Combining Voting Rules Together

Nina Narodytska' and Toby Walsh? and Lirong Xia?

Abstract. We propose a simple method for combining together vot-
ing rules that performs a run-off between the different winners of
each voting rule. We prove that this combinator has several good
properties. For instance, even if just one of the base voting rules has
a desirable property like Condorcet consistency, the combination in-
herits this property. On the other hand, some important properties
can be lost by the introduction of a run-off, including monotonicity
and consistency. In addition, we prove that combining voting rules
together in this way can make finding a manipulation more compu-
tationally difficult.

1 INTRODUCTION

An attractive idea in the Zeitgeist of contemporary culture is “The
Wisdom of Crowds” [9]. This is the idea that, by bringing together
diversity and independence of opinions, groups can be better at mak-
ing decisions than the individuals that make up the group. For exam-
ple, in 1907 Galton observed the wisdom of the crowd at guessing
the weight of an ox in the West of England Fat Stock and Poultry Ex-
hibition. The median of the 787 estimates was 1207 1b, within 1% of
the correct weight of 1198 1b. We can view different voting rules as
having different opinions on the “best” outcome to an election. We
argue here that it may pay to combine these different opinions to-
gether. We provide theoretical evidence for this thesis. We argue that
a combination of voting rules can inherit a desirable property like
Condorcet consistency when only one of the base voting rules is it-
self Condorcet consistent. We also prove that combining voting rules
together can make strategic voting more computationally difficult.

1.1 RELATED WORK

Different ways of combining voting rules to make manipulation com-
putationally hard have been investigated recently. Conitzer and Sand-
holm [4] studied the impact on the computational complexity of ma-
nipulation of adding an initial round of the Cup rule to a voting rule.
This initial round eliminates half the candidates and makes manipu-
lation NP-hard to compute for several voting rule including plurality
and Borda. Elkind and Lipmaa [7] extended this idea to a general
technique for combining two voting rules. The first voting rule is run
for some number of rounds to eliminate some of the candidates, be-
fore the second voting rule is applied to the candidates that remain.
They proved that many such combinations of voting rules are NP-
hard to manipulate. Note that theirs is a sequential combinator, in
which the two rules are run in sequence, whilst ours (as we will see
soon) is a parallel combinator, in which the two rules are run in par-
allel. More recently, Walsh and Xia [10] showed that using a lottery

1 NICTA and UNSW, Sydney, Australia, email: ninan @cse.unsw.edu.au
2 NICTA and UNSW, Sydney, Australia, email: toby.walsh@nicta.com.au
3 Harvard University, Cambridge, MA, USA, email: Ixia@seas.harvard.edu

to eliminate some of the voters (instead of some of the candidates) is
another mechanism to make manipulation intractable to compute.

2 VOTING RULES

Voting is a general mechanism to combine together the preferences
of agents. Many different voting rules have been proposed over the
years, providing different opinions as to the “best” outcome of an
election. We formalise voting as follows. Let C = {c1,...,¢cm} be
the set of candidates (or alternatives). A profile P is a sequence of n
total orders over m candidates C'. That is, P = (V4,..., V,), where
for every j < n, Vjisatotal orderon C: V; = (¢j, > ... > ¢j,,)-
A voting rule is a function mapping a profile P onto one candidate,
the winner. Let Np(i,7) be the number of voters preferring 4 to j
in P. Where P is obvious from the context, we write N (4, j). Let
beats(i, j) be 1 iff N(i,j) > 5 and O otherwise. We consider some
of the most common voting rules.

o Positional scoring rules: Given a scoring vector (w1, . . ., Wy) of
weights, where wq > wg > -+ > w,, and w1 > wm, the ith can-
didate in a vote scores w;, and the winner is the candidate with high-
est total score over all the votes. The plurality rule has the weight

vector (1,0, ...,0), the veto rule has the vector (1,1,...,1,0), the
k-approval rule has the vector (1,...,1,0...,0) containing k s,
and the Borda rule has the vector (m — 1,m — 2,...,0).

o Cup: The winner is the result of a series of pairwise majority elec-
tions between candidates. Given the agenda, a binary tree in which
the roots are labelled with candidates, we label the parent of two
nodes by the winner of the pairwise majority election between the
two children. The winner is the label of the root.
e Copeland: The candidate with the highest Copeland score
wins. The Copeland score of candidate 4 is ., beats(i, j). The
Copeland winner is the candidate that wins the most pairwise elec-
tions.
e Maximin: The maximin score of candidate 7 is min;; N (4, j). The
candidate with the highest maximin score wins.
o Single Transferable Vote (STV): This rule requires up to m — 1
rounds. In each round, the candidate with the least number of voters
ranking his/her first is eliminated until one of the remaining candi-
dates has a majority.
e Bucklin (simplified): The Bucklin score of a candidate is the
smallest &k such that the k-approval score of the candidate is strictly
larger than n/2. The candidate with the smallest Bucklin score wins.
Note that in some cases, there can be multiple winning candidates
(e.g. multiple candidates with the highest Borda score). We there-
fore may also need a tie-breaking mechanism. All above voting rules
can be extended to choose a winner for profiles with weights. In this
paper, we study the manipulation problem (with weighted votes), de-
fined as follows.

Definition 1 /n a manipulation problem, we are given an instance

NM ,=NM M . . NM
(r, PYY , ¢ k™), where 1 is a voting rule, P is the
non-manipulators’ profile, WN™ represents the weights of PN™M,

c is the alternative preferred by the manipulators, k is the num-
ber of manipulators, and WM = (w1, ..., wy) represents the
weights of the manipulators. We are asked whether there exists a

profile PM of indivisible votes for the manipulators such that ¢ €
P((PNM, P, (@Y),

When all weights equal to 1, the problem is called manipulation with
unweighted votes. In this paper, we assume that the manipulators
controls the tie-breaking mechanism, that is, all ties are broken in
favor of c.

A large number of normative properties that voting rules might
possess have been put forward including the following.
e Unanimity: If a candidate is ranked in the top place by all voters,
then this candidate wins.
e Monotonicity: If we move the winner up a voter’s preference or-
der, while keeping preferences unchanged, then the winner should
not change.
e Consistency: If two sets of votes select the same winner then the
union of these two sets should also select the same winner.
e Majority criterion: If the majority of voters rank a same candidate
at the top, then this candidate wins.
e Condorcet consistency: If a Condorcet winner exists (a candidate
who beats all others in pairwise elections) then this candidate wins.
e Condorcet loser criterion: If a Condorcet loser exists (a candidate
who is beaten by all others in pairwise elections) then this candidate
does not win.

Such properties can be used to compare voting rules. For example,
whilst STV satisfies the majority criterion, Borda does not. On the
other hand, Borda is monotonic but STV is not.

3 VOTING RULE COMBINATOR

We consider a simple combinator, written 4+, for combining together
two or more voting rules. This combinator collects together the set
of winners from the different rules. If all rules agree, this is the over-
all winner. Otherwise we recursively call the combination of vot-
ing rules on the original profile that is restricted to this set of win-
ning candidates. If the recursion does not eliminate any candidates,
we call some tie-breaking mechanism on the remaining candidates.
For example, plurality 4+ veto collects together the plurality and
veto winners of an election. If they are the same candidate, then
this is the winner. Otherwise, there is a runoff in which we call
plurality 4+ veto on the plurality and veto winners. As both plu-
rality and veto on two candidates compute the majority winner, the
overall winner of plurality 4 veto is the winner of a majority elec-
tion between the plurality and veto winners.

This combinator has some simple algebraic properties. For exam-
ple, it is idempotent and commutative. That is, X + X = X and
X +Y =Y + X. It has other more complex algebraic properties.
For example, (X +Y)+ X =X 4Y.

In addition, many normative properties are inherited from the base
voting rules. Interestingly, it is sometimes enough for just one of the
base voting rules to have a normative property for the composition to
have the same property.

Proposition 1 For unanimity, the majority criterion, Condorcet
consistency, and the Condorcet loser criterion, if one of X1 to
Xy and the tie-breaking mechanism satisfy the property, then
X1+ ... 4+ Xy also satisfy the same property.

On the other hand, there are some properties which can be lost by
the introduction of a run-off.

Proposition 2 (Monotonicity) Plurality and Borda are both
monotonic but plurality + Borda is not.

Proof: Suppose we have 6 votes for b > ¢ > a, 4 votes for ¢ >
a > b, and 3 votes for a > b > c and 3 votes for a > ¢ > b.
Tie-breaking for both Borda and plurality is ¢ > a > b. Now c is
the Borda winner and a is the plurality winner. By tie-breaking, ¢
wins the run-off. However, if we modify one vote for a > ¢ > b to
¢ > a > b, then b becomes the plurality winner and wins the run-off.
Hence, plurality + Borda is not monotonic. O

We give a stronger result for consistency. Scoring rules are consis-
tent, but the combination of any two different scoring rules is not. By
“different rules” we mean that there exists a profile for which these
two rules select different winners, each of which has the strictly high-
est score. If two scoring rules are different, then their scoring vectors
must be different. We note that the reverse is not true.

Proposition 3 (Consistency) Let X and Y be any two different
scoring rules, then X + Y is not consistent.

Proof: Let s(P,a) and r(P,a) be the score given to candidate
a by X and Y in profile P respectively. Since X and Y are dif-
ferent, there exists P’ over a; to a,, such that X on P; selects
a1 and Y on P; selects az. Then s(Pi,a1) > s(Pi,a2) but
r(P1,a1) < r(P1,a2). WLOG suppose a; beats ap in pairwise
elections in P; and tie breaking elects a; in favour of as when
they have the same top score. Let P> consist of m votes Vi to V;,
where for 7 < m, V; ranks a2 in ith place and a; in 7 + 1th
place, and V,,, ranks a; in Ist place and a2 in last place. Then
$(P2,a1) = s(P2,a2) and r(P2,a1) = r(Ps,a2). Let k be such
that k(r(Pr,a2) —7(P1,a1)) > 7(Vin,a1) — 7(Vin, az2), and Ps be
the following profile of cyclic permutations: a1 > a2 > az > ... >
Am, Q1 > A2 > A4 > ... = Q3,...,A1 > A2 > Ay 7= .. > Am—1,
az > a1 = a3z > ... > AQm, Q2 > a1 > A4 > ... = A3, ...,
az > a1 > Gm > ... > am—1. Let Py be k copies of P, and Ps be
km copies of Py, V,, and km/|P;| copies of Ps. Now X + Y on P
or Ps selects a1 as winner. But X + Y on P, U Ps selects az. O

The next proposition characterizes pairs of different positional
scoring rules.

Proposition 4 Let s and r be two positional scoring rules whose
scoring vectors are § = (s1,...,8m) and ¥ = (r1,...,Tm) respec-
tively. s and r are different if and only if there does not exist a, f € R
where o > 0 such that § = aF + .

Proof: The “only if” part is straightforward: if & = o7 + /3 where
a > 0, then for any profile P and any candidate ¢, s(P,c) =
ar (P, c) + . Therefore, if ¢ has strictly the highest score for s, then
c also has strictly the highest score for r, which means that s and r
are not different.

We now prove the “if” part. First, because s1 > s,,, and 71 > 7y,
there does not exist & < 0 and 3 such that § = a7 + §. Therefore,
if for any «, 8 we have § = a + (3, then there exist two pairs
of positions (41,%2) and (i, 72) where 41 < iz and i) < 5, such
T e L R
— S;/ T

. We note that in this case m > 3. We
/ — T
i 2

construct a profile P = P; U P» as follows.
Py is a profile where s(Pi,c1) > s(Pi,c2) and r(Pi,c1) <

r(P1,c). WLOG 22— %2 o 70 7T yor 7 7 be two natu-

S;r — S;1 Ty — Ty
1 2 1 2

;!
*1

ral numbers such that S T Sip > Z > M Let V1 (re-
sy — Sy T T =Ty

spectively, V) denote the vote where c; (respectively, cz) is ranked
in the i1th (respectively, 4 th) position and ca (respectively, c1) is
ranked in the i2th (respectively, i5th) position. The other candidates
in V1 and V{ are ranked arbitrarily. Let P, = {T" - V1 } U {T - V{ }.
We have s(P1, c1) = s(Pr,c2) = T'(si;, — 8ip) = T(si; — 83) >0
and T(Pl, Cl) — T‘(Pl,CQ) = T’(’f’il — TZ‘Q) — T(TZI1 — ’I“,LIQ) < 0.

We now define P». Let M denote the cyclic permutation among
{c3y...,cm}, thatis, M : ¢3 — ¢4 — -+ — cm — c3, Let
V=la>=c= " >=cu,V =lc>c = = cm
and P* = {V, V', M(V),MV"),...,M™3V),M™3V")}.
Since s1 > Sm and r1 > 7., we have that for any ¢ > 3,
s(P*,c1) = s(P*,c2) > s(P*,¢;). Let P = (T +T' 4+ 1) - P*.

Let P = Py U P», we have that ¢; (respectively, c2) has the strictly
highest score in P for § (respectively, 7*), which means that s is dif-
ferent from r. O

It follows immediately from Proposition 3 and Proposition 4 that
plurality + Borda is not consistent.

The combinator also does not satisfy a number of algebraic prop-
erties. The first property is that the combinator is not associative.

Proposition 5 There exists voting rules X, Y and Z for which (X +
Y+ Z#X+ (Y +2).

Proof: Consider the three rules X, Y and Z that elect the plurality
winner, and when there is tied plurality winner, X elects x before
any other candidate, Y elects y and Z elects z. Suppose we have a
Condorcet cycle with one vote forz > y > z,onefory > 2z > =
and one for z > = > y. Then X +Y elects z, and thus (X +Y) + Z
elects z. Similarly, Y + Z elects y, and thus X + (Y + Z) elects z.
O
The combinator does not distribute over itself.

Proposition 6 There exists voting rules X, Y and Z for which (X +
YN+ Z#(X+2)+ (Y + 2).

Proof: Consider the same three rules and set of votes. Then (X +
Y) + Z elects z as before. Now, X + Z elects z, Y + Z elects y,
and thus (X + Z) + (Y + Z) elects z. O

There is no majority consistent voting rule that acts as an identity.

Proposition 7 There does not exist a majority consistent voting rule
1 such that for any voting rule X, we have X + I = X.

Proof: Consider the same three rules and set of votes. The proof uses
contradiction. Suppose X + 1 = X, Y+ I =Y and Z+1 = Z.
As X 4+ I = X, it must be that I elects « or some candidate that x
beats (which is only y). As Y 4+ I = Y, it must be that I elects y
or some candidate that y beats (which is only z). The only candidate
common to the two cases is y. Therefore, I must elect y given these
votes. As Z + I = Z, it must be that I elects z or some candidate
that z beats (which is only x). This is a contradiction. O

4 STRATEGIC VOTING

Combining voting rules together can hinder strategic voting. One
appealing escape from the Gibbard-Satterthwaite theorem was pro-
posed by Bartholdi, Tovey and Trick [2]. Perhaps it is computation-
ally so difficult to find a successful manipulation that voters have
little option but to report their true preferences? As is common in
the literature, we consider two different settings: unweighted votes

where the number of candidates is large and we have just one or
two manipulators, and weighted votes where the number of candi-
dates is small but we have a coalition of manipulators. Whilst un-
weighted votes are perhaps more common in practice, the weighted
case informs us about the unweighted case when we have probabilis-
tic information about the votes [5]. Since there are many possible
combinations of common voting rules, we give a few illustrative re-
sults covering some of the more interesting cases. With unweighted
votes, we prove that computational resistance to manipulation is typ-
ically inherited from the base rules. With weighted votes, our results
are stronger. We prove that there are many combinations of voting
rules where the base rules are polynomial to manipulate but their
combination is NP-hard. Combining voting rules thus offers another
mechanism to make manipulation more computationally difficult.

A FIRST OBSERVATION

It seems natural that the combination of voting rules inherits the com-
putational complexity of manipulating the base rules. However, there
is not a simple connection between the computational complexity of
the bases rules and their combination. In this section, we show two
examples of artificial voting rules to illustrate this discrepancy. In
the first example, manipulation for the base rules are NP-hard, but
manipulation for their combination can be computed in polynomial-
time; in the second example, manipulation for the base rules are in P,
but manipulation for their combination is NP-hard to compute.

Proposition 8 There exist voting rules X and Y for which com-
puting a manipulation is NP-hard but computing a manipulation of
X 4Y is polynomial.

Proof: We give a reduction from (1 in 3)-SAT on positive clauses.
Boolean variables 1 to n are represented by the candidates 1 to n.
We also have two additional candidates 0 and —1. Any vote with O
in first place represents a clause. The first three candidates besides
0 and —1 are the literals in the clause. Any vote with —1 in first
place represents a truth assignment. The positive literals in the truth
assignment are those Boolean variables whose candidates appear be-
tween —1 and O in the vote. With 2 candidates, X and Y both elect
the majority winner. With 3 or more candidates, X elects candidate
—1 if there is a truth assignment in the votes that satisfies exactly
one out of the three literals in each clause represented by the votes
and otherwise elects 0. Computing a manipulation of X is NP-hard.
Similarly, with 3 or more candidates, Y elects candidate O if there is
a truth assignment in the votes that satisfies exactly one out of the 3
literals in every clause represented by the votes and otherwise elects
—1. Computing a manipulation of Y is NP-hard. However, X + Y
is polynomial to manipulate since 0 and —1 always go through to the
runoff where the majority candidate wins. O

Proposition 9 There exist voting rules X and Y for which comput-
ing a manipulation is polynomial but computing a manipulation of
X +Y is NP-hard.

Proof: The proof uses a similar reduction from (1 in 3)-SAT on posi-
tive clauses. With 2 candidates, X and Y both elect the majority win-
ner. With 3 or more candidates, X elects candidate —1 if there is a
truth assignment in the votes that satisfies at least one out of the three
literals in each clause represented by the votes and otherwise elects
0, whilst Y elects candidate —1 if there is a truth assignment in the
votes that satisfies at most one out of the three literals in each clause

represented by the votes and otherwise elects 0. Computing a manip-
ulation of X or Y is polynomial since we can simply construct either
the vote that sets each Boolean variable to true or to false. However,
computing a manipulation of X + Y as it may require solving a (1
in 3)-SAT problem on positive clauses. O

UNWEIGHTED VOTES, TRACTABLE CASES

If computing a manipulation of the base rules is polynomial, it of-
ten remains polynomial to compute a manipulation of the combined
rules. However, manipulations may now be more complex to com-
pute. We need to find a manipulation of one base rule that is com-
patible with the other base rules, and that also wins the runoff. We
illustrate this for various combinations of scoring rules.

Proposition 10 Computing a manipulation of plurality + veto is
polynomial.

Proof: We present a polynomial-time algorithm that checks whether
k manipulators can make ¢ win in the following two steps: we first
check for every candidate a, whether the manipulators can make c to
be the plurality winner for P U M while a is the veto winner, and ¢
beats a in the runoff (or ¢ = a). Then, we check for every candidate
a whether the manipulators can make c to be the veto winner while
a is the plurality winner, and c beats a in the runoff.

For the first step, let .S be a subset of candidates that beat a in P
under veto. We denote A as the difference in the veto score of s,
s € S, and a in P. If the veto scores are equal and s > a in the
tie-breaking rule then we set As = 1.If 37 _o A > k then a can
not win under veto. Otherwise, we place s in last positions in exactly
A manipulator votes. This placing is necessary for a to win under
veto. We place c in the first position and a in the second position
in all votes in M. We fill the remaining positions arbitrarily. This
manipulation is optimal under an assumption that a wins under veto
as cis always placed in the first position. For each possible candidate
for a, we check if such a manipulation is possible and check if c is
the winner of the run-off round. If we find a manipulation we stop.
The special case when a = c is analogous.

For the second step, let b be the candidate with maximum
plurality score in P. We denote A, to be the difference in the
plurality scores of b and a. We place a in the A, first positions in
the manipulator votes. The condition is necessary for a to win under
plurality. We put a in the second position in the remaining votes.
We put ¢ in the second position after a in A, manipulator votes and
put ¢ in the first position in the remaining k — A, votes. To ensure
that ¢ wins under veto we perform the same procedure as above. The
only simplification is that we do not need to worry about tie-breaking
rule as ¢ wins tie-breaking by assumption. We fill the remaining po-
sitions arbitrarily. This manipulation is optimal under an assumption
that a wins under plurality, as c is placed in the first position unless
a has to occupy it. For each possible candidate a we check if such
a manipulation is possible and check if c is the winner of the run-
off round. If we find a manipulation we stop. Otherwise, there is no
manipulation. O

It is also in P to decide if a single agent can manipulate an elec-
tion for any combination of scoring rules. Interestingly, we can use a
perfect matching algorithm to compute this manipulation.

Proposition 11 Computing a manipulation of X + 'Y is polynomial
for a single manipulator and any pair of scoring rules, X and 'Y .

Proof: Suppose there is a manipulating vote v such that ¢ wins
P U {v} under X +Y. Let X and Y have the scoring vectors

(z1,...,Zm) and (y1,...,Ym). As is common in the literature, we
assume tie-breaking is in favour of c. Suppose ¢ wins under X in a
successful manipulation. The case that ¢ wins under Y is dual. Sup-
pose another candidate a wins under Y, c is placed at position ¢ and
a is placed at position j in v. We show how to construct this vote if
it exists by finding a perfect matching in a bipartite graph. For each
candidate besides c and a, we introduce a vertex in the first partition.
For each position in [1,m] \ {i, 7} we introduce a vertex in the sec-
ond partition. For each candidate ¢ besides ¢ and @ we connect the
corresponding vertex with a vertex t in the second partition iff (1)
the score of cx in P under X less the score of ¢ in P under X is less
than or equal to z; — xx, and (2) the score of ¢ in P under Y less
the score of a in P under Y is less than or equal to y; — y, or if two
differences are equal then a is before cy, in the tie-breaking rule. In
other words, we look for a placement of the remaining candidates in
v such that ¢ wins in P U {v} under X, a wins in P U {v} under
Y, cis at position ¢ and a is at position j in v. There exists a perfect
matching in this graph iff there is a manipulating vote that satisfies
our assumption. If a = ¢, the reasoning is similar but we only need
to fix the position of c. Using this procedure, we check for each can-
didate a and for each pair of positions (3, j) if there exists a vote v
such that ¢ wins in PU{v} under X, a wins in PU{v} under Y, cis
at position ¢ and a is at position j in v. If such a vote exists, we also
check if c beats a in the run-off round. If c loses to a in the run-off
for all combinations of a and (%, j) then no manipulation exists. O

UNWEIGHTED VOTES, INTRACTABLE CASES

We begin with combinations involving STV. This was the first com-
monly used voting rule shown to be NP-hard to manipulate by a sin-
gle manipulator [1]. Not surprisingly, even when combined with vot-
ing rules which are polynomial to manipulate like plurality, veto, or
k-approval, manipulation remains NP-hard to compute.

Proposition 12 Computing a manipulation of X + STV is NP-
hard for X € {plurality, k-approval, veto, Borda} for one ma-
nipulator.

Proof: (Sketch) Consider the NP-hardness proof for manipulation
of STV [1]. We denote the profile constructed in the proof P. The
main idea is to modify P so that the preferred candidate ¢ can win
under X + STV iff ¢ can win the modified election under STV For
reasons of space, we illustrate this for X = Borda. Other proofs are
similar. Candidate w (who is the other possible winner of P) has the
top Borda score. Hence, ¢ must win by winning the STV election
(which is possible iff there is a 3-cover). We still have the problem
that w beats c in the run-off. Hence, we introduce a dummy candidate
¢’ after c in each vote. This makes sure that the score of ¢’ is greater
than or equal to (n — 6)| P|. We also introduce G = | 21| blocks of

n

n votes. Let P’ = JS_ U™, (¢’ = ¢ = ... = ¢i—1). The Borda
score of g’ in P U P’ is greater than that of any other candidate. In
an STV election on P U P’, g’ reaches the last round. Therefore,
the elimination order remains determined by the votes in P. Hence,
if there is a 3-cover, the candidate c can reach the last round. In the
worst case, when |P| is divisible by n, the plurality scores of ¢ and
g’ are the same and ¢ wins by tie-breaking. O

We turn next to combinations of Borda voting, where it is NP-hard
to manipulate with two manipulators [6, 3].

Proposition 13 Computing a manipulation of X + Borda by two
manipulators is NP-hard for X € {plurality, k-approval, veto}

Proof: (Sketch) Consider the NP-hardness proof for manipulation
of Borda which uses a reduction from the permutation sums problem
[6]. Due to the spaces constraint, we consider only veto + Borda.
Other proofs are similar but much longer and more complex. The re-
duction uses the following construction to inflate scores to a desired
target. To increase the score of candidate ¢; by 1 more than candi-
dates ¢,c1...,¢Ci—1,Cit+1,--.,cn—1 and by 2 more than candidate
¢, we consider the following pair of votes:

Ci>=Cp™>Cl 7> ... Cpn—1
Cn—1 > Cp—2 > ...=C1 > Ci > Cn,

We change the construction by putting ¢ in the last place in the
first vote in each pair of votes and first place in the second vote, and
leaving all other candidates unchanged when we increase the score
of ¢; # c¢ by one. This modification does not change the desired
properties of these votes. Note that ¢ and ¢,, cannot be winners under
veto. Hence, ¢ must win under Borda and then win the run-off. This
is possible iff there exists a solution for permutation sums problem.
O

WEIGHTED VOTES, TRACTABLE CASES

We focus on elections with weighted votes and 3 candidates. This
is the fewest number of candidates which can give intractability. All
scoring rules besides plurality (e.g. Borda, veto, 2-approval) are NP-
hard to manipulate in this case [8]. We therefore focus on combi-
nations of the voting rules: plurality, cup, Copeland, maximin and
Bucklin. Computing a manipulation of each of these rules is poly-
nomial in this case. We were unable to find a proof in the literature
that Bucklin is polynomial to manipulate with weighted votes, so we
provide one below.

Proposition 14 Computing a manipulation of Bucklin is polyno-
mial with weighted votes and 3 candidates.

Proof: It is always optimal to place the preferred candidate c in the
first position as this only decreases the scores of the other 2 candi-
dates, a and b. We argue that the winner is chosen in one of the first
two rounds. In the first round, if ¢ still loses to a or b then there is no
manipulation that makes ¢ win. In the second round, we must have
at least one candidate with a majority. Suppose we did not. Then the
sum of scores of the 3 candidates is at most 3n/2. But the sum of the
approval votes is 2n which is a contradiction. Hence, if ¢ does not get
a majority in this round, one of the other candidates wins regardless
of the manipulating votes. O

We recall that in this paper all ties are broken in favor of ¢, which
is crucial in the proof of the above proposition. In fact, we can show
that if some other tie-breaking mechanisms are used, then Bucklin is
hard to manipulate with weighted votes, even for 3 candidates.

We next identify several cases where computing a manipulation
for combinations of these voting rules is tractable.

Proposition 15 Computing a manipulation of Copeland + cup, or
of Copeland + Bucklin is polynomial with weighted votes and 3
candidates.

Proof: First we consider the outcome of ¢ vs a and ¢ vs b assuming
that c is ranked at the first position by all manipulators.

Case 1. Suppose c is a Condorcet loser. In this case, ¢ can only win
if ¢ wins under both C'opeland and Y. However, ¢ must lose under
Copeland because C'opeland never elects the Condorcet loser.

Case 2. Suppose c is a Condorcet winner. Then c is a winner of
both rules as they are both Condorcet consistent.

Case 3. Suppose there exists a candidate a such that
Npum(a,c¢) > Npum(e,a) and Npunm(b,c) < Npum(c,b)
even if c is ranked first by all manipulators. We argue that if there
is a manipulation, then all manipulators can vote ¢ > b > a.
We consider the case that ¢ wins under Copeland and b wins un-
der cup. The other cases (b wins under Copeland, ¢ wins under
Bucklin, etc.) are similar. For ¢ to win under Copeland, all can-
didates must to have the C'opeland score of 0 as, by assumption, ¢
loses to a. Hence, the maximum Copeland score of ¢ is 0. There-
fore, for ¢ to win the following holds Ngua (b, a) > Ngum(a,b)
and Nguam(c,b) > Ngum (b, ¢). The only possible agenda is a vs
¢, and the winner playing b. In all other agendas, b loses to ¢ in one
of the rounds. For b to win cup, Npun(b,a) > Npunm(a,b) and
tie-breaking has ¢ > b > a. The manipulation vote ¢ > b > a will
only help achieve the inequalities in both cases. O

Proposition 16 Computing a manipulation of Bucklin + cup is
polynomial with weighted votes and 3 candidates.

Proof: We consider three possible outcomes of pairwise comparison
between c vs a and ¢ vs b assuming that c is ranked at the first position
by all manipulators.

Case 1. Suppose c is a Condorcet loser after the manipulation. ¢
can only win overall if ¢ wins under both Bucklin and cup. How-
ever, ¢ must lose under cup.

Case 2. Suppose c is a Condorcet winner. Then ¢ must be a winner
of cup as this is Condorcet consistent. Hence, regardless of the rest
of the manipulating votes, c reaches the run-off round and beats any
other candidate.

Case 3. Suppose there exists candidate a such that Npuas(a, ¢) >
Npunm(c,a) and Npuar(b,¢) < Npum(e,b). Note that M must
guarantee that a does not reach the run-off round as c loses to a in
the pairwise elections. There are two sub-cases: ¢ wins under cup
and b wins under Bucklin in P U M, or b wins under cup and ¢
wins under Bucklin. As shown in the proof of the last Proposition,
if there is a manipulation, ¢ > b > a will work in both cases. O

WEIGHTED VOTES, INTRACTABLE CASES

We continue to focus on combinations of the voting rules: plurality,
cup, Copeland, maximin and Bucklin. We give several results which
show that there exists combinations of these voting rules where ma-
nipulation is intractable to compute despite the fact that all the base
rules being combined are polynomial to manipulate. These results
provide support for our argument that combining voting rules is a
mechanism to increase the complexity of manipulation.

Proposition 17 Computing a manipulation of plurality + Y where
Y € {cup, Copeland, maximin, Bucklin}, is NP-complete with
weighted votes and 3 candidates.

Proof: (Sketch) We consider the case plurality + cup. Other
proofs are similar but longer. We reduce from a PARTITION prob-
lem in which we want to decide if integers k; with sum 2K divide
into two equal sums of size K. Consider the following profile:

4K a>=b>c 4K a>=c>b
1K bs=a>c 9K b=c>a

For each integer k;, we have a member of the manipulating coalition
with weight 2k;. The tie-breaking rule is ¢ > a > b. The cup has a

play b, and the winner meets c. Note that b cannot reach the run-off as
they beat c in pairwise elections whatever the manipulators do. Note
that ¢ cannot win the plurality rule. Hence a must be the plurality
winner. The run-off is a, the plurality winner against ¢, the cup
winner (which is the same as the final round of the cup). For this to
occur, the manipulators have to partition their votes so that exactly
2K manipulators put ¢ above a and 2K put a in the first position
(and above ¢).* Therefore there exists a manipulation iff there exists
a partition. O.

Proposition 18 Computing a manipulation of Copeland+Y
where Y € {plurality, mazximin}, is NP-complete with weighted
votes and 3 candidates.

Proof: (Sketch) We consider the case Copeland + plurality.
Other proofs are similar but longer. We again reduce from a PAR-
TITION problem. Consider the following profile:

TK bs=cra K brarc
4K a=c+b 2K axbrc
1 ¢c-axb

For each integer k;, we have a member of the manipulating coali-
tion with weight 2k;. Now, b must not reach the run-off round and
a must win plurality by similar arguments to the last proof. Hence
¢ must be the Copeland winner. For this to occur, the manipulators
have to partition their votes so that exactly 2K manipulators put ¢
above a, 2K manipulators put ¢ in the first position (and above c)
and put b in the last position in all votes. Therefore there exists a
manipulation iff there exists a partition. O

Proposition 19 Computing a manipulation of mazimin +Y
whereY € {plurality, cup, Copeland, Bucklin}, is NP-complete
with weighted votes and 3 candidates.

Proof: (Sketch) We consider the case maximin + plurality.
Other proofs are similar but longer. We reduce from a PARTITION
problem in which we want to decide if integers k; with sum 2K di-
vide into two equal sums of size K. Consider the following profile:

4K b>c>a 2K b>c>a

2K axbsc 2K a=csb

For each integer k;, we have a member of the manipulating coali-
tion with weight 2k;. Now, b must not reach the run-off round and a
must win plurality by similar arguments to the last proof. Hence ¢
must be the maximin winner. For a to win plurality, manipulators
with total weight at least 2K must rank a first. Before the manipu-
lators vote, the mazimin score of a is 4K, of b is 6K and of c is
2K. We note that ¢ must be ranked above b in all manipulators votes
and above a in 2K manipulators votes, otherwise c loses to b under
maximin. As 2K manipulators must vote a > ¢ > b, we have
NpuM(a, b) Z 6K, NpuM(C, b) Z 4K and Npuju(a, C) Z 6K.
This increases the mazimin score of a to 6 K and of cto 4K. Now ¢
must be ranked above a in at least 2 K manipulators votes to increase
its maximin score to 6 K. Hence, the only possible option is if 2K
manipulators vote @ > ¢ > b and 2K vote and ¢ > a > b with
weight 2K. In this case the maximin score of all candidates are the
same and equal to 6K. By the tie-breaking rule, ¢ wins. Therefore,
there exists a manipulation iff there exists a partition. O

‘We summarize our results about weighted manipulation in the fol-
lowing table.

4 Here we abuse the notation by saying “2K manipulators”, which we meant
“manipulators whose weights sum up to 2K,

X+Y plurality | maximin | Copeland | cup | Bucklin
plurality P NPC NPC NPC NPC
maximin - P NPC NPC NPC
Copeland - - P P P

cup - - - P P

Bucklin - — _ _ P

Table 1. Computational complexity of coalition manipulation with

weighted votes and 3 candidates

5 CONCLUSION

We have put forwards a simple method for combining together voting
rules that performs a run-off between the different winners of each
voting rule. We have provided theoretical evidence for the value of
this combinator. We proved that a combination of voting rules can in-
herit a desirable property like Condorcet consistency or the majority
criterion from just one base voting rule. On the other hand, two im-
portant properties can be lost by the introduction of a run-off: mono-
tonicity, consistency. We showed that the combinator satisfies several
algebraic properties, e.g. it is idempotent and commutative, and does
not satisfy other properties, including associativity and distributivity.
Combining voting rules also tends to increase the computational dif-
ficulty of finding a manipulation. For instance, with weighted votes,
we proved that computing a manipulation for a simple combination
like plurality and cup is NP-hard, even though plurality and cup
on their own are polynomial to manipulate.

REFERENCES

[1] J.J. Bartholdi and J.B. Orlin, ‘Single transferable vote resists strategic
voting’, Social Choice and Welfare, 8(4), 341-354, (1991).

[2] J.J. Bartholdi, C.A. Tovey, and M.A. Trick, ‘The computational diffi-
culty of manipulating an election’, Social Choice and Welfare, 6(3),
227-241, (1989).

[3] N. Betzler, R. Niedermeier, and G.J. Woeginger, ‘Unweighted coali-
tional manipulation under the Borda rule is NP-hard’, in Proc. of [JCAI,
pp- 55-60, (2011).

[4] V. Conitzer and T. Sandholm, ‘Universal voting protocol tweaks to
make manipulation hard’, in Proc. of IJCAI pp. 781-788, (2003).

[5] V. Conitzer, T. Sandholm, and J. Lang, ‘“When are elections with few
candidates hard to manipulate’, JACM, 54 (3), 1-33, (2007).

[6] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh, ‘Complexity of
and algorithms for Borda manipulation’, in Proc. of AAAI pp. 657-662,
(2011).

[7]1 E. Elkind and H. Lipmaa, ‘Hybrid voting protocols and hardness of
manipulation’, in Proc. of ISAAC’05, pp. 24-26,(2005).

[8] E.Hemaspaandra and L.A. Hemaspaandra, ‘Dichotomy for voting sys-
tems’, Journal of Computer and System Sciences, 73(1), 73-83, (2007).

[9] James Surowiecki, The Wisdom of Crowds: Why the Many Are
Smarter Than the Few and How Collective Wisdom Shapes Business,
Economies, Societies and Nations, Little Brown & Co, 2004.

[10] T. Walsh and L. Xia, ‘Lot-based voting rules’, in Proc. of AAMAS,
(2012).

[11] M. Zuckerman, A.D. Procaccia, and J.S. Rosenschein, ‘Algorithms for
the coalitional manipulation problem’, in Proc. of SODA, pp. 277-286,
(2008).

