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Abstract

To design social choice mechanisms with desirable utility
properties, normative properties, and low sample complex-
ity, we propose a new randomized mechanism called 2-Agree.
This mechanism asks random voters for their top alternatives
until at least two voters agree, at which point it selects that
alternative as the winner. We prove that, despite its simplicity
and low sample complexity, 2-Agree achieves almost optimal
distortion on a metric space when the number of alternatives
is not large, and satisfies anonymity, neutrality, ex-post Pareto
efficiency, very strong SD-participation, and is approximately
truthful. We further show that 2-Agree works well for larger
number of alternatives with decisive agents.

Introduction
In social choice, the goal is to aggregate the preferences of
many agents with conflicting interests via a social choice
mechanism, which returns a single winning alternative based
on the preferences of the agents. There is no single best
mechanism; researchers usually focus either on normative
criteria, especially fairness, or on utilitarian criteria, in
which the goal is to design mechanisms which optimize
some objective social utility function.

Over recent years, we have seen a shift of paradigm in
computational social choice (Brandt et al. 2016) from fo-
cusing on high-stakes applications such as political elec-
tions, towards low-stakes, everyday-life, applications such
as polling, recommender systems (Dwork et al. 2001), learn-
ing to rank (Liu 2011), and crowdsourcing (Mao, Procaccia,
and Chen 2013).

In many of these new applications, the cost of eliciting
agents’ preferences is high compared to the stake of the sit-
uation. For example, when a group of friends vote to de-
cide the restaurant for dinner, it is desirable to elicit as little
information as possible to make a quick (and correct) de-
cision. Moreover, mechanisms that elicit little preferences
also preserve more privacy. Therefore, in such situations,
low sample complexity becomes another desideratum for so-
cial choice mechanisms.

The fundamental question we are facing is thus: Does
there exist a social choice mechanism with desirable utilitar-
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ian properties, normative properties, and low sample com-
plexity?

While the normative aspects of social choice mechanisms
have been well-studied, the utilitarian aspects have received
less attention. We answer the main question in the frame-
work of implicit utilitarian voting in a metric space, in
which agents are assumed to have private, possibly latent
utilities or costs for each alternative that are represented
by agents’ distances to alternatives in an unknown metric
space (Anshelevich, Bhardwaj, and Postl 2015). Instead of
submitting numerical utilities, however, these agents specify
only ordinal preferences to the social choice mechanism, for
example submitting only their top-ranked alternative.

In implicit utilitarian voting, a mechanism is often eval-
uated by its distortion (Procaccia and Rosenschein 2006).
Distortion measures the quality (e.g., social welfare or so-
cial cost) of an outcome produced by a social choice mech-
anism which only receives ordinal preferences as input, as
compared to the quality of an outcome produced by an om-
niscient mechanism which knows the true values of the exact
numerical utilities of all agents for all alternatives.

Previous work provided distortion bounds for the met-
ric setting using well-known deterministic mechanisms (An-
shelevich, Bhardwaj, and Postl 2015), and randomized
mechanisms (Anshelevich and Postl 2016; Feldman, Fiat,
and Golomb 2016). In the latter works, it is shown that
random dictatorship, which has extremely low sample com-
plexity, always achieves distortion of at most 3, and that no
voting mechanism can always achieve distortion better than
7/3. This leaves a substantial gap for improvement.

Our Contributions
Our main conceptual contribution is a positive answer to
the main question in the Introduction by proposing and an-
alyzing an extremely simple mechanism which we call 2-
Agree. This mechanism asks random voters for their top
alternatives until at least two voters agree, at which point it
selects that alternative as the winner. Despite its simplic-
ity, and despite its low sample complexity — it only needs
to ask at most m + 1 voters for their top-ranked alterna-
tives, where m is the number of alternatives — 2-Agree has
smaller worst-case distortion for small m than any previ-
ously analyzed mechanism. This includes all deterministic
mechanisms, which have a worst-case distortion of at least



3 (Anshelevich, Bhardwaj, and Postl 2015). Thus, it out-
performs even mechanisms with much larger sample com-
plexity, which collect the preferences of every single voter.
Moreover, 2-Agree satisfies many desirable normative prop-
erties including anonymity, neutrality, ex-post Pareto effi-
ciency, and more surprisingly, very strong SD-participation
and approximate strategy-proofness.

We begin by improving the previous lower bound on dis-
tortion from 7/3 to 3 − 2

m , where m is the number of alter-
natives. This bound applies to all mechanisms which elicit
top preferences from the voters. This means that when m
is large, then random dictatorship, which only requires us
to elicit the top-ranked alternative of a single vote, achieves
almost optimal distortion. Therefore, the gap between lower
bound and upper bound on distortion becomes most inter-
esting for small m.

Our second major technical contribution lies in providing
improved upper bounds on distortion, especially for small
m, via our new rule 2-Agree. Figure 1 summarizes some of
our results on distortion. It can be seen from the figure that
the upper bound is improved for 3 ≤ m ≤ 6 by 2-Agree, and
our new 3− 2

m lower bound is almost tight for m ∈ {3, 4}.
Consequently, the mechanism with the best distortion so far
is the following composite mechanism: when m = 2, it is
the proportional to squares rule, when 3 ≤ m ≤ 6, it is
2-Agree, and when m ≥ 7, it is random dictatorship.
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Figure 1: A comparison between the upper bounds for dis-
tortion for proportional to squares (Anshelevich and Postl
2016), random dictatorship, and 2-Agree, as well as the
lower bound for distortion for any mechanisms which elicit
top preferences.

We further show the usefulness of 2-Agree by specifically
considering decisive agents (Anshelevich and Postl 2016).
Such agents decisively prefer their top alternative compared
to their second-best alternative, and capture settings where,
for example, every agent is also an alternative. We show
that when agents are decisive, 2-Agree behaves better than
random dictatorship even for largerm; the more decisive the

agents are, the more useful 2-Agree becomes for minimizing
distortion.

Our third main technical contribution is the study of nor-
mative properties of 2-Agree. We show that in addition to
anonymity, neutrality, and ex-post Pareto efficiency, 2-Agree
also satisfies very strong SD-participation, and is approxi-
mately truthful.

Related Work and Discussions
To the best of our knowledge, it is the first time that utilitar-
ian properties (distortion), normative properties, and sample
complexity are considered together to guide the design and
analysis of social choice mechanisms. The main message of
this paper is quite positive and encouraging: it is possible to
design mechanisms with desirable utilitarian and normative
properties and low sample complexity. We emphasize that
the unified consideration of the three types of criteria best
fits applications where preference elicitation is costly com-
pared to the stake of the application.

The utilitarian approach has received a lot of attention
in the social choice literature (Harsanyi 1976; Caragiannis
and Procaccia 2011; Filos-Ratsikas, Frederiksen, and Zhang
2014; Caragiannis et al. 2016; Anshelevich and Sekar 2016),
see especially (Boutilier et al. 2015) for a thorough dis-
cussion of this approach, its strengths, and its weaknesses.
The concept of distortion was introduced in (Procaccia and
Rosenschein 2006), and further analyzed in much of the
work mentioned above.

While the work mentioned above considers different set-
tings, (Anshelevich, Bhardwaj, and Postl 2015; Anshele-
vich and Postl 2016; Feldman, Fiat, and Golomb 2016)
study distortion specifically for the case of spatial or met-
ric voting preferences. Spatial preferences are a natu-
ral and common assumption (Enelow and Hinich 1984;
Merrill and Grofman 1999), and have a natural interpreta-
tion of agents liking candidates/alternatives which are most
similar to them, such as in facility location literature (Cam-
pos Rodrı́guez and Moreno Pérez 2008; Escoffier et al. 2011;
Feldman, Fiat, and Golomb 2016). There are many notions
of spatial preferences that are prevalent in social choice,
such as 1-Euclidean preferences (Elkind and Faliszewski
2014; Procaccia and Tennenholtz 2009), single-peaked pref-
erences (Sui, Francois-Nienaber, and Boutilier 2013), and
single-crossing (Gans and Smart 1996).

Randomized social choice mechanisms have a long his-
tory, for example, they have been used in ancient Greece and
the Venitian Republic between 13th and 18th century (Stone
2011; Walsh and Xia 2012). Perhaps the most popular ran-
domized social choice mechanisms are the random dictator-
ships, which are the only mechanisms that satisfy strategy-
proofness and ex-post Pareto efficiency, as attributed to
Hugo Sonnenschein in (Gibbard 1977). Other normative and
computational properties of randomized social choice mech-
anisms have been studied recently in computer science (Pro-
caccia 2010; Aziz 2013; Aziz, Brandl, and Brandt 2014;
Brandl, Brandt, and Hofbauer 2015). In particular, very
strong SD-participation, which 2-Agree satisfies, was intro-
duced recently by Brandl, Brandt, and Hofbauer (2015).



Conitzer and Sandholm (2005) showed that many
commonly-used deterministic voting rules require a mini-
mum O(mn) bits of information to compute, where m is
the number of alternatives and n is the number of agents.
In sharp contrast, 2-Agree only requires Θ(m logm) bits,
which outperforms existing deterministic voting rules when
n is more than just a few. See Service and Adams (2012),
and more generally Boutilier and Rosenschein (2015), for
other work on the communication complexity of voting.

Finally, some of the previous work mentioned above fo-
cused specifically on truthful tops-only mechanisms, for ex-
ample (Feldman, Fiat, and Golomb 2016). They showed that
no truthful mechanism can have worst-case distortion better
than 3. In our current work, however, we show that by al-
lowing mechanisms which are almost truthful, it is possible
to form mechanisms which are simple, result in much bet-
ter distortion, and require only a small number of samples
of voter preferences. Our notion of almost truthfulness is
different from that in (Birrell and Pass 2011). Birrell and
Pass (2011) consider arbitrary utility functions that are con-
sistent with agents’ ordinal preferences, and their notion of
approximation is additive. We use costs represented as dis-
tances in an arbitrary metric space rather than arbitrary util-
ity functions. Furthermore, our notion of approximation is
multiplicative.

Preliminaries
Let N be a set of n agents, let M be a set of m alternatives,
and let σ be the preference profile of the agents over the al-
ternatives. A social choice mechanism takes the preferences
σ, and outputs a “winning” alternative, possibly using ran-
domization. We will refer to mechanisms which only take
the top choices of the voters as input as tops-only mecha-
nisms and to mechanisms which take entire preference or-
derings of each voter as ranking mechanisms.

Some tops-only mechanisms which we will refer to in this
paper are plurality, random dictatorship, and proportional to
squares. Plurality deterministically selects the alternative
with the most total votes as the winner. Random dictator-
ship selects an agent uniformly at random, and selects its
top choice as the winner. Proportional to squares selects an
alternative as the winner with probability proportional to the
square of the fraction of votes it receives.

Since we are operating under the utilitarian view, we as-
sume that the preferences of agents are induced by numer-
ical metric costs associated with each alternative, such that
an agent’s highest ranked alternative has the lowest cost for
them and so on. In other words, the cost for agent i of alter-
native A winning is d(i, A), with non-negative costs d obey-
ing the triangle inequality. Note that the assumption that
agent costs obey the triangle inequality does not restrict the
set of possible preference profiles (Anshelevich, Bhardwaj,
and Postl 2015). A metric is consistent with a preference
profile if for all agents, whenever d(i, A) < d(i, B), then
agent i prefers alternative A to B. Let ρ(d) be the set of
preference profiles consistent with d and ρ−1(σ) be the set
of metrics where σ ∈ ρ(d).

The individual costs for the agents can be aggregated into
the social cost objective, which measures the quality of an

alternative: SC(A, d) =
∑
i∈N d(i, A); we call this SC(A)

when the metric d is implied. The cost of the outcome of a
randomized social choice function f is the expected social
cost: SC(f(σ), d) =

∑
A∈M p(A)SC(A, d), where p(A) is

the probability of f selecting alternative A.
The optimal alternative is the one with the smallest social

cost, and an ideal omniscient mechanism would select the
optimal alternative as the winner. However, when the values
of the agents’ numerical costs are unknown, guaranteeing
that the optimal alternative will win is impossible. It is pos-
sible to guarantee that the expected cost of the outcome of a
social choice function is within a small factor of the optimal
cost, however. We do this by bounding the distortion of a so-
cial choice function: the worst-case ratio between the social
cost of the outcome of a social choice function f(σ), and
the cost of the optimal alternative. Formally, the distortion
is defined as follows:

distΣ(f, σ) = sup
d∈ρ−1(σ)

SC(f(σ), d)

minX∈MSC(X, d)
.

The worst-case is taken over all metrics dwhich may have
induced σ, since the social choice function does not and can-
not know which of these metrics is the true one. Thus when
distortion is small, then mechanism f is guaranteed to pro-
duce an outcome which is close to optimum, even though f
does not know the true numerical costs d.

A (randomized) social choice mechanism satisfies
anonymity, if the outcome of voting is insensitive to per-
mutations over agents’ votes; it satisfies neutrality, if the
outcome of voting is insensitive to permutations over alter-
natives; it satisfies ex-post Pareto efficiency, if for any al-
ternative A with positive winning probability, there is no
other alternative B that is preferred by all agents; it satis-
fies strategy-proofness, if no agent has incentive to lie about
her preferences; it satisfies very strong SD-participation if
for every agent that is not guaranteed their top-ranked alter-
native, voting strictly dominates not voting (Brandl, Brandt,
and Hofbauer 2015).

Randomized Mechanisms with Small
Distortion

We begin by proving lower bounds of 3 − 2
m on the dis-

tortion of any tops-only mechanism for instances with m
candidates.

Theorem 1. (Lower Bound) The worst-case distortion for
any randomized mechanism that takes only the top k prefer-
ences from agents as input, is at least 3−2/

⌊
m
k

⌋
for k < m

2 ,
and at least 2 for k ≥ m

2 .

Proof. The full proof appears in the full version; here we
give a sketch of the example where the distortion must be
at least 3 − 2/

⌊
m
k

⌋
for any mechanism which utilizes the

top k preferences, for k < m
2 . In this example, form

⌊
m
k

⌋
clusters of alternatives, with each cluster containing k alter-
natives; number these clusters from 1 to

⌊
m
k

⌋
. Call the rest

of the m − k
⌊
m
k

⌋
alternatives unclustered. Now consider

the following preference profile. The voters are divided into



⌊
m
k

⌋
clusters each containing an equal number of voters. All

the voters in cluster j have the alternatives in cluster j as
their top k preferences. This is the only information that the
mechanism knows, since it only receives the top k prefer-
ences from each voter.

Any mechanism must mix over the clustered alternatives
only, otherwise it will have unbounded distortion. Let X be
the cluster with the smallest total probability of being se-
lected by some mechanism, i.e., p(X) ≤ 1/

⌊
m
k

⌋
. Now con-

sider the following metric costs which are consistent with
the voter preferences. Place the voters whose first k pref-
erences are for X directly “on top” of X , so their distance
to X is 0, and their distances to all other alternatives are 2.
Place voters in cluster j “half-way” between X and cluster
j, so their distances to j are 1− ε, distances to X are 1 + ε,
and distances to all other alternatives are 3 + ε. It is clear
that the triangle inequality holds for these distances. These
costs result in the distortion bound above when ε→ 0.

For k ≥ m
2 , the worst case occurs when m = 2. Here

it is easy to see (e.g., see (Anshelevich and Postl 2016;
Feldman, Fiat, and Golomb 2016)) that no mechanism can
have distortion better than 2.

Due to this lower bound, we know that for large m, all
tops-only mechanisms will necessarily not be able to per-
form much better than random dictatorship, which has dis-
tortion of 3. In this paper, however, we are most concerned
with reasonable values of m, which are often quite small,
and mechanisms that have low sample complexity. To this
end, we propose a mechanism, 2-Agree, which only requires
a small number of samples, and (as we prove below) is guar-
anteed to have distortion close to the optimum possible.

Definition 2. The mechanism 2-Agree takes samples of the
agents’ top choices uniformly at random, with replacement,
until two of them are for the same alternative. The mecha-
nism then chooses this alternative.

It is clear that this mechanism leads to a maximum of
m + 1 samples, which means that the sample complexity
is O(m logm).

To prove distortion bounds for 2-Agree and other mech-
anisms, we first need the following helpful lemma, which
generalizes Lemma 4 from (Anshelevich and Postl 2016).
For a fixed social choice mechanism f , define qf (a) to be
the maximum possible probability of an alternative winning
in this mechanism if exactly a fraction of all the voters con-
sider this alternative their top choice. For example, for most
reasonable mechanisms, we would expect that qf (1) = 1,
and that qf is increasing in a.

Lemma 3. The distortion of any randomized mechanism f
is less than or equal to 1 + 2 maxa(qf (a) 1−a

a ).

This bound can now be used to obtain an upper bound on
the distortion for specific mechanisms, including 2-Agree.
Note that there is no nice closed-form solution for the dis-
tortion of 2-Agree. Because of this we prove bounds for
specific values of m in which we are interested.

Theorem 4. The distortion for the 2-Agree mechanism has
upper bounds as specified in Table 1. More generally, the

m Lower Bound 2-Agree Upper Bound
2 2 2.05631
3 2.33333 2.33491
4 2.5 2.55120
5 2.6 2.73448
6 2.66666 2.89642
7 2.71428 3.04310
8 2.75 3.17817

Table 1: The lower bound for distortion across all tops-only
(i.e., those using only the top choices of agents) and the up-
per bound for the distortion for the 2-Agree mechanism for
various numbers of alternatives.

distortion of 2-Agree is at most

1 + 2 max
a

[a(1− a)

m+1∑
l=2

(l − 1)!

(
m− 1

l − 2

)(
1− a
m− 1

)l−2

].

Proof. Let g be the 2-Agree mechanism. In order to apply
Lemma 3 to find the upper bound, we must first compute
qg(a): the maximum probability of an alternative, A, with a
fraction of the votes, winning with the 2-Agree mechanism.

Consider what the 2-Agree mechanism is doing. At each
step it chooses a random voter and accounts for its vote. If
it is the same as a previously seen vote, then the winner is
chosen; otherwise the mechanism chooses a random voter
again. We can think of each run of 2-Agree as generating
a string of alternatives corresponding to the votes which it
obtained, such that each entry in this string is distinct, except
for the last entry which must be the same as some previous
entry, as seeing a candidate which it has already seen before
causes the mechanism to terminate. Let l denote the number
of samples taken by 2-Agree before a winner is selected, i.e.,
it is the length of this generated string.

Let pl(A) be the probability that A wins with a string of
samples of length l. For example, p2(A) is the probability
thatAwins after only 2 samples, i.e., that the first two voters
asked by the mechanism both vote forA. Then the probabil-
ity that A wins overall, p(A), is the sum of the probabilities
of A winning for each particular length l. We now write an
expression for pl(A).

Each pl(A) contains a factor of a2, because A must ap-
pear twice in the string of samples in order to win, as well
as a factor of (l − 1)! for the possible permutations of each
string: the last entry of the string must be A for it to win.
The last factor of pl(A) is the probability of choosing l − 2
alternatives with no repeats and excluding A. This part is
clearly symmetric about the other alternatives and is max-
imized when they all share an equal fraction of the other
votes, (1 − a)/(m − 1). Therefore, qg(a) is at most the
following:

m+1∑
l=2

a2(l − 1)!

(
m− 1

l − 2

)(
1− a
m− 1

)l−2

.

This formula can now be used in conjunction with Lemma
3. The bound for distortion is now simple to compute, at



least for small m, and the results for such computations are
shown in Table 1 and Figure 1.

Distortion for α-decisive settings
In this section we show that our approach and mechanisms
become especially useful when the agents in question are
decisive. α-decisive settings were first defined in (Anshele-
vich and Postl 2016): these are settings in which each agent
decisively prefers their top choice as compared to their sec-
ond choice. Formally, these are settings in which for every
agent i, we have that d(i, A) ≤ α · d(i, B), where A is i’s
top choice, and B is any other alternative. Thus, α = 1 cor-
responds to the general metric case that we have been con-
cerned with so far, and as α approaches zero, the agents be-
come more decisive about their preferences, and less indif-
ferent. This is a reasonable assumption in many settings, as
many voters would have at least one candidate about whom
they are passionate; if a cluster of voters is far away from
any candidates, one would expect a new candidate to arise
within that cluster.

It is also worth noting that the 0-decisive case is of spe-
cial interest. This corresponds to the case that every voter
is located on top of some candidate, i.e., that the cost of
each voter for their top choice is 0. In particular, this cap-
tures the case when the set of voters and candidates are the
same, i.e., when the voters are trying to choose a winner
among themselves. Such situations can arise (see (Anshele-
vich and Postl 2016)) when a committee elects a committee
chair from among its members (assuming everyone would
prefer to be the chair), or when the writers of grant propos-
als also review and rank the proposals of others in the same
batch (as occurs in some divisions of NSF).
Theorem 5. The worst-case distortion for any randomized
mechanism for α-decisive voters that takes the top k prefer-
ences from agents as input, is at least 2 + α − 2/

⌊
m
k

⌋
for

k < m
2 , and at least 1 + α for k ≥ m

2 .
Theorem 6. The worst-case distortion for the 2-Agree
mechanism with α-decisive voters has upper bounds as
shown in Figure 2. More generally, the distortion of 2-Agree
is at most

1 + (1 + α) max
a

[(
a− 2

1 + α
a2

)m+1∑
l=2

q(l, a)

]
,

where q(l, a) = (l − 1)!
(
m−1
l−2

) (
1−a
m−1

)l−2

.

As can be expected of nearly any reasonable mechanism,
having more decisive agents leads to lower distortion for
the 2-Agree mechanism. However, this effect is stronger
for higher numbers of alternatives for the 2-Agree mecha-
nism, a feature which is not necessarily true for most mech-
anisms. Figure 2 illustrates how varying the decisiveness
affects the upper bound for distortion from Theorem 6 for
different numbers of alternatives. In contrast, the distortion
for random dictatorship is linear with α and does not change
when m is increased (Anshelevich and Postl 2016).

The 2-Agree mechanism’s better response to high deci-
siveness with a higher number of alternatives means it re-
mains a better option than random dictatorship for a larger
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Figure 2: The effect that varying the decisiveness in terms
of α has on the upper bound for distortion for 2-Agree and
random dictatorship. The number of alternatives for 2-Agree
is labeled on the right-hand side.

range of numbers of alternatives in decisive scenarios. In
fact, as can be seen in Figure 3, when α = 0 and there
are at most 11 alternatives, then the 2-Agree mechanism has
better distortion than random dictatorship. This is up from
6 alternatives when α = 1, meaning that for decisive set-
tings, it makes sense to use 2-Agree for more situations.
Note that for α = 0 the performance of the “proportional
to squares” mechanism also improves: it has better worst-
case distortion than 2-Agree for m ≤ 4. Thus, if our goal
were solely to have small worst-case distortion when α = 0,
we would use proportional to squares for m ≤ 4, 2-Agree
for 5 ≤ m ≤ 11, and random dictatorship otherwise. Note,
however, that proportional to squares has the same draw-
backs as before, namely requiring input from all agents in-
stead of from a small sample. Thus, when the agents are
decisive in addition to having a significant cost for gathering
an agent’s vote, the 2-Agree mechanism becomes an even
stronger option as compared to other mechanisms.

Normative Properties
It is not hard to verify that the 2-Agree mechanism sat-
isfies anonymity, neutrality, ex-post Pareto efficiency. To
show that the 2-Agree mechanism satisfies very strong SD-
participation, we first show the following lemma.

Lemma 7. When using 2-Agree, if an agent switches from
not voting at all to voting for alternativeX , then the winning
probability of each other alternative is not increased.

Proof. To prove this, we use similar ideas as in the proof of
Theorem 4. We consider the set of winning strings of sam-
ples for a particular alternative, and how the probabilities of
obtaining these strings change if an extra agent decides to
cast their vote. See full version for details.
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Figure 3: A comparison between the upper bounds for dis-
tortion for α = 0 for proportional to squares, random dicta-
torship, and 2-Agree, as well as the lower bound for distor-
tion for all tops-only mechanisms.

With this Lemma, it is not difficult to show that the 2-
Agree mechanism satisfies very strong SD-participation.

Theorem 8. For each agent, voting for their top-ranked al-
ternative strictly dominates not voting at all, as long as their
top-ranked alternative is not guaranteed to win. Therefore
this mechanism satisfies very strong SD-participation.

Unfortunately, the 2-Agree mechanism is not truthful. In
fact, as shown in (Feldman, Fiat, and Golomb 2016), no
truthful mechanism can ever have distortion better than 3
for m ≥ 3. Thus if we restrict ourselves only to absolutely
truthful mechanisms, we must settle for random dictator-
ship: nothing else can perform better.

What if we really want better distortion, however? The
better worst-case distortion of the 2-Agree mechanism for
small m does come at a cost if agents are willing to act
strategically. However, there is a maximum that an agent
can gain by acting strategically in any given scenario. This
means that if agents have some other small incentive to vote
honestly, they may never vote strategically. Our mechanism
produces distortion which is close to 2 for small m, and yet
is almost truthful even for n = 50 (see Table 2).

Theorem 9. For the 2-Agree mechanism, the ratio of the ex-
pected cost for voting truthfully as opposed to strategically
for any agent is bounded above by the results specified in
Table 2.

Proof. We once again carefully consider the sets of win-
ning strings of samples for any alternative, and how their
probabilities change when a single voter changes their vote
from A to B. By reasoning similar to the proof of Lemma
7, all the probabilities besides p(B) must go down when i
switches from voting truthfully to strategically. Due to sim-
ple algebra, the maximum ratio of the cost of voting honestly
compared to strategically is at most the maximum factor in

Worst-Case Truthfulness
m (small n) (n ≥ 50)
3 1.3 1.0390
4 1.2603 1.0401
5 1.2232 1.0423
6 1.2212 1.0444
7 1.1971 1.0465
8 1.1849 1.0484

Table 2: The worst-case truthfulness (individual cost when
voting truthfully divided by cost when voting strategically)
for small numbers of alternatives.

the change in probability of any of the non-preferred alterna-
tives of i. Let p(XaYb) be the probability ofX winning with
one sample that is either in favor of A or B (but not both),
while p(Xa∧b) is the probability with a sample for each and
p(X¬a,¬b) the probability for neither. Therefore,

p(X)

p′(X)
=

p(X¬a,¬b) + p(XaYb) + p(Xa∧b)

p′(X¬a,¬b) + p′(XaYb) + p′(Xa∧b)
,

where p′ are the probabilities after agent i switches their
vote. Since the total number of combined votes for A
and B remains the same, p(X¬a,¬b) = p′(X¬a,¬b) and
p(XaYb) = p′(XaYb). Therefore, the largest gain due to
strategic voting occurs when the change in p(Xa∧b) is the
greatest, which is when i is the only voter for A, which re-
sults in p′(Xa∧b) = 0. It follows that p(X)

p′(X) ≤ 1 + p(Xa∧b)
p′(X) .

Using an approach similar to that of Theorem 4, we can
replace these general probabilities with the probability for-
mulas for the worst case, which can be maximized over x,
where 1 ≤ x ≤ (n− 2)/(m− 2), so p(X)

p′(X) is at most 1 plus(
1− (m−2)x+1

n

)(∑m
k=3 k!

(
m−3
k−3

) (
x
n

)k−3
)

n
∑m−2
k=1

((
1− (m−2)x+1

n

)
(k + 1)! + k!

) (
m−3
k−1

) (
x
n

)k−1
.

Some relevant numerical results for when this is maximized
with respect to x are available in Table 2.

Conclusion
We presented and analyzed a tops-only mechanism which
performs better than all known social choice mechanisms
for small numbers of alternatives. Moreover, this mecha-
nism requires only the top preferences of a small number of
agents as input, achieves distortion which is provably close
to optimal based on our lower bounds, and satisfies certain
nice normative properties. We also show that when agents
are decisive, this mechanism further outperforms others in
terms of worst-case distortion, and thus becomes more use-
ful in those settings. The main conclusion of our work is that
it is possible to achieve distortion which is close to the best
possible by only requiring a very small amount of informa-
tion, i.e., only the top preferences of only a few voters.
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