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Abstract
We initiate a research agenda of mechanism de-
sign for categorized domain allocation problems
(CDAPs), where indivisible items from multiple
categories are allocated to agents without monetary
transfer and each agent gets at least one item per
category.
We focus on basic CDAPs, where each agent
gets exactly one item per category. We first
characterize serial dictatorships by a minimal set
of three axiomatic properties: strategy-proofness,
non-bossiness, and category-wise neutrality. Then,
we propose a natural extension of serial dictator-
ships called categorial sequential allocation mech-
anisms (CSAMs), which allocate the items in mul-
tiple rounds: in each round, the designated agent
chooses an item from a designated category. We
fully characterize the worst-case rank efficiency of
CSAMs for optimistic and pessimistic agents.

1 Introduction
Suppose we are organizing a seminar and must allocate 10
discussion topics and 10 dates to 10 students. Students have
heterogeneous and combinatorial preferences over (topic,
date) bundles. For example, a student may say “I would pre-
fer an early date if I get an easy topic, but I would prefer a
late date if I get a hard topic”. How should we allocate the
topics and dates to students based on their preferences?

This example illustrates a common situation of allocating
multiple indivisible items, which we formulate as a catego-
rized domain. A categorized domain contains multiple indi-
visible items, each of which belongs to one of the p ≥ 1 cate-
gories. In categorized domain allocation problems (CDAPs),
we want to design a mechanism to allocate the categorized
items to agents without monetary transfer, such that each
agent gets at least one item per category. In the seminar-
organization example there are two categories: topics and
dates, and each agent (student) must get one topic and one
date.

Many other allocation problems are CDAPs. For exam-
ple, in cloud computing, agents have heterogeneous pref-
erences over multiple types of items including CPU, mem-

ory, and storage [14, 15, 1]; patients must be allocated mul-
tiple types of resources including surgeons, nurses, rooms,
and equipments [17]; agents may want to reallocate houses
and cars [22, 18]; college students compete for course slots
from multiple categories, e.g. computer science courses, math
courses, social science courses, etc.

The design and analysis of allocation mechanisms for clas-
sical non-categorized domains have been an active research
area at the interface of computer science and economics. In
computer science, allocation problems have been studied as
multi-agent resource allocation [12]. In economics, alloca-
tion problems have been studied as one-sided matching, also
known as assignment problems [28]. Previous research faces
three main barriers.
• Preference bottleneck: When the number of items is not

small, it is impractical for the agents to fully express their
preferences over all (exponential) bundles of items.
•Computational bottleneck: Even if the agents can express

their preferences compactly using some preference language,
computing an “optimal” allocation is often hard.
• Threats of agents’ strategic behavior: An agent may have

incentive to report untruthfully to obtain a more preferred
bundle. This may lead to a socially inefficient allocation.

Our Contributions. We initiate a research agenda of mecha-
nism design for CDAPs towards breaking the three aforemen-
tioned barriers. CDAPs naturally generalize classical non-
categorized allocation problem (which are CDAPs with one
category). CDAPs are our main conceptual contribution.

As a first step, we focus on basic categorized domain allo-
cation problems (basic CDAPs), where the number of items
in each category is exactly the same as the number of agents,
so that each agent gets exactly one item from each category.
The seminar-organization example is a basic CDAP.

Our technical contributions are three-fold. First, we char-
acterize serial dictatorships for any basic CDAPs with at least
two categories by a minimal set of three axiomatic properties:
• strategy-proofness, which states that no agent has incen-

tive to misreport her preferences;
• non-bossiness, which states that no agent can change the

allocation of any other agent without changing her own by
reporting differently;
• category-wise neutrality, which states that after permut-

ing the names of items in any category in all agents’ prefer-



ences, the outcome allocation is permuted in the same way.
This characterization helps us understand the possibility of

designing strategy-proof mechanisms to overcome the third
barrier, i.e. threats of agents’ strategic behavior.

Second, to overcome the preference bottleneck and the
computational bottleneck, and to go beyond serial dictator-
ships, we propose categorial sequential allocation mecha-
nisms (CSAMs), which are a large class of indirect mecha-
nisms that naturally extend serial dictatorships [29], sequen-
tial allocation protocols [5, 10, 11], and the draft mecha-
nism [9]. For n agents and p categories, a CSAM is charac-
terized by an ordering over all (agent, category) pairs: in each
round, the designated agent picks an available item from the
designated category.

Third, we completely characterize the worst-case rank ef-
ficiency of CSAMs for any combination of two types of my-
opic agents: optimistic agents, who always choose the item in
their top-ranked bundle that is still available, and pessimistic
agents, who always choose the item that have the best worst-
case guarantee. This characterization naturally leads to useful
corollaries that help us choose the optimal CSAMs w.r.t. their
worst-case rank efficiency. For example, we show that while
serial dictatorships with all-optimistic agents have the best
worst-case utilitarian rank, they have the worst worst-case
egalitarian rank (Proposition 1).

A previous version of this paper was presented at ISAIM-
14 special session on Computational Social Choice [30]. The
full version with all missing proofs can be found on arXiv.

Related Work and Discussions. We are not aware of previ-
ous work that explicitly formulates CDAPs. Previous work
on multi-type resource allocation often assume that items of
the same type are interchangeable, and agents have a specific
type of preferences, e.g. Leontief preferences [14] or thresh-
old preferences [17]. CDAPs are different because agents’
preferences are only required to be rankings but not otherwise
restricted.

From the modeling perspective, if we ignore the catego-
rial information then CDAPs become standard multi-agent re-
source allocation problems. However, the categorial informa-
tion can be very useful in designing natural allocation mecha-
nisms. For example, CSAMs are not even well-defined with-
out the categorial information. As another example, agents
can naturally use graphical languages such CP-nets [3] to rep-
resent their preferences. Then natural solutions for combina-
torial voting [8] such as sequential voting can be modified to
allocate items for CDAPs.

Technically, one-sided matching problems are basic
CDAPs with one category. Our characterization of serial dic-
tatorships for basic CDAPs are different from characteriza-
tions of serial dictatorships and similar mechanisms for one-
sided matching [29, 23, 24, 25, 13, 16]. This is because the
category-wise neutrality used in our characterization is dif-
ferent from (and arguably weaker than) the neutrality used in
previous work.

Our analysis of the worst-case rank efficiency of catego-
rial sequential allocation mechanisms resembles the price of
anarchy [19], which is defined for strategic agents together

with a social welfare function that numerically evaluates the
quality of outcomes. Our theorem is also related to distor-
tion in the voting setting [27, 4], which concerns the social
welfare loss caused by agents reporting a ranking instead of
a utility function. Nevertheless, our approach is significantly
different because we focus on allocation problems for my-
opic and strategic agents, and we do not assume the existence
of agents’ cardinal preferences nor a social welfare function,
even though our theorem can be easily extended to study
worst-case social welfare loss given a social welfare function
as in Proposition 1.

Finally, we are certainly not the first to study (optimisti-
cally or pessimistically) myopic agents in social choice [6,
20, 7, 21]. However, previous work focused on voting or cake
cutting, while we focus on allocation of indivisible items. An-
alyzing outcomes for other types of agents, especially strate-
gic agents, is a promising direction for future research.

2 Categorized Domain Allocation Problems
Definition 1 A categorized domain is composed of p ≥ 1
categories of indivisible items, denoted by {D1, . . . , Dp}. In
a categorized domain allocation problem (CDAP), the items
are allocated to n agents without monetary transfer, such that
each agent gets at least one item from each category.

In a basic categorized domain for n agents, for each i ≤ p,
|Di| = n, D = D1 × · · · ×Dp, and each agent’s preferences
are represented by a linear order over D. In a basic catego-
rized domain allocation problem (basic CDAP), each agent
gets exactly one item from each category.

In this paper, we focus on basic categorized domains and ba-
sic CDAPs for non-sharable items [12], that is, each item can
only be allocated to one agent. For any i ≤ p, we denote
Di = {1, . . . , n}. Each element in D is called a bundle.
For any j ≤ n, let Rj denote a linear order over D and let
P = (R1, . . . , Rn) denote the agents’ (preference) profile.
For any pair of bundles ~d,~e ∈ D, we use ~d �Rj

~e to denote
that ~d is ranked higher than ~e by agent j. An allocation A is a
mapping from {1, . . . , n} to D, such that

⋃n
j=1[A(j)]i = Di,

where for any j ≤ n and any i ≤ p, A(j) is the bundle allo-
cated to agent j and [A(j)]i is the item in category i allocated
to agent j. An allocation mechanism f is a mapping that takes
a profile as input, and outputs an allocation. We use f j(P ) to
denote the bundle allocated to agent j by f for profile P .

We now define three axioms for allocation mechanisms.
The first two are common in the literature [29].
• A direct mechanism f satisfies strategy-proofness if no

agent benefits from misreporting her preferences. That is, for
any profile P , any agent j, and any linear order R′j over D,
f j(P ) �Rj f j(R′j , R−j), where R−j is composed of prefer-
ences of all agents except agent j.
• f satisfies non-bossiness if no agent is bossy. An agent

is bossy if she can misreport her preferences to change the al-
location of some other agent without changing her own. That
is, f is non-bossy if for any profile P , any agent j, and any
linear order R′j over D, [f j(P ) = f j(R′j , R−j)]⇒ [f(P ) =
f(R′j , R−j)].



• f satisfies category-wise neutrality if after applying a
permutation over the items in any given category, the allo-
cation is also permuted in the same way. That is, for any pro-
file P , any category i, and any permutation Mi over Di, we
have f(Mi(P )) = Mi(f(P )), where for any bundle ~d ∈ D,
Mi(~d) = (Mi([~d]i), [~d]−i).

When there is only one category, category-wise neutrality
degenerates to the traditional neutrality for one-sided match-
ing [29]. When p ≥ 2, category-wise neutrality is weaker
than the traditional neutrality. This is because neutrality re-
quires that the allocation is insensitive to all permutations
over items (bundles), while category-wise neutrality only
requires such insensitivity for a specific class of permuta-
tions (the permutations that can be decomposed into multiple
category-wise permutations).

A serial dictatorship is characterized by a linear order K
over {1, . . . , n} such that agents choose items in turns ac-
cording to K. In each step, the designated agent chooses her
top-ranked bundle that is still available.
Example 1 Let n = 3 and p = 2. D = {1, 2, 3} × {1, 2, 3}.
Agents’ preferences are as follows.

R1 = [12 � 21 � 32 � 33 � 31 � 22 � 23 � 13 � 11]

R2 = [32 � 12 � 21 � 13 � 33 � 11 � 31 � 23 � 22]

R3 = [13 � 12 � 11 � 22 � 32 � 21 � 33 � 31 � 23]

LetK = [1B2B3]. In the first round of the serial dictator-
ship, agent 1 chooses 12; in the second round, agent 2 cannot
choose 32 or 12 because item 2 in D2 is unavailable, so she
chooses 21; in the final round, agent 3 chooses 33. �

3 An Axiomatic Characterization of Serial
Dictatorships

Theorem 1 For any basic CDAP with p ≥ 2 and n ≥ 2,
an allocation mechanism is strategy-proof, non-bossy, and
category-wise neutral if and only if it is a serial dictatorship.
Moreover, the three axioms are minimal for characterizing
serial dictatorships.

Proof sketch: We first present four lemmas that will be fre-
quently used in the proof. The first three lemmas are stan-
dard whose proofs are omitted. The last one (Lemma 4) is
new, whose proof uses new techniques involving the catego-
rial structure.

The first lemma (roughly) says that for all strategy-proof
and non-bossy mechanisms f and all profiles P , if every
agent j reports a different ranking without enlarging the set of
bundles ranked above f j(P ), then the allocation to all agents
does not change in the new profile. This resembles (strong)
monotonicity in voting.
Lemma 1 Let f be a strategy-proof and non-bossy alloca-
tion mechanism over a basic categorized domain with p ≥ 2.
For any pair of profiles P and P ′ such that for all j ≤ n,
{~d ∈ D : ~d �R′j

f j(P )} ⊆ {~d ∈ D : ~d �Rj
f j(P )}, we

have f(P ′) = f(P ).

For any linear order R over D and any bundle ~d ∈ D, we say a
linear order R′ is a pushup of ~d from R, if R′ can be obtained

from R by raising the position of ~d while keeping the relative
positions of other bundles unchanged. The next lemma states
that for any strategy-proof and non-bossy mechanism f , if an
agent reports her preferences differently by only pushing up
a bundle ~d, then either the allocation to all agents does not
change, or she gets ~d.
Lemma 2 Let f be a strategy-proof and non-bossy alloca-
tion mechanism over a basic categorized domain with p ≥ 2.
For any profile P , any j ≤ n, any bundle ~d, and any R′j that
is a pushup of ~d from Rj , either (1) f(R′j , R−j) = f(R) or
(2) f j(R′j , R−j) = ~d.
The next lemma states that strategy-proofness, non-bossiness,
and category-wise neutrality altogether imply Pareto-
optimality, which states that for any profile P , there does not
exist an allocation A where (1) all agents prefer their bundles
in A to their bundles in f(P ), and (2) some agents strictly
prefer their bundles in A.
Lemma 3 For any basic categorized domains with p ≥ 2,
any strategy-proof, non-bossy, and category-wise neutral al-
location mechanism is Pareto optimal.
The fourth lemma states that for any strategy-proof and non-
bossy allocation mechanism f , any profile P , and any pair
of agents j1, j2, there is no bundle ~c that is contained in the
items allocated to j1, j2 by f such that both j1 and j2 prefer
~c to their bundles allocated by f , respectively.
Lemma 4 Let f be a strategy-proof and non-bossy alloca-
tion mechanism over a basic categorized domain with p ≥ 2
and n ≥ 2. For any profile P and any j1 6= j2 ≤ n,
let ~a = f j1(P ) and ~b = f j2(P ), there does not exist
~c ∈ {a1, b1} × {a2, b2} × · · · × {ap, bp} such that ~c �Rj1

~a

and ~c �Rj2

~b, where ai is the i-th component of ~a.
Proof: Suppose for the sake of contradiction that such a
bundle ~c exists for some P , j1, and j2. Let ~d denote the bun-
dle such that ~c ∪ ~d = ~a ∪ ~b. More precisely, for all i ≤ p,
{ci, di} = {ai, bi}. For example, if ~a = 1213,~b = 2431, and
~c = 1211, then ~d = 2433.

The rest of the proof derives a contradiction by proving
a series of observations illustrated in Table 1. In each step,
we prove that the boxed bundles are allocated to agent j1 and
agent j2 respectively, and all other agents get their top-ranked
bundles.
Step 1. Let R̂j1 = [~c � ~a � ~d � ~b � others], R̂j2 =

[~c � ~b � ~a � ~d � others], where “others” represents
an arbitrary linear order over the remaining bundles, and for
any j 6= j1, j2, let R̂j = [f j(P ) � others]. By Lemma 1,
f(P̂ ) = f(P ).
Step 2. Let R̄j2 = [~c � ~a � ~b � ~d � others] be a pushup
of ~a from R̂j2 . We will prove that f(R̄j2 , R̂−j2) = f(P̂ ) =

f(P ). Since R̄j2 is a pushup of ~a from R̂j2 , by Lemma 2,
f j2(R̄j2 , R̂−j2) is either ~a or ~b. We now show that the for-
mer case is impossible. Suppose for the sake of contradiction
f j2(R̄j2 , R̂−j2) = ~a, then f j1(R̄j2 , R̂−j2) cannot be ~c, ~a, or
~d since otherwise some item will be allocated twice. This



Table 1: The 6 steps in the proof for Lemma 4.
R̂j1 : ~c � ~a � ~d � ~b � others
R̂j2 : ~c � ~b � ~a � ~d � others
Other j : f j(P ) � others

Step 1

R̂j1 : ~c � ~a � ~d � ~b � others
R̄j2 : ~c � ~a � ~b � ~d � others
Other j : f j(P ) � others

Step 2

R̄j1 : ~c � ~b � ~a � ~d � others
R̄j2 : ~c � ~a � ~b � ~d � others
Other j : f j(P ) � others

Step 3

R̄j1 : ~c � ~b � ~a � ~d � others
R̊j2 : ~c � ~a � ~d � ~b � others
Other j : f j(P ) � others

Step 4

R̊j1 : ~c � ~a � ~b � ~d � others
R̊j2 : ~c � ~a � ~d � ~b � others
Other j : f j(P ) � others

Step 5

R̊j1 : ~c � ~a � ~b � ~d � others
R̄j2 : ~c � ~a � ~b � ~d � others
Other j : f j(P ) � others

Step 6

means that f(R̄j2 , R̂−j2) is Pareto dominated by the alloca-
tion where j1 gets ~d, j2 gets ~c, and all other agents get their
top-ranked bundles. This contradicts the Pareto-optimality of
f (Lemma 3). Hence f j2(R̄j2 , R̂−j2) = ~b = f j2(P̂ ). By
non-bossiness we have f(R̄j2 , R̂−j2) = f(P̂ ) = f(P ).

Step 3. Let R̄j1 = [~c � ~b � ~a � ~d � others] be a pushup of
~b from R̂j1 . We will prove that in f(R̄j1 , R̄j2 , R̂−{j1,j2}), j1
gets~b, j2 gets ~a, and all other agents get the same items as in
f(P ). Since R̄j1 is a pushup of ~b from R̂j1 , by Lemma 2,
f j1(R̄j1 , R̄j2 , R̂−{j1,j2}) is either ~a or ~b. We now show
that the former case is impossible. Suppose for the sake of
contradiction that f j1(R̄j1 , R̄j2 , R̂−{j1,j2}) = ~a. By non-
bossiness, f j2(R̄j1 , R̄j2 , R̂−{j1,j2}) = ~b. This means that
f(R̄j1 , R̄j2 , R̂−{j1,j2}) is Pareto-dominated by the allocation
where j1 gets ~b, j2 gets ~a, and all other agents get their top-
ranked bundles. This contradicts the Pareto-optimality of f
(Lemma 3).
Step 4. Let R̊j2 = [~c � ~a � ~d � ~b � others] be a pushup
of ~d from R̄j2 . By Lemma 1, f(R̄j1 , R̊j2 , R̂−{j1,j2}) =

f(R̄j1 , R̄j2 , R̂−{j1,j2}).

Step 5. Let R̊j1 = [~c � ~a � ~b � ~d � others] be a pushup of
~a from R̄j1 . We will prove that f(R̊j1 , R̊j2 , R̂−{j1,j2}) =

f(R̄j1 , R̊j2 , R̂−{j1,j2}). Since R̊j1 is a pushup of ~a from
R̄j1 , by Lemma 2, f j1(R̊j1 , R̊j2 , R̂−{j1,j2}) is either ~a or ~b.
We now show that the former case is impossible. Suppose
for the sake of contradiction that f j1(R̊j1 , R̊j2 , R̂−{j1,j2}) =

~a. Then in f(R̊j1 , R̊j2 , R̂−{j1,j2}), agent j2 cannot
get ~c, ~a, or ~d, which means that f(R̊j1 , R̊j2 , R̂−{j1,j2})
is Pareto-dominated by the allocation where j1 gets ~c,
j2 gets ~d, and all other agents get their top-ranked
bundles. This contradicts the Pareto-optimality of f .
Hence, f j1(R̊j1 , R̊j2 , R̂−{j1,j2}) = ~b. By non-bossiness
f(R̊j1 , R̊j2 , R̂−{j1,j2}) = f(R̄j1 , R̊j2 , R̂−{j1,j2}).

Step 6. We note that R̊j1 is a pushup of ~b from R̂j1 (and
~b is still below ~a). By Lemma 1, f(R̊j1 , R̄j2 , R̂−{j1,j2}) =

f(R̂j1 , R̄j2 , R̂−{j1,j2}). We note that the right hand side is
the profile in Step 2.
Contradiction. Finally, the observations in Step 5 and Step 6

imply that when agents’ preferences are R̊j1 and R̄j2 as in
Step 6, agent j2 has incentive to report R̊j2 as in Step 5 to
improve the bundle allocated to her (from ~b to ~a). This con-
tradicts the strategy-proofness of f and completes the proof
of Lemma 4. �

It is easy to check that any serial dictatorship satisfies
strategy-proofness, non-bossiness and category-wise neutral-
ity. We now prove that any mechanism f satisfying the three
axioms must be a serial dictatorship. Let R∗ be a linear order
over D that satisfies the following conditions:
• (1, . . . , 1) � (2, . . . , 2) � · · · � (n, . . . , n).
• For any j < n, the bundles ranked between (j, . . . , j)

and (j + 1, . . . , j + 1) are those satisfying the following two
conditions: (1) at least one component is j, and (2) all com-
ponents are in {j, j+1, . . . , n}. Let Bj denote these bundles.
Formally, Bj = {~d : ∀l, dl ≥ j and ∃l′, dl′ = j}.
• For any j and any ~d,~e ∈ Bj , if the number of j’s in ~d is

strictly larger than the number of j’s in ~e, then ~d � ~e.
The next claim states that f agrees with a serial dictatorship

on the profile (R∗, . . . , R∗) where all agents have the same
preferences R∗ that we have just defined. We will later show
that f agrees with the same serial dictatorship on all profiles.

Claim 1 Let P ∗ = (R∗, . . . , R∗). For any l ≤ n, there exists
jl ≤ n such that f jl(P ∗) = (l, . . . , l).

Proof: The claim is proved by induction on l. Let l =
1, for the sake of contradiction suppose there is no j1 with
f j1(P ∗) = (1, . . . , 1). Then there exist a pair of agents j and
j′ such that both ~a = f j(P ∗) and ~b = f j′(P ∗) contain 1 in
at least one category.

Let ~c be the bundle obtained from ~a by replacing items
in categories where ~b takes 1 to 1. More precisely, we let

~c = (c1, . . . , cp), where ci =

{
1 if ai = 1 or bi = 1
ai otherwise .

It follows that ~c �R∗ ~a and ~c �R∗
~b because the number

of 1’s in ~c is strictly larger than the number of 1’s in ~a and
~b. By Lemma 4, this contradicts the assumption that f is
strategy-proof and non-bossy. Hence there exists j1 ≤ n with
f j1(P ∗) = (1, . . . , 1).

Suppose that the claim is true for l ≤ l′. We next prove that
there exists jl′+1 such that f jl′+1(P ∗) = (l′ + 1, . . . , l′ + 1).
This follows after a similar reasoning to the l = 1 case. For-
mally, suppose for the sake of contradiction there does not



exist such a jl′+1. Then, there exist two agents who get ~a and
~b in f(P ∗) such that both ~a and~b contain l′+1 in at least one
category. By the induction hypothesis, items {1, . . . , l′} in all
categories have been allocated, which means that all compo-
nents of ~a and ~b are at least as large as l′ + 1. Let ~c be the
bundle obtained from ~a by replacing items in all categories
where~b takes l′ + 1 to l′ + 1. We have ~c �R∗ ~a and ~c �R∗

~b,
leading to a contradiction by Lemma 4. Therefore, the claim
holds for l = l′ + 1. This completes the proof of Claim 1. �

W.l.o.g. let j1 = 1, j2 = 2, . . ., jn = n denote the agents
in Claim 1. We next show that for all profiles, f agrees with
the serial dictatorship 1 B 2 B · · · B n. For any profile P ′ =

(R′1, . . . , R
′
n), we define n bundles as follows. Let ~d1 denote

the top-ranked bundle in R′1. For any l ≥ 2, let ~dl denote
agent l’s top-ranked available bundle supposing that items in
~d1, . . . , ~dl−1 have already been allocated. That is, ~dl is the
most preferred bundle in {~d : ∀l′ < l, ~d ∩ ~dl′ = ∅} according
to R′l. In other words, ~d1, . . . , ~dn are the bundles allocated to
agents 1 through n by the serial dictatorship 1B2 · · ·Bn. We
next prove that this is exactly the allocation by f .

For any i ≤ m, we define a category-wise permutation
Mi such that for all l ≤ n, Mi(l) = [~dl]i, where we recall
that [~dl]i is the item in the i-th category in ~dl. Let M =
(M1, . . . ,Mm). It follows that for all l ≤ n, M(l, . . . , l) =
~dl. By category-wise neutrality and Claim 1, in f(M(P ∗))

agent l gets M(f l(P ∗)) = ~dl.
Comparing M(P ∗) to P ′, we notice that for all l ≤ n and

all bundles ~e, if ~dl �M(R∗) ~e then ~dl �R′l
~e. This is because

if there exists ~e such that ~dl �M(R∗) ~e but ~e �R′l
~dl, then ~e is

still available after { ~d1, . . . , ~dl−1} have been allocated, and ~e

is ranked higher than ~dl in R′l. This contradicts the selection
of ~dl. By Lemma 1, f(P ′) = f(M(P ∗)) = M(f(P ∗)) =

(~d1, . . . , ~dn). We recall that by definition (~d1, . . . , ~dn) is the
output of the serial dictatorship 1B2 · · ·Bn. This proves that
f is the serial dictatorship w.r.t. the order 1B 2B · · ·B n. �
Remarks. The theorem is somewhat negative because it
shows that we have to sacrifice one of strategy-proofness,
category-wise neutrality, or non-bossiness. Among the three
axiomatic properties, we feel that non-bossiness is the least
natural one.

4 Categorial Sequential Allocation
Mechanisms

Given a linear orderO over {1, . . . , n}×{1, . . . , p}, the cate-
gorial sequential allocation mechanism (CSAM) fO allocates
the items in np steps as illustrated in Protocol 1. In each
step t, suppose the t-th element in O is (j, i), (equivalently,
t = O−1(j, i)). Agent j is called the active agent in step t
and she chooses an item dj,i that is still available from Di.
Then, dj,i is broadcast to all agents and we move on to the
next step.

1As one of the anonymous reviewers suggested, the order O does
not need to be broadcast in the beginning. This gives a better justifi-

Protocol 1: Categorial sequential allocation mecha-
nism (CSAM) fO.
Input: An order O over {1, . . . , n} × {1, . . . , p}.

1 Broadcast O to all agents.1
2 for t = 1 to np do
3 Let (j, i) be the t-th element in O.
4 Agent j chooses an available item dj,i ∈ Di.
5 Broadcast dj,i to all agents.
6 end

CSAMs are different from sequential allocation proto-
cols [5] and the draft mechanism [9], where in each step the
active agent can choose any available item from any category.
Example 2 The serial dictatorship w.r.t. K = [j1 B · · ·B jn]
is a CSAM w.r.t. (j1, 1)B(j1, 2)B· · ·B(j1, p)B· · ·B(jn, 1)B
(jn, 2)B · · ·B (jn, p). �

Similar to sequential allocation protocols [5], CSAMs
can be implemented in a distributed way. Communica-
tion cost for CSAMs is much lower than that for direct
mechanisms, where agents report their preferences in full
to the center, which requires Θ(npp log n) bits per agent,
and thus the total communication cost is Θ(np+1p log n).
For CSAMs, the total communication cost of Protocol 1 is
Θ(n2p log n + np(n log n)) = Θ(n2p log np), which has
Θ(np−2 · logn

logn+log p ) multiplicative saving. In light of this,
CSAMs preserve more privacy as well.

To analyze the outcome and efficiency of CSAMs, we con-
sider two types of myopic agents. For any 1 ≤ i ≤ p, we let
Di,t denote the set of available items in Di at the beginning
of round t.

• Optimistic agents. An optimistic agent chooses the item
in her top-ranked bundle that is still available.
• Pessimistic agents. A pessimistic agent j in round t

chooses an item dj,i from Di,t, such that for all d′i ∈ Di,t

with d′i 6= dj,i, agent j prefers the worst available bun-
dle whose i-th component is dj,i to the worst available
bundle whose i-th component is d′i.

In this paper, we assume that whether an agent is optimistic
or pessimistic is fixed before applying a CSAM.
Example 3 Let n = 3, p = 2. Consider the same profile as
in Example 1, which can be simplified as follows.

Agent 1 (optimistic): 12 � 21 � others � 11
Agent 2 (optimistic): 32 � others � 22

Agent 3 (pessimistic): 13 � others � 33 � 31 � 23

LetO = [(1, 1)B (2, 2)B (3, 1)B (3, 2)B (2, 1)B (1, 2)].
Suppose agent 1 and agent 2 are optimistic and agent 3 is
pessimistic. When t = 1, agent 1 (optimistic) chooses item
1 from D1. When t = 2, item 32 is the top-ranked available
bundle for agent 2 (optimistic), so she chooses 2 from D2.
When t = 3, the available bundles are {2, 3}×{1, 3}. If agent
3 chooses 2 from D1, then the worst-case available bundle is
23, and if agent 3 chooses 3 from D1, then the worst-case

cation for myopic agents and may also reduce manipulation.



available bundle is 31. Since agent 3 prefers 31 to 23, she
chooses 3 from D1. When t = 4, agent 3 chooses 3 from
D2. When t = 5, agent 2 choses 2 from D1 and when t = 6,
agent 1 choses 1 from D2. Finally, agent 1 gets 11, agent 2
gets 22, and agent 3 gets 33. �

5 Rank Efficiency of CSAMs for Myopic
Agents

For any linear order R over D and any bundle ~d, we
let Rank(R, ~d) denote the rank of ~d in R, such that
the highest position has rank 1 and the lowest position
has rank np. Given a profile P = (R1, . . . , Rn) and
a mechanism f , the rank efficiency of f is a vector
(Rank(R1, f

1(P )), . . . ,Rank(Rn, f
n(P ))) that is composed

of the ranks of bundles agents receive.
We recall that a CSAM fO is characterized by a linear or-

der over all (agent,category) pairs. Given fO, we introduce
the following notation for all j ≤ n to characterize the worst-
case rank efficiency of fO.
• Let Oj denote the linear order over the categories

{1, . . . , p} according to which agent j chooses items.
• For any i ≤ p, let kj,i denote the number of items in Di

that are still available right before agent j chooses from Di.
Formally, kj,i = 1 + |{(j′, i) : (j, i)BO (j′, i)}|.
• Let Kj denote the smallest index inOj such that no agent

can “interrupt” agent j from choosing all items in her top-
ranked bundle that is available in round (j,Oj(Kj)). For-
mally, Kj is the smallest number such that for any l with
Kj < l ≤ p, between the round when agent j chooses an item
from category Oj(Kj) and the round when agent j chooses
an item from category Oj(l), no agent chooses an item from
category Oj(l). We note that Kj is defined only by O and is
thus independent of agents’ preferences.
Example 4 Let O∗ = [(1, 1) B (1, 2) B (1, 3) B (2, 1) B
(2, 2) B (2, 3) B (3, 1) B (3, 2) B (3, 3)]. That is, fO∗ is a
serial dictatorship. Then O∗1 = O∗2 = O∗3 = 1 B 2 B 3.
K1 = K2 = K3 = 1. k1,1 = k1,2 = k1,3 = 3, k2,1 = k2,2 =
k2,3 = 2, k3,1 = k3,2 = k3,3 = 1.

Let O be the order in Example 3, that is, O = [(1, 1) B
(2, 2)B (3, 1)B (3, 2)B (2, 1)B (1, 2)].
O1 = 1 B 2. K1 = 2 because (2, 2) is between (1, 1) and

(1, 2) in O. k1,1 = 3, k1,2 = 1.
O2 = 2 B 1. K2 = 2 because (3, 1) is between (2, 2) and

(2, 1). k2,1 = 1, k2,2 = 3.
O3 = 1 B 2. K3 = 1 because no agent chooses an item

from D2 between (3, 1) and (3, 2). k3,1 = k3,2 = 2. �

Theorem 2 For any CSAM fO, any combination of opti-
mistic and pessimistic agents, any j ≤ n, and any profile:
• Upper bound for optimistic agents: if j is optimistic,

then the rank of the bundle allocated to her is at most
np + 1−

∏p
l=Kj

kj,Oj(l).

• Upper bound for pessimistic agents: if j is pessimistic,
then the rank of the bundle allocated to her is at most
np −

∑p
l=1(kj,Oj(l) − 1).

Moreover, there exists a profile P where the bounds for all
agents are simultaneously tight. For the same profile P , there

exists an allocation where at least n− 1 agents get their top-
ranked bundles, and the remaining agent gets her top-ranked
or second-ranked bundle.

Proof sketch: For any optimistic agents, the upper bound
is calculated by counting how many bundles must be ranked
below the final allocation once no agent can interrupt her
from choosing the top bundle (among available ones). For
pessimistic agents, in each step j we know that at least
kj,Oj(l) − 1 other bundles must be ranked below the final
allocation. The proof for the matching lower bounds is by
construction and is quite involved. Intuitively, the construc-
tion ensures that for all agents, the bundles mentioned in the
proof for the upper bounds are the only bundles ranked below
the final allocation. �

We note that Theorem 2 works for any combination of op-
timistic and pessimistic agents, which is much more general
than the setting with all-optimistic agents and the setting with
all-pessimistic agents.

Theorem 2 can be used to compare various CSAMs with
optimistic and pessimistic agents. Given a CSAM fO, the
worst-case utilitarian rank is the worst (largest) total rank of
the bundles (w.r.t. respective agent’s preferences) allocated
by fO. The worst-case egalitarian rank is the worst (largest)
rank of the least-satisfied agent. The worst case is taken over
all profiles of n agents. Due to the space limit, we only
present one proposition without proof.
Proposition 1 Among all CSAMs, serial dictatorships with
all-optimistic agents have the best worst-case utilitarian rank
and the worst worst-case egalitarian rank.

The proposition is proved by applying Theorem 2. For any
serial dictatorship with all-optimistic agents, the worst-case
utilitarian rank is n(np + 1) −

∑n
j=1 j

p and the worst-case
egalitarian rank is np (when all agents have the same prefer-
ences).

6 Summary and Future Work
We have initiated a research agenda to study item allocation
in categorized domains. There are many open questions and
directions for future research, including strategic agents and
minimax-regret agents. We also plan to work on theoretical
analysis of the expected utilitarian rank and egalitarian rank
for randomized allocation mechanisms. For general CDAPs,
we are excited to explore generalizations of CP-nets [3], LP-
trees [2], and soft constraints [26] for preference representa-
tion. Based on these new languages we can analyze fairness
and computational aspects of CSAMs and other mechanisms.
Mechanism design for CDAPs with sharable, non-sharable,
and divisible items is also an important and promising topic
for future research.
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