hencec® = a1,
Now, sincea(") is connected and®) = (b N aV) U (¢ N aV), we knowb N 'Y is in contact with
¢naY. This suggests andc are in contact ifB,, and, hence, inl;.

The situation wher(!) is empty is similar. 0

Definition 4.2. (Basic regions inAg)
For aregioru € Ay, we calla basic ifa = z, for some binary string # e ora = aM Ua@ U---Ua®,
For easy of reference, we call regionsAp like x; Type-1 regions, and call the others Type-2 regions.

Note first that each Type-1 regian is connected im;. This is because, is connecteds,,. By
Proposition 4.2, we know Type-2 regionsr, are also connected.

The following lemma then shows that each regiodjncan be decomposed into a collection of basic
regions.

Lemma 4.3. For a basic region € A, a can be decomposed into a collection of disjoint basic regjion
where ‘disjoint’ is in the sense of set theory. In particular(!) # @, thena can be represented as the
union of one Type-2 region and a collection of Type-1 regions

Proof:

Setzg = aV Ua® U---Ua®). Thenz is either empty or a Type-2 region. Singe— z;)(") = & for
1 <i<k,a—z isalsoinA;. Suppos€z,,,zs,, - , s, } iS a disjoint decomposition af — z; in
B, wheres; are binary strings. Then eaafy, is in A, since it is a sub-region af — z,. In this way
we decompose into a collection of disjoint basic regions. O

Now we turn to the contact relation ok, inherited from,,. It is easy to show that the sub-model
(Ag,Cyla,) isindeed an RCC model.

Theorem 4.1. Fork > 1, (A, Cy4,) is an RCC model.

Proof:

We need only to show that, for any regiane A, there existd € A such thath < a. If all o
(1 < i < k) are empty, leb be any region i3, such thab < a. Notice thath € A, since allb(®) are
empty. On the other hand, if alf”) (1 < i < k) are nonempty, that isY) = z,. for somez,, € LE;.
Letd = |7y #5,0. Thenb < a andb® = z,,9 # @ (1 < i < k — 1). Therefore we have sonbec A,
with b < a in both cases. O

As a consequence, we obtain a sequence of sub-RCC mod®|s.dfor convenience we writd,, for
(Ag, Cyla,). Itis natural to ask Are these models all differeritth the next subsection, we prove that
this is true.

4.3. Ntpp-chain andk-chain

In an RCC model, each region contains a non-tangential ppgoe That is, for each regiag we can
find another regiom’ such thats’ NTPPa, ora’ < a for short. This procedure can be continued for
any length of steps. The following definition ofpp-chaincaptures this notion.
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Table 1. A segment of 2-chain i

Te
ar = x9Uxqg
a2 = xgo Y T100
a3 = xgoo Y X1000

a1 —ay = zo1UzTi01

ai > az > as

a1, a9, az are connected id,
To1, 101 are connected inl,
DC(zo1,z101)

C(zo1,711), C(z101,711)
—a1 = Z11

Definition 4.3. (ntpp-chain)
Supposed is an RCC model. A sequence of regidng : i > 1} in A is called amtpp-chainif

1>a1>a> - >a;>ai41 > .

An ntpp-chain is said to beonnectedf all a; are connected.

The collection of RCC modeld,, A, - - - constructed in the above subsection can be differentiated
by specific connected ntpp-chains.
Fixak > 2, foreachi > 1, let

a; = Tgi U Tt J---u T1k—1(i-

Then{a;};>1 is an ntpp-chain. By Proposition 4.2, we know eaghs connected ird;. Therefore
{ai}i>1is a connected ntpp-chain .

We first note that, for any’ > k&, eacha; is not a region ind,; and for anyk’ < k, eacha; is a
disconnected region id;,. The latter statement follows from the observation that vy regions in
{zgi, 219, -+ ,x1k—1¢: } @re not in contact.

Second, we note that for< j, a; \ a; = Ule(fﬁ]_l—loi —Zy-195). Ifwe setbéyj = Tyi—19i — Tyi-104,
then by Proposition 2.5 eacblﬁl’j is a connected region id;. By the definition of the contact relation
C., (Definition 2.3), we know any pair dﬁj are not in contact. Moreover, B9, (1-1¢i, Zji-1¢i-17)
andzyi-1g; < Tqi-19i, We knOWCw(b,li’j,xll—loi—ll). But sincexi-1pi-1; C —a;, the complement of
a;, we know eachbﬁ,j is in contact with—a;.

In summary, we have a connected ntpp-chiip};~; in A, such that the difference of any twg
anda; (i < j) contains precisely connected compoﬁen{éﬁ,j}{;1 in A, where any two components
are not in contact. Moreover, each component is in contatt tive complement af;.

An illustration is given in Table 1 for the cage= 2.

We call the above specific ntpp-chairk-ahain
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Definition 4.4. (k-chain)
Supposed is an RCC model. Fat > 1, a connected ntpp-chaif; } in A is called ak-chain, if for any

i < j there exists a partitiol} ; = {b} ;,07;,--- ,bf ;} of a; — a; satisfying:

1. eacrbﬁj is a connected region id;

4 i ! i .
2. a; —aj =, b; ; and any twd; ; are not in contact;
3. eachy ; is in contact with—a;.

The above observation then can be summarized as the follavaorem.

Theorem 4.2. Fork > 1 and anyi > 1, leta; = zgi Uzgi U--- Uzq-10:. Then{a;};>1 is ak-chain
in Ay.

It is also clear that eacH,, contains a 1-chain. For ea¢h> 1, seta; = x,x(:. Then it is routine to
check that{a; };>1 is a 1-chain in4;. So in what follows, we only considérchains fork > 2.

In the next subsection, we show the notionkeéhain can be used to differentiath, from all the
other4;.

4.4. A, has ak-chainonlyif & = &

To prove thatd,, contains ndk-chain for anyl < & = k, we need several lemmas.

Supposega, }j>1 is ak-chain in4y,. Setz, to be the union of alhgz) (1 <4 < k). Then we claim
(in Proposition 4.3) that, is nonempty and the chaifu; } ;> will finally contained inz.

We achieve this result by two steps. Suppése,,--- ,z, } is a partition ofa; — zy, wheres; is
a binary string. In this way, we decomposginto disjoint basic regions inl; (see Lemma 4.3). Then
Lemma 4.4 asserts that the chairy } ;> will finally contained in eithet, or somez,,, and Lemma 4.5

suggests that the latter is impossible becalégeyé @ for anyj.

Lemma 4.4. Given a connected ntpp-chaim; : j > 1} in Ay, setzy = Ule agi), and suppose
{zs,, -+ ,zs,} is apartition ofa; — zy, wheres; is a binary string. Fot < ¢ < n, write z; = z,,. Then
there is a uniqugf € {0,1,--- ,n} such that{a;} is finally contained inz;, that is,a; C z; for all j
large enough.

Proof:
Notice first thatzg, a1 — 29, 2; = 5, (1 <1 < n)are all regions im4y.
For: > 1, we define
Niz{l:OSIS’n,Zlﬂai#@}.

Then N; is nonempty andV; € N; if i > i BecausdN;| < n + 1, there existsn, > 0 so that
Np, = Ny, foranym > mg. Write

Noo ={1:0< 1< n,(Vi)zgNa; # T}.

o
ThenNy = [ N; = Ny, # @. Ouraim is to proveN| = 1. We show this by reduction to absurdity.
=1

1=
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SupposeN| > 1. There exists somg¢ € N, such thatf > 0. We assert thatj > 1 and for any
0 < f € N, a; contains a boundary af;.

From the definition ofV,,,, a; N z; # @. If a; contains no boundary aff, then by Proposition 2.3
aj N zy < zy, henceDC(a; N zy,—zy). Notice thata; — z; # @ since|Ny| > 1. So we have
DC(a;Nzy,a;—zy). Since bothu; Nz anda; —z; are regions iMy, this contradicts the connectedness
of a;.

Denotezo, = U{zf : f € Noo, f > 0}. Notice thatzo, U zg C a1 # ¢, We have—zy — 2o =
—(20Uzo0) # @. Foreach > 0, recallagl) =0 orag’) = x40 for somes. By Proposition 2.5, we know
—20 = Te — agl) — = agk) is also connected ifB,,, hence connected iA;. By @ # 250 C —2zg, We
haveEC(%o0, —20 — Z00). NOW SiNCEzZo = ({2 : f € Noo, f > 0}, we haveEC(zy, —20 — 2o0) foOr
some positivef € No.. Recall that each; contains a boundary af; for any positivef € No,. From
EC(z7, —20 — 200) We KNOWEC(a; N 2y, —20 — 2o) holds for anyj. This contradicts the assumption
that{a;} is a connected ntpp-chain. O

Lemma 4.5. Suppos€{a; : j > 1} is ak-chain in4y, k > 2. Thenagl) # @ holds for any; > 1 and
anyl <[ <k.

Proof:
Suppose there exist somie> 1 and somd < [* < k such thatzgl:) = @. By the definition ofi-chain,
we know for any;j > j5* and anyl <[ < k, ag-l) = . Seth; = ajj~—1 ( > 1). Then{b; : j > 1} is
ak-chain such thabgl) = @ holds for any; > 1 and anyl <[ < k. So we can assume without loss of
generality thatzg.l) = @ holds forany; > 1and anyl <[ < k.

Let {zs,,xs,, -+ , x5, } be a decomposition ai;. Thenz,, ¢ LE, foranyl < [ < k. Write
zi = x4, Thenz; € Ay (1 <4 < n). By Lemma 4.4, we knowa, } are eventually contained in, say.
In other words, there exists somesuch thatu; < z; for anyj > m.

By the definition ofi-chain, we can decompose — a., into k separate connected components
{bt ,,, : 1 < i <k} suchthat — ay = U{bL,, : 1 <i < k}andC(b,,,—a1) (1 <i < k).

We first prove thab , Nz # @ for alli. Thisis because, if;,,Nz1 = @ for somei*, then bya,, <
z1, we knowDC (b% ., a,,). Since any twd ,, are not in contact, we ha®®C (b}, a1 — am — b)),
henceDC(b’f,m, a — bfm). This contradicts the connectedness:pf So for anyl < i < k we have
bzi’m Nz # 3.

Froma, < z C a; anda; — a, = U b, we know{a,,bj,, Nz, - ,b’f’m Nz}isa
i=1

partition of z;. Noticing z; has formz, , by Proposition 2.4 and,, < z;, there exists* such that

b}, contains a boundary af, andb} ,, Nz < z foralli # i*. Notice that ifb' ,,, — 21 is nonempty

either, therEC(b] ,,, — 21, b7 ,,, N 21) andEC(b] ,,, — 21, 21) sinced] ,, is connected. This suggests that

b}, Nz < 21 cannot hold. HAencé’iym —z = @ foralli # i*. Thereforeh! ,, C 21, henceb! ,, < z1,

for all + # *. Note that, sincé& > 2, there exists* # i*. Now because; C a, we havebzl*’m < ay,

henceDC(b{’,,,, —a1), this contradicts Item (3) of Definition 4.4. O

By Lemma 4.5 and Lemma 4.4, we have the following propositiginich asserts that/achain will
finally contained in a Type-2 region.
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Proposition 4.3. Suppose(a; : j > 1} is ak-chain inAy, setz) = Ule agi). Then{a,} is eventually
contained ine, that is there exists somjé > 1 such thatz; C 2 holds for any; > j*.

Proof:
By Lemma 4.4, we knowa; } is eventually contained in; for somef € {0,1,--- ,n}, thatisa; C z;

for all bigger enoughj. Now, recall Lemma 4.5 asserts thf;.f) # @ holds for any; > 1 and any
1 <1 < k. This suggests; N zy # @ for all j. As a result, we havg = 0 and{q;} is eventually
contained irngy. O

We now prove the main theorem of this subsection, which tsHeat there is né-chain inA, for
anyl < k # k.

Theorem 4.3. Fork, k > 2, if there is ak-chain in Ay, thenk = k.

Proof:
Suppos€a; : j > 1} is ak-chain in 4y, setzy = Ule ag”. Then by Proposition 4.3 and ;| < a;
(j > 1), there existsn > 1 such that; < z for anyj > m.

By the definition ofk-chain, we have a partition @f, — a,,, say{bllym 1 <1< /?:}, such that (i)
eachbllym is a connected region; (ii) any two are not in contact; ari):ie{iichbll,m is in external contact
with —ay.

We first provek < k by showing

(1) b, N2z # @ foranyl <1 < k; and
(2) foranyi € {1,2,--- ,k} there exists a uniquec {1,2,--- ,/%} such thatzgi) N blLm # @.

~Notice that if (1) and (2) hold, then there is a surjectiomfrfl, 2, --- ,k} onto{1,2,--- ,fc}, hence
k<k.

Suppose;lf,mAﬂ 20 = @ for somel < I* < k. By a;, < 2, We haveDC( ,,,, a,,). Recall any two
regions in{b} ,,,}1_, are not in contact. We ha®C (b}, a1 — b} ), contradicting the connectedness
of a;. This is because; — b}, = an UU{bL,, 1 1 # 1%, 1 <1 < k}. Henceb} ,, Nz # @ holds for
any!. Therefore (1) has been justified. ‘

Next we show (2) holds. Suppose there exist i < kandl <[ # I’ < k such tha’bll,mﬂagl) 20
andb!,, N a\” # @. By Proposition 2.4 we have eithér,, N al’ or B N a\ is an ntpp ofa!” . Take
by, 0 aﬁi) < qu') for example. Notice that i} ,, — a§“ # @, then byDC(b} ,, N agi), —agi)) we have
DC( ,, N al?, b, — a\’). This is impossible sinc#, ,, is a connected region id;. So we have
o, —a? = o, thatist!,, C al’. Bydt,, nal’ < ol we havent ,, < o’ C a;. Thisis also
impossible sincéllym is in contact with—a; .

Above we have showh < k, we next prove: > k. By the definition ofk-chain, we have a partition
of am — a1, s&Y{bL, 41 : 1 <1 <k}, such that (i) each], ., is a connected region; (i) any two

are not in contact; and (iii) eadiﬁnym 41 Isin external contact with-a,,.
We provek > k by showing
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(3) foranyl < i < k, there exists some < | < k such thahgi) N bﬁnymﬂ # <, and
(4) foranyl < < k there exists a unique < i < k such thahgi) N bﬁn’mﬂ #+ 0.

~Notice that if (3) and (4) hold, then there is a surjectiomdrl, 2, - - - ,fc} onto{1,2,--- ,k}, hence
k> k. '

To show (3) is right, we need only to prove théf) N (am — am1) # @ foranyl < ¢ < k.
Suppose not so. Then there exists sdme i < k such tha'n(’) N (am — am+1) = 9, or, equivalently,

(i) N @ = aﬁi) N am+1. NOte thata( 9N Omt1 7 O sincea’ ) # @ by Lemma 4.5. Note also that by

m+1
ag)ﬁam = ag 2 Namt1, WE havea( ), = ag) 1. I ag) am+t1 = 9, thenag) C ama1 K .

Recalla,, < z = agl) U---u ag ), thls gives a contradiction sm<zx§1 & 2z for anyi. On the other
hand, |fa§) — Gt £ 9, thenEC(ag) N am, a§> — Q) andEC(ag) N amH,ag) — Umt1) smceag)
is connected in8,,. This further shows th&t( ) Ay = ag) — amy1 € Ag is in external contact with

botha,, anda,,+1 in B, therefore inAy. ThIS contradiCtSi,, 11 < apy,.
We next show (4) is also right. For any< | < k, sinceb! m.m+1 1S connected iM, andb!

ma§ Nu---u

m,m-+

-

m,m-+1

< 20 =P U+ Ual®, we knowd!, i = (b . Na'™). Recall any

m,m+

two regions |n{a1 }k , are not in contact. There cannot exist two different 7, j < & such that both
al) N, il anda{’) N b, m11 @re nonempty.
In summary, we knowk > k. Combining with the early result that< k, we havek = k. O

5. Minimal RCC model B

So far we have constructed a sequence of countable RCC médells, - -- , A, --- such that
e EachA; is a sub-model of3,;
e A =B, andA is a sub-model oiB,;
e Fork,k > 2, A contains d-chain if and only ifk = k.

Since the notion ok-chain is RCC invariantd;, As, - -- , A, --- are pairwise non-isomorphic.

Based on thesd, we construct in this section continuum many non-isomarftCC models. The
strategy is, given any binary-string$ = wjwows --- over{0,1}, constructing a sub-modelg, of
B.,. Roughly speakingBg is obtained by replacing, for ea¢hwith w; = 1, the local structure oB,, at
x1i-19 by A;. Fork > 1, we can show that the sub-modBk contains &-chain if and only ifw, = 1.
This suggests that no two such models are isomorphic. Sicéself is a minimal RCC model, each
Bg is also a minimal RCC model.

We now examine in detail the construction procedure.

To begin with, we consider the local structure®®f, atz,, wheres is a binary string. Writé8, =
{a € B, : a C z5}. ThenB, is a subalgebra of the powerset algepta Note that there is a bijection
ns : B — By, which is defined as follows

(Va € B;) ns(a) = U{xsf € B, : 59 C al. (5)



L. Xia and S. Li/On minimal models of the Region Connectiolc@as 17

Le
O.
580/ \xl
C T °
B, ! xu/ \:1311
O,

L___J____0

| |
| |
B, T3 \$111
e e 2
| |
B | xlll)/\r:un
L---d-—--o9o o)
| | N
| | N
|%34| 56111)// N
L — T

s; = 11710 P )

Bs={aeDB,: :aCaxs} RN

Figure 5. Local structures &, atz;:-1

It is straightforward to show that, is a Boolean isomorphism. Note that!, the inverse mapping
of n, mapse, to z,.

Sets; = 1°-10 (: > 1). We are interested in local structures at these (See Figure 5.) For any
w-string $, we now defineBg to be the subset dB,, obtained by replacing (whem; = 1) each local
structureB, by n;l(Az')- Recall that4; is a subalgebra dB,,. We known;il(Ai) is a subalgebra of
B, .

Definition 5.1. Supposeés = wywows - -- (w; € {0, 1}) is a binaryw-string. Define a subsé&sg of B,
as follows:
(Va € B,) [a € Bg < (Vi)[w; =1— aNzyi-1y € n;l(A,-)]] (6)

Supposen is a sub-region ofcs;,. By the above definition, we have (i) it; = 1, thena € By iff
a € 1, (A;); and (i) if w; = 0, thena is always inBy.
Lemma 5.1. For any binaryw-string$, B is a subalgebra ¢B,,,.

Proof:
Recall that eachy,, is a Boolean isomorphism. We have in particulgr(@) = &, n,,(z1i-19) = ..
This showsz andz, are elements ifBg. Moreover, for any twa, b € B, since

Ns;(—aNayi-1g) = ns,(=(aN@yi-19) N T1i-10)
= s, (aNzyi1g)
Ns;((@Ub) Nxyimrg) = ns,((aNayi19) U (0N 21i-19))

= N5 (aNzyi-19) Uns, (bNz1i-10)

we know—a,a U b € Bg. ThereforeBg is a subalgebra dB,,. O
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For any regioru in Bg, there exists some > 1 such thata Nz, # @. Now since both3;, and
ns; (Bs;) are RCC models, there is a regibre Bg such thath < a N x5, C a. So we KnowBg is a
sub-RCC model of3,,.

What remains to prove is to show no two such models are isdmorgupposé = lwows - -- and
$ = lwhywsy---. If § # §, then there exists somie> 1 such thatw;, # w). Note that if we can prove
that there is &-chain inBg iff w, = 1. Then only one of8g4 andBg contains a-chain. Therefore
they are non-isomorphic.

We now study in detail properties éfchain in a sub-modeBg. The following lemmas show that if
B¢ contains &-chain, say{a; }i>1, thenw, = 1 and{a;};>1 is finally contained inc,x-1,. Recall the
construction of8g. We know, ifw; = 1, then the local structure &g atz,x-1 is isomorphic toAy.
S0 contains &-chain ifwy, = 1.

For any regioru € 9B, recall we define(>®) = (J{zy : z;: C a,l > 0}, and saya contains a
boundary of the universe () £ . The following lemma shows that an ntpp-chain®i, finally
contains no boundary of the universe.

Lemma 5.2. Supposga, };>1 is an ntpp-chain if3,,. Then there exists: > 1 such tha'ugoo) = g for
anyj > m.

Proof:

We prove this by reduction to absurdity. Supposaﬁ) are nonempty. We now prove by induction that
a1 contains a boundary af, for eachs. This suggests; is in contact with each, which contradicts
the assumption that; # z..

To begin with, notice that contains a boundary af,; iff a contains a boundary af,. By our
assumption, we know ah; contains a boundary of;. Note that ifa; N 7o = @ for some; >
1, thenEC(xz¢,a;) and EC(zg,aj4+1) hold since both:; andaj;; contain a boundary af;. This
contradicts the assumption that,; < a;. Soa; Nzg # @ for anyj. Furthermore, ifa,, contains
no boundary ofcy, thenzy — a,, # @. By the connectedness of we haveEC(a,, N 2o, 2o — a,),
henceEC(ay,, z¢ — a,,). Becauseau,,+1 < a,, we haveDC(a,+1, 2o — an,). This is impossible,
sinceC(zg, z1) anda,,; contains a boundary af,, 29 — a,, contains a boundary afy. As a result
we know alla; contains a boundary ofy.

In general, assuming adl; contains a boundary of,, we showa; contains a boundary af.
Firstly all a; Nz are nonempty. Recadl; also contains a boundary of;. This follows from the same
justification as fora; Nz # @. Now if a,, contains no boundary afy, thenzyy — a,, # 9, hence
EC(am,zs0 — am). BY a1 < ay, We haveDC(ay, 11, zs0 — a, ). This contradicts the assumption
thata,,+1 contains a boundary af;; and thatC(z1,zs). Therefore allz; contains a boundary of
Ts0- O

Lemma 5.3. Given $ a binaryw-string, suppose is a connected region g anda N x4 = & for
someg > 1. Thena C z1pg for some) < p < gq.

Proof:

Note that any two regions ifu i}, are not in contact. Hence any two regions{inn z iy}~ , are
not in contact. Recall that = |J~ ,a N 24 is connected. Only one of these regions, &y z1»o, is
nonempty. Hence C xz1»¢ holds. O
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If the ntpp-chain{a;};>: is connected i3, then the following lemma shows that the chain will
be finally contained imx»o for somep > 0. Note that by the definition dBg, all ;- are (connected)
regions inBg.

Lemma 5.4. Given a binaryw-string $, suppose€{a; } ;>1 is a connected ntpp-chain fig. Then there
existm > 1 andp > 0 such thats; C z»¢ for all j > m.

Proof:

By Lemma 5.2, we know there exists that contains no boundary of;, so does each;: for j > 7.
Without loss of generality, we assume all contains no boundary af;. Supposeg; is the smallest
number such thai; = (J{zs C a1 : |s| = ¢}, where|s| denotes the length of Sincea; contains
no boundary ofz,, we haves; Nz1¢ = @, thatisa; C —z14 = U0§i<q z1ig- By Lemma 5.3 and the
connectedness af, we havea;, hence alk;, are included incy»o for some0 < p < gq. O

Moreover, if{a;};>1 is ak-chain inBg, thenw; must be 1, and the chain is finally contained in
T1k—1(-

Lemma 5.5. Given a binaryw-string$ = wyw, - - -, SUpPOSEa; }j>1 is ak-chain ¢ > 2) in Bg. Then
wy, = 1 and there exists some > 1 such thata; C zx-1¢ forall 5 > m.

Proof:

By Lemma 5.4 we know there exist some > 1 and some > 0 such thata; C z1»¢ for all j > m.

If wy,41 = 0, thenb € Bg for anyb C z159. Moreover, for anyp C z1», b is connected inBg only
if b is connected inB,,. This suggestga;} is also ak-chain in®B,,. Recall®B,, = A;, we know by
Theorem 4.3 thak = 1, a contradiction. On the other hand, suppegsg; = 1. For anyb € Bg
with b C z1», We haven,,,, (b) € By, 1, wheren,,., : Birg — A,y i the isomorphism defined in
Equation 5. It is also clear that#f € Bg, b C z1» is connected inBg, thens,, ., (b) is connected in
Apy1. This shows{ns, ., (a;)} is ak-chain inA,, ;. By Theorem 4.3 again we know+ 1 = k and

a; C zyr-1q forall j > m. O
Now we can prove that for any > 2, the RCC model8 contains &-chain if and only ifw;, = 1.
Theorem 5.1. Given a binaryw-string$, suppose: > 2. ThenBg has ak-chain if and only ifwy = 1.

Proof:

By Lemma 5.5, we know i8¢ has ak-chain, thenu, = 1. On the other hand, supposg = 1, we can
find ak-chain. Recall by Theorem 4.2 there ig-&hain, say{a;} in A. Itis straightforward to check
{n;,}(a;)} is also ak-chain inBg. O

By this theorem, we obtain our main result in this section:

Theorem 5.2. Given twow-strings$ and$’ started with 1, if§ # $’, then®Bg is not isomorphic td8g .

Since there are continuum manystrings started with 1, we have constructed continuum rmreomy
isomorphic RCC models. Now since ea#y is a sub-model of5,,, which is a minimal model by Li
and Ying [5], we know these models are also minimal. Hencesthee continuum many non-isomorphic
minimal RCC models.
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6. Conclusion

This paper studied minimal models of the RCC theory. We firsivgd that the exotic RCC model
described by Gotts in [3] is isomorphic to the minimal RCC rldd,, given in [5]. Then we constructed
continuum many sub-RCC models®Bf,. These sub-models are also minimal models. Based on the key
notion of k-chain, we showed that no two such models are isomorphic.

Recall that there is up to isomorphism only one atomless tatia Boolean algebra. There are at
most continuum many non-isomorphic countable RCC modetsv dince each minimal model is count-
able, our result then suggests that there are exactly eamtirmany different countable RCC models as
well as minimal RCC models.
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