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Generalized scoring rules [Xia and Conitzer 08] are a relatively new class of social choice mech-

anisms. In this paper, we survey developments in generalized scoring rules, showing that they

provide a fruitful framework to obtain general results, and also reconcile the Borda approach and
Condorcet approach via a new social choice axiom. We comment on some high-level ideas behind

GSRs and their connection to Machine Learning, and point out some ongoing work and future
directions.
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1. INTRODUCTION

Social choice theory focuses on developing principles and methods for representation
and aggregation of individual ordinal preferences. Perhaps the most well-known
application of social choice theory is political elections. Over centuries, many social
choice mechanisms have been proposed and analyzed in the context of elections,
where each agent (voter) uses a linear order over the alternatives (candidates) to
represent her preferences (her vote). For historical reasons, we will use voting rules
to denote social choice mechanisms, though we need to keep in mind that the
application is not limited to political elections.1 Most existing voting rules fall into
one of the following two categories.2

Positional scoring rules: Each alternative gets some points from each agent
according to its position in the agent’s vote. The alternative with the highest
total points wins. For example, Borda is a positional scoring rule where for each
vote, the alternative ranked at the ith position gets m− i points, where m is the
number of alternatives.

Condorcet consistent rules: Whenever there exists a Condorcet winner, it
must be the unique winner of the election. A Condorcet winner is an alternative
that beats every other alternative in head-to-head comparisons. For example,

1More recently, social choice theory has been adopted in many modern computational systems,

including but not limited to recommender systems [Ghosh et al. 1999], meta-search engines [Dwork
et al. 2001], belief merging [Everaere et al. 2007], crowdsourcing [Mao et al. 2013].
2Some popular voting rules do not fall into the two categories, for example the Single Transferable
Vote (STV).
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Maximin (a.k.a. Simpson-Kramer) is a Condorcet consistent rule, which selects
the alternative that has the highest worst-case head-to-head wins.

One key question in social choice theory is: Which voting rule is the best? This
is not an easy question, and there has been a long debate over even the meaning of
optimality between the advocates of the above two categories, with no clear victory
claimed by either side. This can date back to the battle in the 18th century between
Jean-Charles de Borda, the inventor of the Borda rule, and Marquis de Condorcet,
the inventor of Condorcet consistency.

The classical way to evaluate voting rules in social choice theory is to study their
satisfiability of axiomatic properties (axioms in short), which are desired properties
measuring various aspects of voting rules. Unfortunately, no voting rule can sat-
isfy the combination of even a few natural axioms, due to the celebrated Arrow’s
impossibility theorem [Arrow 1963].3 Specifically, no positional scoring rule is Con-
dorcet consistent [Fishburn 1974]. So at least the Borda advocates and Condorcet
advocates can proudly announce “We are different from the opponent”.

1.1 Our Approach

Instead of continuing the Borda vs. Condorcet debate and contrasting existing
voting rules, we instead seek for a unified approach by asking the following question:

Do most existing voting rules share some common properties?

Notice that this is in fact a “reverse engineering” question. Knowing these common
characteristics helps us understand desired properties of voting rules, so that in
the future if we want to design a new voting rule, we can focus on these natural
properties. More precisely, we ask the following question:

Is there a framework that reconciles the two categories of voting rules?

A straightforward (and uninformative) answer is affirmative, for example “the
class of all voting rules”. However, a good framework should be general, covering
most existing voting rules, but more importantly, needs to have a good mathemat-
ical structure that distinguishes it from an arbitrary voting rule. This means that
a good framework should not be too general.

In the rest of the paper, we will introduce the class of generalized scoring rules,
and show evidences suggesting that it is a good framework for this purpose.

2. GENERALIZED SCORING RULES

We start with an example of rethinking Borda to illustrate the idea behind the
definition. Let A = {a1, . . . , am} denote a set of m alternatives, and let L(A)
denote the set of all linear orders over A. Let P = (V1, . . . , Vn) denote a preference
profile, where each Vj ∈ L(A) represents the vote of agent j. A voting rule r is a
mapping that chooses a single winner for any preference profile.4

3See [Nurmi 1987] for definitions of some natural axioms and a thorough comparison of voting

rules in terms of satisfiability of these axioms.
4The definition of GSRs can be much more general, but for better presentation we will focus on

the classical election setting in this paper.
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Example 1 (Rethinking Borda) For each vote V ∈ L(A), we map it to an m-
dimensional vector f(V ) ∈ Rm, where the ith component is the number of points
ai obtains in V . Given a preference profile P , we let f(P ) =

∑n
j=1 f(Vj). It is not

hard to see that f(P ) represents the total points obtained by the alternatives in P .
Therefore, the winner is ai where the i is the largest component of f(P ).

In the above example, we clearly see the following pattern in Borda:

(1) Each vote is mapped to a vector via a function f .

(2) The vectors are summed up to produce a total vector.

(3) The winner is determined by the order over the components in the total vector
via a function g.

This leads to the definition of generalized scoring rules [Xia and Conitzer 2008],
illustrated in Figure 1.5 Slightly more formally, fix the number of alternatives m,
we have a number K that represents the dimensionality of the vectors votes are
mapped to by f . Then, a generalized scoring rule (GSR), denoted by GS(f, g),
is defined by a pair of function f and g. For any input preference profile P , we
perform exactly the above three steps.

(1) Each vote V in P is mapped to a vector f(V ) ∈ RK .

(2) Let f(P ) =
∑

V ∈P f(V ).

(3) The winner is g(Order(f(P ))), where Order(f(P )) is the order over the com-
ponents in f(P ).

P = ( V1 ,    …   ,  Vn  )	


f (V1)	
 f (Vn)	
…

Order(f (P))	


g(Order(f (P)))	


+ + 

f (P) = f (Vj )j=1

n
∑

Fig. 1. Illustration of generalized scoring rules.

Remark 2.1 A GSR is defined for a fixed number of alternatives and a variable
number of voters.

Remark 2.2 By saying that a voting rule r is a GSR, we mean that there exist f
and g such that r = GS(f, g). It is possible that different pairs (f1, g1) and (f2, g2)
correspond to the same voting rule.

We have seen in Example 1 that Borda is a GSR, where K = m, f is the function
described in Example 1, and g simply selects the alternative whose corresponding
component is the largest.6 The next example shows that Maximin, which is Con-
dorcet consistent, is also a GSR.

5We use the equivalent definition in [Xia 2012].
6Suppose that ties are broken w.r.t. a fixed linear order over A.
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Example 2 To show that Maximin is a GSR, we let

—KM = m(m− 1); the components are indexed by pairs (i, j) such that i, j ≤ m,
i 6= j.

—(fM (V ))(i,j) =

{
1 if ai �V aj
0 otherwise

—gM (·) simulates Maximin based on the information contained in Order(fM (P )).

3. GENERALITY OF GSRS

GSRs are quite general: It was shown by construction that many commonly
studied voting rules using fixed-order tie-breaking are GSRs [Xia and Conitzer
2008], including all positional scoring rules, Maximin, Copeland, ranked pairs,
Bucklin, and multi-round voting rules including STV, plurality with runoff, Nan-
son’s rule, and Baldwin’s rule. Notice that many of these rules are Condorcet
consistent.
GSRs are not too general: GSRs are equivalent to the class of voting rules that
satisfy the following two axioms [Xia and Conitzer 2009].

—Anonymity: r satisfies anonymity if the winner is insensitive to the names of the
agents.

—Finite local consistency (FLC): r satisfies FLC if the set of all preference profiles
over A can be partitioned into T parts {S1, . . . , ST }, such that for any pair of
preference profiles (P1, P2) that belong to the same partition and r(P1) = r(P2),
we have r(P1) = r(P1 ∪ P2).

Remark 3.1 FLC implies homogeneity, which says that for any preference profile
P and any number k ∈ N, r(P ) = r(nP ). Therefore, any voting rule that does
not satisfy homogeneity is not a GSR. Among commonly studied voting rules, only
Dodgson’s rule does not satisfy homogeneity, which means that it is not a GSR.7

Remark 3.2 Any voting rule that does not satisfy anonymity is not a GSR, includ-
ing Borda equipped with a non-anonymous tie-breaking mechanism, for example
breaking ties using the first voter’s vote.

Remark 3.3 FLC is an extension of the consistency axiom in social choice theory,
which is FLC with T = 1. Consistency was only previously known to be satisfied
by positional scoring rules.8

4. WHY ARE GSRS INTERESTING?

Useful in studying the frequency of manipulability. Suppose there are n′

manipulators and their favorite alternative a. Let n non-manipulators votes be
generated i.i.d. according to some probability distribution. We are interested in the
frequency of manipulability, which is the probability that the n′ manipulators can
make a win by voting collaboratively.

7However, Dodgson’s rule is arguably not a good voting rule since it fails to satisfy many desired
axioms, and has a high computational complexity [Brandt 2009].
8C.f. Young’s insightful axiomatic characterization of positional scoring rules [Young 1975].
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For a large class of GSRs, we proved a dichotomy theorem on the frequency of
manipulability [Xia and Conitzer 2008]. The theorem states that if the number of
manipulators is o(

√
n), then the frequency of manipulability goes to 0 as n goes to

infinity; if the number of manipulator is ω(n), then the frequency of manipulability
goes to 1 as n goes to infinity.

The theorem was extended (with slight tweaks) to all GSRs [Mossel et al. 2012],
and was also extended to other types of strategic behavior [Xia 2013]. These type
of research was generally viewed as negative, because they reconfirm the high-level
message that computational complexity is not a strong barrier against manipu-
lation [Faliszewski and Procaccia 2010; Mossel and Rácz 2012]. On the positive
side, they suggest that there exists efficient methods for post-election audits by
computing the margin of victory [Xia 2012].

Reconcile Borda and Condorcet via FLC. Since no Condorcet consistent vot-
ing rule satisfies consistency (plus a few other natural axioms), it would be great if
a Condorcet consistent voting rule can satisfy a weaker version of consistency. The
FLC axiom, which is satisfied by all GSRs, plays such a role, and thus provides a
new angle of evaluating Condorcet consistent rules.

At first glance, FLC looks quite abstract, but in fact it has a natural interpre-
tation: each partition St can be seen as an abstract “characteristic” of preference
profiles. Then, FLC comes down to saying that the voting rule is consistent for
preference profiles sharing the same characteristic.

Take Kemeny’s rule as an example. It does not satisfy consistency. However,
if we define a partition where for every linear order l ∈ L(A), Sl is composed of
all preference profiles that are closest to l in Kendall tau distance, then Kemeny
is consistent within each Sl, since if P1, P2 ∈ Sl, then l is the linear order that is
closest to P1 ∪ P2 in Kendall tau distance.

Have nice structures and are related to Machine Learning. Mathematically,
GSRs are equivalent to hyperplane rules, which view all preference profiles in a
geometric space and use multiple linear hyperplanes to separate regions for winner
determination [Mossel et al. 2012; Xia and Conitzer 2009].

At a high level, GSRs have two interesting connections to Machine Learning.
Here a voting rule can be seen as a multi-class classifier, where A is the set of
classes [Procaccia et al. 2009]. A separating hyperplane can be seen as a linear
binary classifier.

First, a GSR can be seen as the result of decision making (choosing the winner)
based on the position of the input preference profile w.r.t. all hyperplanes. In
other words, a GSR classifies a preference profile based on the outputs of all linear
binary classifiers. This has been explored in Machine Learning as an effective way
to build multi-class classifiers by binary classifiers [Tax and Duin 2002]. Therefore,
when designing the g function of a GSR, we may use ideas from the literature on
multi-class classifiers.

Another connection is to treat OK as the set of features, and f works as the
feature abstraction function (though K is not necessarily small). The collective
choice is made in an additive manner where “feature values” of the input votes are
summed up across the agents. Therefore, when designing the f function of a GSR,
we may use techniques developed for feature selection.
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How to explore these high-level connections for application is an interesting di-
rection for future research. See [Xia 2013] for some preliminary ideas.

5. CONCLUSION AND FUTURE DIRECTION

In this paper we surveyed some developments in generalized scoring rules, a rela-
tively new class of voting rules for studying social choice. Given the generality and
structure of GSRs, there are many directions for future research. In future/ongoing
work, we see at least the following directions.

—Develop more general techniques and results for GSRs, for example post-election
audits and compilation complexity [Chevaleyre et al. 2009].

—Explore deeper and more practical relationships between GSRs and Machine
Learning.

—Study relationship between GSRs and other classes of voting rules, for example
distance-based rules [Meskanen and Hannu 2008; Elkind et al. 2011].
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