Strengthening Smart Contracts to Handle
Unexpected Situations

Shuze Liu*, Farhad Mohsin', Lirong Xiat and Oshani Seneviratne®
Department of Computer Science, Rensselaer Polytechnic Institute
Troy, NY 12180, USA
Email: *lius17@rpi.edu, Tmohsif@rpi.edu, ixial@cs.rpi.edu, §senevo@rpi.edu

Abstract—Decentralized application users may face unexpected
situations that the smart contract implementing the application
should handle, but cannot, because the smart contract cannot
be modified once it is deployed. Therefore, we need ‘stronger’
smart contracts with flexible structures that are resilient in such
unexpected situations.

In this paper, we propose a generic mechanism to strengthen
smart contracts and handle possible unexpected situations. Given
a smart contract, this mechanism automatically generates an
action list which offers actions as interfaces to change parameters
of smart contracts and a voting system that utilizes a limited voter
group randomly chosen from the peers. Each action in the action
list can change a corresponding parameter of smart contracts.
The actions, when approved by the majority, are executed to
change the parameters.

When users face unexpected situations in a transaction, they
choose some actions as the solution and pass them to the voting
system. Since a smart contract has finite parameters, there
are finite actions. By arranging and combining these actions,
our mechanism offers solutions that can handle wide-ranging
unexpected situations. Also, to execute a solution, the majority
of voters need to approve it, thus not violating the protocol of
the original smart contract.

Voters are rewarded based on quadratic rules for peer pre-
diction, which makes telling true preferences the only way to
maximize rewards. Using machine learning, we predict users’
preferences based on the voting records. The predictions are
provided as default values for future votes to avoid users’ need
to vote manually each time.

Index Terms—Blockchain Theory, Decentralized Applications,
Smart Contracts, Unexpected Situations, Computational Social
Choice, Machine Learning

I. INTRODUCTION

Decentralized applications (DApps), unlike centralized ap-
plications, do not require any administrator and are trustworthy
due to the immutable ledger behind the scenes that is recording
all the transactions originating from the DApp. Thus, many
companies venturing their business operations to blockchain
systems are deciding to use DApps in place of their traditional
systems. For instance, Walmart uses a decentralized system
to track the originals of their products [1]. DApps use smart
contracts to ensure each transaction is executed properly.
Smart contracts are self-executing contracts in which terms
of contracts between two parties are directly written into lines
of code.

However, once the decentralized applications are deployed
to the network, they are hard to modify, since making every
peer in the network agree on the modification is almost

impossible. A smart contract’s response at an unexpected
situation is dependent on the designers foresight, and not every
possible situation can be covered. Users may face unexpected
situations when they are using decentralized applications. For
example, in a decentralized medical record sharing application,
doctors may need the signature of their patient to access
the patient records. However, if a patient is unconscious
and cannot give the signature and the authorized doctor is
also unreachable, a new doctor may not be able to access
the record. If this situation has not been written in smart
contracts, it is hard for the doctor to access the record because
no administrator can help the doctor pass this requirement.
Therefore, decentralization requires us to design stronger smart
contracts with flexible structures.

We propose a mechanism to handle existing smart contracts
and strengthen them with flexible structures while keeping
their original functions unchanged. Our mechanism has three
main parts and has been implemented in Hyperledger Com-
poser which is a decentralized application platform developed
by the Linux Foundation.

We suggest creating smart contracts equipped with the
ability to host a voting mechanism which allow users to vote
for a solution to resolve unexpected situations. We target
resolving unexpected situations that can be resolved by directly
changing relevant parameter values in the smart contract. In
our design, we have a preprocessor that takes a smart contracts
as input, analyzes the smart contract and adds an action for
each parameter in the smart contract. These actions form an
action list which provides interfaces for users. Because we
have finite parameters for each smart contracts, this action list
is finite. However, by arranging them in proper orders, users
can deal with wide-ranging unexpected situations. The prepro-
cessor eliminates the need to write these actions manually and
provides a comprehensive action list. It also adds in a voting
mechanism to vote on a solution of an unexpected situation.

Facing an unexpected situation, users can start a poll
through this mechanism along with an action list that will
resolve the situation. Peers vote on approving the proposed
action list, and based on the peer votes our mechanism may
apply the solution to resolve the situation. The preprocessor
is not a necessity, because these functions and voting mech-
anisms may be added in by a developer as well. However,
this greatly increases the efficiency and correctness of creating
strengthened smart contracts. Finally, we incorporate a learn-

ing mechanism in the smart contract, to learn the preferences
of each user to predict how they would vote given a new
unexpected situation. For our solution, learning preferences for
certain types of situations is made possible. So if a particular
unexpected situation comes up many times, the smart contract
will eventually learn how the users vote on that topic and can
predict their preferences, augmenting the smart contract.

II. RELATED WORK

While there has been work done to strengthen Smart Con-
tracts in various ways, to our knowledge not much work has
been focused on unexpected situations. Work has been done to
check vulnerabilities of exceptions and ways to work around
these vulnerabilities [2]. But we rather focus on increasing
flexibility than removing vulnerabilities. There has also been
talk of building machine learning systems on top of generic
APIs like MedRec to create a health learning system [3], but
that is more geared towards learning about health features of
users whereas our solution is to have users vote to resolve
unexpected situations and in turn learn how the users vote
to improve the Smart Contract itself. So, the Smart Contract
needs to have some decision making ability. There has been
work done on autonomously learning and decision making
based on human preference inputs that can be applicable to
fields like self-driving cars [4]. Since the innate mechanism of
learning from pairwise comparisons to simulate group decision
is similar, we have tried to rethink our problem in that way.

III. MOTIVATING SCENARIO

We implemented a university course selection system in Hy-
perledger Composer to illustrate our mechanism of strengthen-
ing smart contracts. This system is a decentralized application
for students to select courses at their university. Students with
more earned credits have the priority to select first. Since there
is no administrator in this system, we do not need to pay
money to administrators and the process is fair. Money and
fairness may not have a great importance in course selection,
but they could be significant for the election of president.

Suppose developers of this system only implemented adding
courses and dropping courses for students. These two trans-
actions seem to satisfy the needs of students. However, an
unexpected situation may occur when a course is filled and no
new student can be added to the course. In real life, students
can get special permissions from professors and the registrar
can add them to the course. In this decentralized version, there
is no registrar. Clearly, this adding should be done by the smart
contract, but it cannot do so because there are no provisions
for handling this unexpected situation. Even if this simple case
could have been foreseen by the developer, that may not be the
case for more complex smart contracts. So, we create a way
out for problems that could be solved by changing specific
parameters of relevant assets and participants. However, such
changes should not be made just because they seem to resolve
a particular unexpected situation. We propose a consensus
based system to solve this.

A. Drawing Inspiration from the Real World

To get motivation for consensus based real-time change to
a system, we look at the system of passing new bills in the
US constitution. A simplified explanation of the method is
illustrated in Figure 1: Congressional committees and subcom-
mittees are formed that are knowledgeable about a topic, and
bills proposed for that topic first goes to the subcommittee. If
the subcommittee deems the bill worthy then it goes in front
of the rest of the Congress for voting. If we try to just replicate
this solution on the blockchain, we see some difficulties. If we
consider all users as equivalent as Congress, who do we choose
as subcommittee members? How large should a subcommittee
be? And if the number of unexpected situations is very high,
does the voting process become a nuisance rather than an
augmentation?

Vote Down the Bill or
Return to Author with
Revisions

The Bill goes in front of a
congressional committee -
for analysis.

Forward the Bill to
another committee

Bill Becomes a Law ‘

House member
introduces a Bill

. Pass the Bill and

Y Forward to rest of the
House

I

¢
‘ House Votes on the Bill }.
House Votes Down the
Bill

Fig. 1. How congressional bills are passed - simplified

B. Our Proposal

We propose a simple solution of choosing voting groups
randomly. For each situation, we select a random group of
voters uniformly from the users, rotating the random choices
in each round, so that users are not inundated with requests
to resolve situations. This is still a preliminary idea, and the
randomization may be designed in different ways, e.g. those
with higher stake in the system or higher relevance with the
situation may have higher probability of being chosen. To
emulate the back and forth a proposal may have between
revisions, we propose to have multiple rounds of voting. While
this system of making a smart contract changeable using
a voting mechanism may seem to make it vulnerable, the
mechanism is designed in a way such that majority consensus
is still mandatory, making it difficult to manipulate the system
to make malicious changes. We discuss the voting mechanism
in detail in the two following sections.

So in our course selection system, a student facing the
mentioned unexpected situation will be handled in this way:
a voting poll is created with targets and actions. In this
scenario, targets are the course (asset) that this student wants
to enroll in and the student themselves (participant) since we
also need to change the corresponding parameter. Actions are
proposed by this student as a solution to the unexpected situ-
ation. In this example, the actions will be changing registered
students list of the course. However, without this mechanism,

Model Model
asset A{ asset A{
al al
a2 a2

} }
participant B{ participant B{
bl bl
b2 b2
learning_data

} }

Script{ Script{
transaction tl1{ transaction tl{
/... /...

} }

//new transactions
start_vote{}
submit_vote{}
end_vote{}

//action list
change_al{}
change_a2{}
change_bl{}
change_b2{}

Fig. 2. An example of a strengthened smart contract. The LHS shows the
assets, participants, and the methods of the generic smart contract, and the
RHS shows the strengthened smart contract with additional functions that
make the smart contract more robust.

this transaction will fail when the smart contract finds the
capacity is full.

In the following sections, we explain our methodology that
includes: 1) The preprocessor that examines the smart contract
and proposes the action list and the voting mechanism; 2) The
voting process; 3) The design and method of learning voter
preferences.

IV. PREPROCESSOR

The preprocessor is used to add an action list and a voting
system to a given smart contract. Figure 2 is an example of
a generic smart contract. The left part is the input to the
preprocessor. After being strengthened using the preprocessor
which we will discuss later in this section, we get a strong and
flexible smart contract with new transactions used for voting
and an action list used for changing parameters.

A. Background

Using Hyperledger Composer as the developing environ-
ment, smart contracts are composed of two parts: model
and script. Model is composed of assets, participants, and
transactions. Participants are users. Assets are goods that
transactions will modify. Transactions are the only functions
which can be directly called by users. We choose the code style
of Hyperledger Composer because its good organization of
assets and participants lends itself quite well to help illustrate
our idea.

B. Parsing

Given an input smart contract, this step deletes annotation
and parses the smart contract. A smart contract is composed of
Model and Script in Hyperledger Composer. When parsing the
given smart contract, this step extracts assets and participants
which are two essential elements. It will then extract the
parameters of each asset and participant and store their names
and types. When generating the action list, the name will
be part of the action name which offers a generic API as
well as an easy way to change a specific parameter. Types
are required because each type of parameter needs to have a
different implementation.

C. Action List

We find that an unexpected situation which smart contracts
should do but actually cannot do can be solved by changing
the parameters of smart contracts. For instance, by directly
changing a parameter which is the registered students of a
course, a student is successfully added in a filled course.
A more generic view is that decentralized applications are
running by changing parameters. If users can get direct access
to these parameters with proper authorization, they can indeed
solve many unexpected situations without administrators.

Thus, this preprocessor uses the result provided by parsing
generating an action for each parameter in a smart contract.
These actions are different from transactions. Actions cannot
be directly called by users, and transactions are the only
functions which can be directly called by users. Actions can
only be passed into the voting system as a solution.

The reason that we need this an action list is to provide an
interface for users. Without this interface, users can only read
the parameters of each smart contracts, but there is no way
for users to change them. This step also eliminates the need
to write these actions manually and offers a generic API for
users. In Figure 2, the preprocessor creates change Name()
for each parameter automatically.

D. Voting System

This step creates three transactions: start_vote, sub-
mit_vote, end_vote as shown in Figure 2. These transactions
can be directly called by users. When users are facing an
unexpected situation, they start a voting poll with targets and
a solution. Others will vote on it. After collecting votes, this
poll is ended and smart contracts will execute the solution or
not based on voting results.

V. VOTING

A. Start Voting

When a user is facing an unexpected situation, this user can
create a voting poll with targets and actions. Targets are assets
or participants which this user wants to change. Actions are
chosen from the action list created by the preprocessor as a
solution to this unexpected situation. They also input a target
value for the parameter they choose.

start_vote ()

{
newPollName: pl

solution change_registeredStudents
targetValue: [...,Alice]
targetCourse: math

targetParticipant: Alice

}

Fig. 3. An example of starting a poll to add a student to a filled course.

For a concrete example, as shown in Figure 3, A student
Alice wants to add her to a filled math course since she gets
a special permission. Thus, she can start a new poll with ID
”p1” and choose an action change_registeredStudents as the
solution. Also, she inputs the target value to add her into the
list of registered students. Others will vote on this poll using
the poll name.

B. Submit Votes

Peers can submit votes to voting polls created by users.
They submit “Agree Value” and “Disagree Value”, which will
be normalized to 1. For example, Bob can agree on Alice’s
proposal pI for 8 and disagree for 2 and the normalized agree
value would be 0.8. Peers would be rewarded for participating
in a poll, based on their agree and disagree values. Our system
gives rewards using quadratic rules of peer prediction, which
has been proven to be stable and incentivize honest feedback
[5]. This has also been used in cases for incentivizing peer
grading to get honest grading [6]. By incentivizing to report
true intentions, we confirm that the learning algorithm does
not learn flawed or malicious intentions.

In order to ensure high turnout of voters, besides the
incentives, we also introduce delegation for the voters. Voters
may choose to delegate their votes to others in advance.
Delegates get partial rewards from these votes and also enjoy
a high probability of being chosen to vote.

C. End Voting

After a round of voting, the poll is finished. Smart contracts
will execute the solution in the poll based on voting results.
Using the agree value that we have for each user as probabil-
ities which they will vote agree over the proposed action list,
we can aggregate agree values for all the users and calculate
a joint probability for majority of the voting group agreeing
on the proposal. If this probability is high, the actions can be
implemented. Afterwards, this step gives rewards to voters and
their delegates and updates the learning parameters.

Figure 4 shows the voting and exception handling mecha-
nisms in detail. Users who face an unexpected situation may
combine actions from the action list to form a solution and
start a voting process. The proposal will go through the voting
process, and based on the result of the vote, the actions may be
implemented. The learning mechanism which is shown in the
figure will be triggered in case of typical unexpected situations,
with the purpose of learning the preferences. For example, if
students need to get into a filled class, the solution is always
to add them to the class, but the smart contract does not know

if the voters will vote in favor of that. With the learning
mechanism present, it can predict a probability of the users
voting for a particular student to be added to the class or not.

Sequence Diagram

Delegator

I I

Learning Mechanism

| Peer

| Pl
I

| |
|

| 2.Actions

[

I

|
1.Targets | |
|
|
|
|

'
Give rewards

| |
| |
> | | |
[| |
: l Submit a vote : }
directl

| Sy | \
		Delegate votes	
		todelegator >	
I	‘ Submit votes ! I		
< T i			
	[P Predict vote		
	=		
: ! Record Vote to Update Weights J			
T T >			
End the poll			
: Execute actions : : : }			
based on voting results			
Giverewards _			
gl			
> |

>
| |
| |
! I

Fig. 4. Sequential flow for complete process

VI. LEARNING OF PREFERENCES
A. Motivation for Learning

As per our mechanism, we would continually need to keep
taking the votes, every time an unexpected situation comes up.
But if a situation is repetitive, it would make more sense if
it could be programmed into the smart contract itself. So, we
learn voting preferences of each of the users. At each round
of voting, we have the solution and hence the current and
changed state of parameters of relevant assets and participants.
We assume that for most transactions, the way a user votes
shall uniquely be determined by a small number of relevant
parameters. We understand that a DApp may be able to
implement different types of transactions, affecting different
groups of assets and participants. We propose learning the
preference of each user for different transactions separately.
This learning mechanism brings a level of automation in
handling unexpected situations and decreases user disruption.
Moreover, if the preference model of a user is learned with
high enough confidence level, preferences about a new situ-
ation can be generated for all users, not only the subset of
voters for a certain round. This gives a better probability of
the decision being representative of the user-base.

B. Learning Mechanism

We make use of the Thurstone-Moestler (TM) Model [7],
[8] to define the learning process. If we know the relative
utilities of alternatives, this model gives us the probability of
choosing one alternative over the other. That probability is
what we determine from our proposed voting mechanism, and
after learning is done, that will be what we predict. The voting

mechanism asks each user to give a weight on both agreeing
and disagreeing with a proposal. The normalized weight of
agreeing is taken to be the probability of the user voting
for acceptance of the proposal. This probability will largely
depend on how the user sees the utilities for accepting and
rejecting the proposals, and with the TM model, we model
these utilities in the following way.

Ua ~ N (pa, %)

Where 114 is the mode utility for some state of the parameters,
x 4. That is, if the relevant assets in the smart contract have
value x 4, then this mode utility shall be a function of x 4.1 4
will differ for the same x4 for different users but we assume
that it is linearly dependent on x 4. We may assume, for user ¢,
ply = BDTx 4. And this (V7T shall completely define user i’s
preferences over these parameters. Now, faced with a proposal,
if the existing and proposed parameter values are x4 and X g
respectively, we may say for user i,

p; =P(A>B)=P(Us >Ug)
ZP(UA—UB >O)

Now, as U4 and Upg are Gaussian distributions, Uy — Up is
also a Gaussian distribution, particularly Uy —Up ~ N (pua —
UB, 1) Thus
HA — B
p; = (I)(%)
= &(87 (x4 — x5))
— BT (x4 —xp) =7 (1)

Here, p is the normalized approval-weight that we get for user
1. ® indicates the CDF of the standard Gaussian distribution.
Since for each round of vote that a particular user participates,
we get more input data (x4,xp,p;) for that user, and from
here we attempt to learn 8. And we will see from simulated
results in section V that with the assumption of rational user
behavior, estimated 3 should give accurate predictions with
high probability. From the synthetic data simulation done ,
we can hope to learn d parameters of [in roughly 10d
comparisons for an user. We also note the case for learning
how a group of voters will behave. Based on the results we
state that asking /N peers to vote in each round, where N
is the number of total users may lead us towards learning the
group preference in (10d x v/N) rounds.

C. Implementation

We now discuss how we may go implement this in the smart
contract. For a particular transaction, let the feature vector
of relevant parameters be x, with d features. For example,
for the add course process, the unexpected situation comes
when the course size is full. Relevant asset parameters would
be Class size, Student registered credits, Will the student
miss a mandatory course etc. We calculate the difference
of these parameters between the current condition and the
condition after the action lists were implemented. That is
(x4 —xp). Now, a user’s preference can simply be modeled

with a parameter vector 5, 8 having the same number of
parameters as x. [needs to be added to each participant’s
parameter list, for this learning mechanism to work. Now, for
all the different transactions, where we would like to learn
user preferences, we would need a new learning parameter
array. This is because we would need to predict preferences
for different types of transactions. One thing to keep in mind
is that the learning needs to be done on the blockchain and in
real-time. Because of the lack of support for high-end machine
learning tools in Hyperledger Composer, which was used to
develop this particular example, we chose a simple Recursive
Linear Squares (RLS) estimator [9]. This approach only takes
O(d?) time in updating the weights for each user, while we
need to store O(d?) in weights for each user for each type of
transaction that we want to learn as well. So there is a price
to pay in storage.

concept Learning({
o Integer type
o Double[] P
o Double[] beta
}
participant Student{
o String Name
/...other parameters/
o Learning[] learning

}

Fig. 5. An example of added learning structures. Beta is the learning
parameter for the probability model, P is a helper parameter for the RLS
algorithm

D. Evaluation of Learning Preferences

1) Setup: For lack of actual data, we opt to create synthetic
data based on a generic case. The dimension of the feature vec-
tor is d (d = 10 for Figure 6 case), with both boolean and real
numbered variables. The real numbered inputs are taken from
N (0, 1) and the boolean variables have a uniform distribution.
To indicate preferences, we sample 8 from N (u,I) where u,
each mean, u; being sample uniformly from unif(—1, 1). Then
we randomly pick pairs of inputs from the set of generated
inputs and calculate the preference using the TM model, with
some added noise.

2) Results: For each user we attempt to learn the pref-
erence model, that can predict their probability of agreeing
or disagreeing with a proposal. With each vote they cast, we
update the values of ()T for them. And we note that 3()7
converges towards the real value of § within 10d votes.

We repeat this process by generating synthetic preference
data for a large number of users, randomly picking users for
each round of voting and then estimating the group preference.
For the graph in Figure 6, we have simulated with 1000 users
and 20 voters per each round and we see that the average
predicted group preference also converges towards the average
real group preference.

0.04 4

o
o
&

Average Squared Errors
o

=4
=
2

bbb bob

0 1000 2000 3000 4000 5000

of Rounds
Fig. 6. Convergence towards learning group preference

We propose having v/ N voters for each round because that
way we would converge towards good estimates for the group
preference by O(dv/N) rounds. This simulation indicates that
this method would be able to model preferences in smart
contracts, where the users’ preference primarily depend on the
difference between the alternatives. However, as the TM model
can deal with multiple alternatives instead of one as well as
shown in [4], a similar preference learning and aggregation
technique may be applied there as well, with proper ranking
or scoring rules.

VII. FUTURE WORK

Now users need to propose solutions by themselves. We
could use semantic techniques to automatically generate solu-
tions for unexpected situations. There is also the fact that the
learning mechanism only works for the pre-programmed vot-
ing polls, which makes it kind of limited in its implementation.
Making the system more robust and generic is what we are
looking towards in this aspect. For the contents of solutions,
we also want to make sure the contents are proper. Like a peer
cannot propose a solution to use others money to buy goods.
Also, a technique for spam detection and penalties may also be
deployed to penalize malicious users who may want to hinder
operation by flooding the system with unexpected situations.

In the learning methodology, the advantage of the TM model
is that the argument can readily be increased to multiple
options as well. So when multiple proposals are at hand, we
may have the users rank the alternate proposals and use this
same learning mechanism to learn of their preferences based
on some rank aggregation rule.

VIII. CONCLUSION

Even though smart contracts add much functionality to
DApps in terms of automated transaction processes, most
smart contracts are not well-equipped to handle unexpected
situations. We design a preprocessor that works on Hyper-
ledger Composer models and chain-code to augment the code
with new basic action lists to change parameters and also adds

a generic voting mechanism. The preprocessor automatically
generates a standard and correct action list based on types of
parameters. It also generates three important voting transac-
tions to build the voting mechanism and ensures that the idea
can be implemented into a given smart contract efficiently.
To implement the necessary changes of parameters to resolve
an unexpected situation, we make use of a consensus-based
protocol using voting. The protocol is inspired by the system
of passing US Congressional bills, and majority agreement is
still enforced so as not to open up vulnerabilities in the smart
contract.

Our proposed voting mechanism is augmenting the smart
contract, as is learning parameters introduced to help a prefer-
ence learning model. The strengthened smart contract supports
a mechanism to learn preferences that voters show while
voting for unexpected situations based on specific transaction
types. We model each user’s preferences based on relevant
parameters using the Thurstone-Moesteller probability model.
We theoretically show that this should eventually lead towards
being able to predict all user’s preferences, which we can
aggregate. This effectively adds a decision-making capability
to the smart contract. We have implemented this learning
mechanism in a decentralized course selection system that we
designed.

ACKNOWLEDGEMENTS

This work is supported by the IBM-RPI Artificial In-
telligence Research Collaboration (a member of the IBM
Al Horizons Network). We thank our colleagues James A.
Hendler and Geeth De Mel for their insight and expertise that
greatly assisted the research, and also the reviewers for helpful
comments and suggestions.

REFERENCES

[1] R. Miller. (2018) Walmart is betting on the blockchain to improve food
safety. [Online]. Available: https://techcrunch.com/2018/09/24/walmart-
is-betting-on-the-blockchain-to-improve-food-safety/

[2] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security - CCS'16. ACM Press,
2016. [Online]. Available: https://doi.org/10.1145/2976749.2978309

[3] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “MedRec: Using

blockchain for medical data access and permission management,” in

2016 2nd International Conference on Open and Big Data (OBD).

IEEE, aug 2016. [Online]. Available: https://doi.org/10.1109/0bd.2016.11

R. Noothigattu, S. N. S. Gaikwad, E. Awad, S. Dsouza, I. Rahwan, P.

Ravikumar, and A. D. Procaccia, “A voting-based system for ethical

decision making,” in Proceedings of the 2018 AAAI Conference on

Artificial Intelligence. AAAI Press, 2018.

[5] D. Friedman, “Effective scoring rules for probabilistic forecasts,” Man-
agement Science, vol. 29, no. 4, pp. 447-454, apr 1983.

[6] L. de Alfaro, M. Shavlovsky, and V. Polychronopoulos, “Incentives
for truthful peer grading,” CoRR, vol. abs/1604.03178, 2016. [Online].
Available: http://arxiv.org/abs/1604.03178

[7] L. L. Thurstone, “A law of comparative judgment.” Psychological Review,

vol. 34, no. 4, pp. 273-286, 1927.

F. Mosteller, “Remarks on the method of paired comparisons: I. the

least squares solution assuming equal standard deviations and equal

correlations,” in Springer Series in Statistics. Springer New York,

1951, pp. 157-162. [Online]. Available: https://doi.org/10.1007/978-0-

387-44956-2_8

[9] R.L. Plackett, “Some theorems in least squares,” Biometrika, vol. 37, no.
172, p. 149, jun 1950.

[4

—

[8

—

