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Abstract

To overcome the #P-hardness of comput-
ing/updating prices ifogarithm market scoring
rule-based (LMSR-basedpmbinatorial predic-
tion markets, Chen et al. [5] recently used a sim-
ple Bayesian network to represent the prices of
securities in combinatorial prediction markets for
tournaments, and showed that two types of pop-
ular securities arstructure preserving In this
paper, we significantly extend this idea by em-
ploying Bayesian networks in general combina-
torial prediction markets. We reveal a very nat-
ural connection between LMSR-based combina-
torial prediction markets and probabilistic belief
aggregation, which leads to a complete character-
ization of all structure preserving securities for
decomposablaetwork structures. Notably, the
main results by Chen et al. [5] are corollaries of
our characterization. We then prove that in order
for a very basic set of securities to be structure
preserving, the graph of the Bayesian network
must be decomposable. We also discuss some
approximation techniques for securities that are
not structure preserving.
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from trade. Thdowa Electronic Marketand Intrade are
two examples of real-world prediction markets with a long
history of tested results [1, 2]. See Chen and Pennock [7]
for a recent survey of prediction mechanisms.

In this paper, we focus on prediction market mechanism-
s that employ a centraharket makethat determines the
prices of securities algorithmically based orcast func-

tion [6]. At any time, an interested agent can query the
market maker for the price of a security and can either “take
it or leave it": that is, decide to buy or sell some shares at
the quoted price, or do nothing. After each (infinitesimal)
trade, the market maker updates the prices of all securi-
ties. For example, suppose there is a prediction market on
a Duke basketball game, and the current price for the secu-
rity “Duke wins” is $0.8. If a risk-neutral agent believes
that Duke will win with 0.9 probability, then she has an
incentive to buy some shares of the security, because her
expected profit for holding one share(i$ — 0.8 = 0.1.

If she buys some shares of the security, then its price will
go up; on the other hand, if she sells some shares of the
security (in this case, equivalent to buying shares of Daike’
opponent), then its price will go down. See Section 2 for
more detalils.

So far most work has been focusing on the prediction mar-
kets based on the cost function that corresponds ttotire
arithm market scoring rule (LMSR#, 5, 8, 16, 17]. Pric-
ing securities in LMSR-based prediction markets by direct-
ly using the cost function takes time that is polynomial in

In a prediction market, agents trade securities about the outhe number of outcomes. Therefore, it works well if the
come of an uncertain event, for example, “if evéhhap-  number of outcomes is not too large. However, in many
pens, this security pays off $1”. E does happen, the agent real-life situations the number of outcomes is exponéstial
receives $1 for every share of the security owned; foes  large and has a combinatorial structure. Such situatians ar
not happen, the agent gets nothing. The price of a securitgalledcombinatorial prediction marketgl, 5, 11, 16, 17].
reflects a collective value for “$1 i”, or a group-wide or  For example, in the NCAA men’s basketball tournamen-
consensus probability of the evelit The idea is to harness t, there ares4 teams and thereforé3 matches in total to
market efficiency and leverage agents’ incentives to earpredict. Each match can be seen as a binary variable. It
money in order to price events that might not otherwise bdollows that the prediction market for this tournament has
traded. In a prediction market, the primary goal is price dis 2°% ~ 9.2 x 10'® outcomes. Therefore, in such situation-
covery and thus information aggregation, not finding gainss, computing and updating the prices by directly using the

_ cost function becomes computationally intractable. In,fac
*Part of this work was conducted at Yahoo! Research.



pricing LMSR-based combinatorial prediction markets is2 Preliminaries
#P-hard [4]. 2.1 LMSR-based Prediction Market

In LMSR-based prediction markets, at any time the priceg gt () — {1,..., N} denote the set of outcomes of a ran-
of the securities that correspond to disjoint, exhaustite 0  §om variableX. For anyi < N, a security X = ¢”
comes sum up td. Therefore, the market prices can be means that holding each share of the security, the agen-
seen as a probability distribution (which we calarket — t | receive $1 from the market maker, i turns out
price distributior), and can be represented byBayesian 5 pe;. In this paper, we use quantity vector € RY
network This representation might drastically reduce the;, represent how many shares the market maker has sol-
computational complexity of computing/updating prices, € { in total for each security. That is, for each< N, the
specially when the network structure of the Bayesian nety,arket maker has solg(i) shares of X = i". A cost
work is simple. This idea was first explored by Chen etfnction based prediction market is characterized bgst

al. [5] for a class of LMSR-based combinatorial predictionfynction : RY — R and an initial quantity vectog.
markets for tournaments. They modeled the market pricgpe price fore shares of X = i” is the marginal cost
distribution by a Bayesian network whose graph is a balyf jncrementing the current quantity vectgby eé; in C,
anced binary tree, and identified two types of popular secuyhere ¢, is the N-dimensional vector whoséh compo-

rities with the following property: after any shares of any nent is1 and the other components de That is, if the
such securities are sold, the updated market price distribthgem wants to buy share of X = 4", she must pay

tion can still be represented by a Bayesian network with th%(§+ e€;) — C(q) to the market maker. The instanta-
same structure. We call _s_ecurities satisfying this prgpert heous price idim,_,o(C(q+€&;) — C(q)) /e, or equivalent-
structure-preservingecurities. ly dC(q)/0q(i). Note that price is always given in units of

However, the approach by Chen et al. has two limitationsdollars per share, whereas cost is given in dollars.

First, their approach only works for LMSR-based combina-n this paper, we focus on prediction markets with the cost
torial prediction markets for tournaments, and it is noacle functionC/(q) = blogzj-\il (/b where the parametér
how to extend the results to general LMSR-based combits cled theiquidity parameter for the market. This specif-
natorial prediction markets. Second, they only identifiedic ¢ost function corresponds to the logarithm market scor-
two types of structure-preserving securities. It is nocle g ryje (LMSR), and we call this type of prediction mar-
whether_ other types of popular securities are also strecturyets| MSR-based prediction markefEhe following equa-
preserving. tion computes the instantaneous prig&) for the security

Our contribution. In this paper, we significantly extend “X = @".
the idea in Chen at al. [5] to general LMSR-based combi-
natorial prediction markets. We first reveal a very natural
connection between LMSR-based combinatorial prediction
markets and probabilistic belief aggregation. More precis It follows that}; _  I5(i) = 1. Therefore, we also call;

ly, let Pr denote the current market price distribution, wethemarket price distribution

show that for any security’, we can define a probabilit . . -

distribution Py sﬁch that%;e updated marketpprice distyri— 2.2 Combinatorial Prediction Markets

bution after selling some shares Bfis exactly the same In combinatorial prediction market§4], the set of out-

as the distribution obtained by aggregating Pr andi3ra  comes(2 has a combinatorial structure. That is, each out-
well-known parameterized opinion pool function called thecome is characterized by the values of a set of variables
logarithmic opinion poalor LogOP. In light of this connec- V = {Xi,..., X, }, where for eacti < n, X, takes a

tion and a previous work on aggregating Bayesian networkvalue in a domairf, = {1,...,1} with [ > 2. It fol-

s [20], we obtain a full characterization of all structure- lows thatQ = Q; x --- x Q,. In this paper, a security is
preserving securities for any decomposable network strugepresented by a logical formufa overV in conjunctive

ture (that s, in the graph, any pair of parents of any vaeiabl normal form (CNF): Thatis,FF = C; A --- A Ck, where

are connected). Notably, the main results in Chen et al. [5for anyi < K, C; = Li v --- Vv L, andL! is either

are corollaries of our characterization. We then show thatX = [] or -[X}; = ] (equivalently, X, # [) for some

in order for a very basic set of securities to be structurevariable X;, € V and some valué € €. C; is called a
preserving, the network structure must be decomposabl€jauseand L is called diteral. If I is satisfied under the
which justifies the motivation for us to focus on decompos-eventual true outcome (which is a valuation oWy then

able network structures. Finally, we briefly discuss somehe market maker should pay the agent $1 for each share of
ideas of approximations, when the security is not structurg” the agent holds; otherwise the agent receives nothing for
preserving.
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The representation df' does not affect our characterization
results. It only affects the computational complexity ofreo
problems studied later in this paper.



holding F'. ed by probability distributions) to a single probabilitysdi

By definition, in an LMSR-based combinatorial prediction trlbut|_0n. The function that t_akes mdw@ual d'.s”'_b”"fo .
s as inputs and outputs a single combined distribution is

market, the instantaneous pricefofs the sum of the prices - .

- . a called anopinion pool function One of the most well-
of the securities that correspond to the valuations under L o i -
which F is satisfied. Thatisl;(F) = S 1 I(5) — known opinion pool fgncnon isogarithmic opinion pool

)b ' A *()I/b T:F(7)=1"4 (LogOP), which is defined as follows (we only need to con-
ar@=1 €"7)/ 2z e/?). Chen et al. [5] have  giger two inputs in this paper).

shown that the price fahb shares of” isblog(e™[(F) +  pefinition 1 Let Pr, and Pr, be two probability dis-

1 — Iz(F)). We note that computing;(F) is harder than tributions over. For any ay,as € R, let Pr —

computing marginal probabilities ify, which is a well- LogOR a4 Pry, asPry) denote the probability distribution
known #P-hard problem [#]. However, there are many sugh ti(atlforla’myé 62()2 BH(1) o (Prpl(ﬁ))m .)(/PrQ(ﬁ))m_
practical algorithms that computg(F). For example, '

computingIz(F') can be reduced to a speciakighted To better present our results, we define the following terms.

model countingproblem [3, 21]. In this paper, we do not pefinition 2 A DAG G admitsa security, if for any G-
focus on computing the (instantaneous) prices of secsiitie compatible market price distribution Pr and agy € R,
we will focus on the price-updating phase, that is, characxtier Ap shares off” are sold, the new market price distri-
terizing structure-preserving securities. bution is alsoG-compatible. In this case, we also say that

F is structure preservinfpr G.
2.3 Bayesian Networks and Probabilistic Belief
Aggregation We remark that it is possible that for a particular

compatible market price distribution, after some shares of
non-structure-preserving securityare sold, the new mar-
ket price distribution is stillz-compatible.

A Bayesian network ovey is a compact representation for
a probability distribution Pr ovep. It is composed of two
parts: a direct acyclic graph (DAGy = (V,FE), and
conditional preference tables (CPT)ne for each vari- 2.4 A Combinatorial Prediction Market for
able X, € V, which specifies the conditional probability Tournaments

of X} given any valuation of its parents ii. For any
G and anyX; € V, let Pag (X)) denote the set of par-
ents of X}, in G; let Chg (X)) denote the set of children
of X in G; let Deg(X}) denote the set of all descen- o
dants of X, in G. The subscripG’ is sometimes omit- Definition 3 The tournament o™ (m > 2) teams

Chenet al.[5] used the following Bayesian network struc-
ture for pricing combinatorial prediction markets for teur
naments oR™ teams.

ted when causing no confusion. For any valuatibof {Zlv -, Tom} is modeled by a binary tree composed of
V, P(7) = [y, PH@(X)[3(Pa(X))), where for any 2™ — 1 variables as follows. For any <1 Ef? letR; =

V C V, #(V) is the valuation ove¥ that agrees witty. ~ {Xzm—i; .-, Xom—ira_y}. Foranyj < 2770 — 1, Xy;
We say that Pr isompatiblewith G. and X, are the two children of;; X; takes a value in

) );, which is defined recursively as follows: for apguch
For any variableXy, letBl (X)) denote thelarkov blan-  thapom—1 < j < 2m _ 1, Q; = {Tojr1-om, Tojan_om}i
ketof Xj. Thatis,Blg(Xy) = Pa(Xy) UCh(Xx) U foranyj < 2m—1 —1,Q; = Qy; U Q4. Thatis, the
Ux ecnex,) (P(X) \ {Xk}). ADAG G is decomposable  domain ofX; is composed of all teams that can reakh,
if for each variableX;, € V, there is an edge between each and R, is composed of all roundmatches. The set of all
pair of its parents irz. In other words(~ is decomposable yariablesisV,, = R, U...U R,,.
if for each variableXy, Blg(X%) = Pa(Xy) U Ch(Xy). , : .
A probability distribution Pr isG-compatible denoted by Example 1.F|gure 1 |IIust.rates.a tournament of eight teams.
Pr ~ G, if it can be represented by a Bayesian network ' "€ domain of each variable is also shown.
whose DAG isG. Any G-compatible probability distri- (To,....Ta} Rs
bution Pr satisfies allocal Markov propertiesn G: any
variable X}, is conditionally independent af \ ({ X3} U

Bls (X)) given any valuation 0Bl (X},). (T, T2, T, Ta} (@/ {Ts,Te,TnTs}\@) Re

Probabilistic belief aggregation has attracted a lot ofrint

ests in statistics [12, 13], and more recently in artificial (@ @ @ @) Ry

intelligence [15, 18, 20]. The basic problem is to study T o) Tl T

how'to aggregate the beliefs of multiple agents (representﬁgure 1: The Bayesian network structure for a tournament

of eight teams.

%|n the setting of [5], computindz( ") amounts to computing
a marginal probability in a tree-structured Bayesian nektvsee . . . .
Example 1), which the well-known belief propagation algori I this model, not all variables i, are binary, and an
m [19] takes polynomial time to solve. outcome is a valuation of the variablesiiy,. We note that



some outcomes never happen in real-life tournaments. Fd?r also satisfies all local Markov properties @.

example, if we already hav&, = 71 (meaning that Team proof:  Let ¢ denote the quantity vector correspond-
1 is the winner of the whole tournament), then we cannofng 1o Pr. LetIr denote thed-1 vector over(), where
have X, = T; (which implies that Team loses to Team  for any valuation7 over V, the & component ofl is

2 in the first round). Chen et al. [5] avoided this problem F(7). Letf = ¢+ Ablp. It follows thatPr = I. Let

by focusing on the market price distributions that assign pp — LogORPr, Pry). For any pair of valuation, @, we
probability to these inconsistent outcomes. Id) (i) eAF@  pr(i) (Prp(ﬁ) )A

Prr ()

Chen et al. [5] proved the following main results: two types “I;(@U) - Iz(w) CeAF@@) Pr() '
of popular securities are structure preserving for the DAGPr* (&)

defined in Definition 3. The first type is composed of all Pr(w)’ ThereforePr = Pr.

secqrmes of the form Teaf“ wins gameX” (Theorem . If both Pr and Py satisfy all local Markov properties in
3.1 in Chen et al. [5]), which corresponds to the securi- : .
G, then for any variableX;, any: < [, any valua-

ty [X = T;]; the second type is composed of all securi-_; ' " : R,
ties of the form “Team andi, win gamesXy, and Xy, , tion ¢ of Blg(X}), and any pair of valuations, « of

PriXy =i,0,4
respectively, whereXy, is the parent ofXy,” (Theorem V \ ({X;} U Blg(X%)), we havePr(kaw =
3.2 in Chen et al. [5]), which corresponds to the security o X, = " vaj

_ _ Prp (X, =1, 0,4) Pr( Xy = 4,7, 4)
(X, =T3,) AN (Xk, = Tiy). 2 — 1. Therefore,——~— "~ —
. - Prp(Xy = i, 7, ) P(X}, = i, ¥, )
As we will see, our results significantly extend the results PI(X}, = i,7,7)

by Chen et al. in two dimensions: first, we give a com- = 1, which
plete characterization @fll structure-preserving securities,

including the two types studied by Chen et al., and secon

Prr(Xy =i,0,@) \*
Pr(Xk :’L',’J,’LF)) PrF(Xk :’L',’J,’Lf))
Jneans thaPr also satisfies all local Markov properties in

our results work foany combinatorial prediction market, G. -
including the one illustrated in this section. We are not aware of any previous work pointing out this
simple and intuitive connection. The second part of The-
3 A Natural Connection between LMSR orem 1 states that LogOP preserves the satisfiability of lo-
and LogOP cal Markov properties. This observation will be useful in

_ ) ) proving our characterization of the structure-presergig
In this section, we reveal a very natural connection betwee'aurities. We note that in Theorem 1, whAn< 0, an agent

LMSR-based combinatorial prediction markets and prOba'purchasingﬁb shares of” from the market maker is equiv-

bilistic belief aggregation by LogOP. At a hight level, tees  gjant to she selling Ab shares of” to the market maker.
two approaches (prediction markets and probabilistiebeli

aggregation) are close. In probabilistic belief aggreggti  Definition 4 did not specify how Rr is represented (e.g.,
often, the agents’ beliefs are expressed explicitly as-probPy a Bayesian network). We next provide a necessary and
ability distributions, so that we can directly use an opinio sufficient condition orF” for Pry to satisfy all local Markov
pool function to aggregate these distributions. On therotheProperties in a DAGZ.

hand, in prediction markets, agents implicitly express parDefinition 5 A logical formula F' is compatiblewith a
of their beliefs via their behavior in the markets (buying or DAG G, if for any variable X;, any valuationv of
selling securities), and the market price reflects the aggreBls (X}), any valuesiy,io € Qg, and any pair of valu-
gated belief. Technically the connection is quite simplé an ationsi, w of V' \ (Blg(Xx) U{X%}), the following condi-
intuitive: we first interpret the agents’ behavior of buying tion holds: if F(X; = 41,7, %) # F(Xy = i2,,4), then
a securityF' as a probability distribution B, then, we use  F(X, = iy, 9, 4) = F(Xy = i1, 7, 0).

LogOP to merge Rr and the current r_narl_<et price distri- Example 2 Let G be the DAG in Example 1. Lef —
bution Pr, and ShOW thgt the new dlstr|bufc|on is exacFIy the(X2 — T\) A (X5 = Ty). F is compatible withG. Let
updated market price distributidtr aftert’ is sold. Piis g _ (Xo = T1) A (X5 = T3) A (X3 = Tx). F'is not

defined as follows. compatible withG, becausd” (X, = Ty, X5 = T3, X3 =
Definition 4 For any logical formulaF, let Prp denote Tg) =1 # 0 = F'(Xy = T, X5 = Ty, X3 = Ts) and
the probability distribution such that for any valuatioh  F'(Xo =T1, X5 =15, X3 =Ts) =1 # 0= F/(X;y =
Pry(7) oc e, T1,Xs = T3,X3 = Ts). This violates the condition in
Definition 5, wherek = 5, i1 = T3, 92 = Ty, 0 = [Xo =
e T1], @ is a valuation whereX; = Ty, and is a valuation
Theorem1 Let A € R, and let Pr (respectivelyPr) de-  whereXx; = 7.

note the market price distribution before (respectivefy, a

ter) an agent purchaseAb shares of a security. We  The condition in Definition 5 may seem unnatural at first,
havePr = LogORPr, APrr). Moreover, if both Prand but in fact it has a quite intuitive explanatiod is com-
Prr satisfy all local Markov properties in a DAG, then  patible with G if for every variableX, the capability of

The main theorem of this section is the following.



changing the value aof by changing the value oX;, only  be easily found by assigning values to make an arbitrary
depends on the variables in the Markov blankeXgf clause false. LeF = (X; = 1) A H.

Proposition 1 Let G be a DAG. Py satisfies all local |f H is satisfiable, then there exists a valuatitn under
Markov properties inG if and only if F' is compatible with  which H is true. Becausé'(X; = 1,0y) = 1 # 0 =
G. F(X1:2,17H)andF(X1:1,17H):17é0:F(X1:
Proof:  Suppose Pr satisfies all local Markov prop- 1, %), F' is not compatible withG.
erties. We recall that for any valuatian there are on-
ly two possible values of Ri(¢)—it is either e/a or
1/a, wherea is a normalizing factor. Therefore, sup-
pose Pp(Xy = i1, 7, %) # Pre(Xy = i9,,4), then we
must have PF(Xy = i1,0,wW) = Pre(Xy = 01,0,4) #
Prp(Xy = i, ¥,wW) = Pre(Xy = io,,4). This corre- The membership itoNP is straightforward: it is easy to
sponds to the condition in Definition 5, which proves the verify whether the condition in Definition 5 is violated, giv
proposition. O enk, iy, io, v, u, andw. Therefore, it icoNP-complete to
verify whetherF' is compatible withG. 0

On the other hand, iff is not satisfiable, then for any val-
uationv over{X;,..., X, }, H is false, which means that
Fis always false. Thereforé; is compatible withGz. This
proves thecoNP-hardess of the problem.

In general, satisfying all local Markov properties @is
a necessary but not sufficient condition for a probability
distribution to be compatible witld. However, it is suf-
ficient whenG is decomposable, because for any variable

X, Blg(Xy) = Pa(Xy) U Ch(Xj). Therefore, we im- |, his section, we use the connection revealed in the
mediately have the following corollaries of Theorem 1 and)st section to obtain a full characterization of structure
Proposition 1 for decomposable DAGs. preserving securities for decomposable DAGs. This is the
Corollary 1 Prp is compatible with a decomposable DAG main theorem of the paper. We note that Corollary 2 im-
G if and only if F' is compatible withG. plies that forF' to be structure preserving for a decom-

p— posable DAGG, it suffices forF' to be compatible with
Corollary 2 Let A € R. Let Pr (respectivelypr) denote G. However, it is not immediately clear how to efficient-

the market price before (respectively, after) an agent pur- : N
chasesAb shares of a security?. If both Pr and are ly compute the new market price distribution. We say that

) - — a variableX}, is pivotalin F, if there exists a valuatiofi
compatible with a decomposable DAG thenPr is also o -

: X < =
compatible withG. of V' \ {Xx} andiy, iz < I such thatF'( Xy = i1,7) #

F(Xp, = ia, 7).

We next show that the following securities are compatibIeTheorem 2 Let G be a decomposable DAG is struc-
with G. ture preserving forGG if and only if F' is compatible with

Proposition 2 Let G be a decomposable DAG. Any secu- G. Moreover, after any shares @f is purchased, the new
rity F' that only uses the variables in a cliquedhis com-  market price distribution can be computed in polynomial
patible withG. time, where only the CPTs of the pivotal variables and the
Proof: Let X denote the set of variables usedfin For ~ ancestors of the pivotal variables i are updated.

any X, € X, becauseY is a clique,X C Blg(Xy) =
Pa(X}) U Ch(Xy). Therefore, the value of any variable
inV\ ({Xx} UBIlg(Xy)) does not affect the value df,
which means that" is compatible withG. O

4 Characterizing Structure-preserving
Securities for Decomposable DAGs

Proof: The “only if” part is obvious. Let Py de-
note the uniform distribution, which is compatible with
G. Then, by Theorem 1, for any structure-preserving se-
curity F', the market price aftel shares off’ are sold is

In general, checking whethd? is compatible with a de- LOgORPr,, Prr) = Prr, which is compatible witlG. By
composable DAG isoNP-complete. Proposition 1 F' is compatible withG'.

Proposition 3 It is coNP-complete to check whether a Next, we prove the “if” part by presenting a polynomial-
logical formulaF is compatible with a decomposable DAG time price-updating algorithm. By Theorem 1, aft&b

G. shares ofF’ are purchased, the market price distribution
Proof: ~ We prove that theecoNP-hardness holds even becomes LogOfPr, APrz). It suffices if we can direct-
when all variables are binary aidd has no edges. For any ly compute the outcome of LogOP. Fortunately, when the
k < n,letQ, = {1,2}. Our proof is by a reduction from graph is decomposable, we can use the polynomial-time al-
the complement of the well-known NP-complete problemgorithm devised by Pennock and Wellman (Section 3.4.1in
SAT. In asAT instance, we are given a logical formuth ~ Pennock and Wellman [20]) to compute Log®R APrg).

in CNF, and we are asked whether there exists a valuatiow.l.o.g. for anyk < n, Pa(Xy) C {X1,...,Xk—1}.
under whichH = 1. Without loss of generality, lelf be a  The algorithm starts with the last variab¥g,, and updates
CNF over{ X, ..., X, } thatis notatautology. Lety de-  CPTs of the variables in the reverse order. Given any valu-
note an arbitrary valuation under whiéhis false.iy can  ationv of Pa(X,,), for anyi < [, the algorithm computes
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Pr(X,, = i,%)/Pr(X,, = 1,%), which uniquely determines
the conditional probabilitr( X, |#"). Then, the algorithm
moves on taX,, 1, and computes the conditional probabil-

ities in a similar way, etc. We reproduce the algorithm in

Pennock and Wellman [20] for completeness of the pap
(Algorithm 1). For any variabléX;,, we let[De(X},) = 1|
denote the event where all descendantgftake1; for
any X; € De(Xj), we let[De(X};)_; = 1] denote the
event where all descendantsXf, exceptX;, takel.

Algorithm 1: CompPrice

Input: A graphG, aG-compatible probability distribution
Pr, aG-compatible logical formuld’, andA € R.

Output: The market price distributioRr afterAb shares

of F are sold.

Compute the CPTs of Rr

Pr(X,|Pa(X,,)) o

PI(X,|Pa( X)) (Pre (X, [Pa(X,))) .

for k =n — 1 downto 1 do

Pr(X,|De(X;) = I,Pa(X})) o« Pr(X,|De(X}) =
T, Pa(Xy)) (Pre(X|De(Xy) = T, Pa(Xy)))>
for: =2tol; do
Pr(X;, = 1|Pa(X})) _
Pr(Xy = i[Pa(Xy))
Pr( X, = 1|De(Xk) = 1, Pa(Xk)) %
Pr(X) = i|De(X}) = 1, Pa(X}))
Pr(X; = 1| X = i,De(X)_; = 1,Pa(X}))
x;ede(xy) PI(X; = 1|1 Xy = 1,De(X})—; = 1, Pa(Xx))
end
ComputePr( X |Pa( Xy)).
end

It is not hard to see that in Algorithm 1, if a variabléis
neither an ancestor of any pivotal variable nor pivotalpthe
the CPT ofX is not updated.

Theorem 2 is two-fold. On the positive side, if we can show

that a securityF' is compatible withG, thenF' is very fa-

vorable for price-updating—the market price distribution

after any shares of' are traded is stillz-compatible, as

long as the the market price distribution before the trade is

G-compatible. In particular, let: be the graph in Defini-
tion 3, if a securityF' is G-compatible, then we can ignore

the assumption made in Chen et al. [5] that the inconsister{hg

outcomes are assigned probability Even though check-
ing whetherF' is compatible withz is coNP-hard (Propo-
sition 3), this compatibility check can be done offline.

On the negative side, requiring a security to be G-

ket price distribution is always compatible with Explor-
ing such set of securities is a hard and practical problem for
future research.

\We recall that in a decomposable DAG any formulat’

“hat only uses the variables in a cliqu&ins G-compatible

(Proposition 2). Therefore, we immediately obtain the fol-
lowing corollary.

Corollary 3 LetG be a decomposable DAG. Any formula
F that only uses the variables in a clique@his structure
preserving forG.

We note that the two main results in Chen et al. [5] are
corollaries of Corollary 3. We recall that the Bayesian net-
work used by Chen et al. is tree-structured (see Example 1),
which is decomposable. Therefore, by Corollary 3, any
security that only involves a single variable is structure p
reserving. In particular, for any teamand any variable
Xy, the security{ X, = T;] is structure preserving, which
is Theorem 3.1 in Chen et al. [5]. For any pair of vari-
ables X, and X, where Xy, is the parent ofXy,, by
Corollary 3, any security that only involves;, and Xy,

is structure preserving. In particular, for any pair of team
sT;, andT;,, the security( Xy, = T3,) A (Xi, = T3,)

is structure preserving, which is Theorem 3.2 in Chen et
al. [5].

5 Network Structures That Admit a Basic
Set of Securities

In this section, we characterize the Bayesian network struc
tures that admit a basic set of securities, which justifies ou
focus on decomposable network structures in the last sec-
tion.

To prove our theorem, we will make use of the following
lemma proved by Chen et al. [5], where Pr (respectivedy,

is the market price distribution before (respectivelyegft
Ab shares of the security is purchased.

Lemma 1 (Corollary 3.2 of [5]) SupposeAb shares are
purchased for eve, then for any event® and E,

e“Pr(A|BE) + Pr(A|BE)
eAPr(A|E) + Pr(A|E)

Theorem 3 Let G be a DAG. If for every: < n and every
1. < lx, the security X, = 4] is structure preserving fotz,
nG is decomposable.

Proof:  For the sake of contradiction, suppaSes not
decomposable. Then, there exigt{s< n and Xy, , X, €
Pa( Xk, ) such that there is no edge betwe¥p, and Xy,
in G. W.l.o.g. letk; = 1, ky = 2, ks = 3, and X; is not

Pr(B|E) = Pr(B|E)

compatible is a strong condition—it requires that tradinga descendant ok; in G. We define a&-compatible mar-
any share ofF' does not change the network structure forket price distribution Bras follows. For any valuatioff
any G-compatible market price distribution. It is possible of Pa(X3) \ {X1, Xo}, we let P (X3 =1|X; =1, X5 =
that when the agents are only allowed to trade securities i, 7) = i and Pr(X3; =2|X; =1, X, = 1,0) = %. For
some specific set (which might contain securities that arany &’ < n, we let Pt (X = 1|Pa(Xy/)) = Pr.(Xg =
not compatible with) from the very beginning, the mar- 2|Pa(Xy/)) = % if these conditional probabilities are not



defined previously. LePr, denote the market price distri- Theorem 4 A DAG G is decomposable if and only if for
bution afterAb shares of X5 = 1] are sold to an agent. everyk < n and everyi < I, the security( X, = i is
Becausd.X3 = 1] is structure preserving fa&, Pr, is G-  structure preserving fo6.

compatible. In what follows, we use Lemma 1 to prove that

in Pr,, X; and X5 are not independent given any valuation ; ; ;

v of X5, which contradicts the assumption that there is no6 Approximate Price Updating

edge betweeX; and X, in G, and X is not a descendent

of X For a securityF', being compatible with a sparse decom-
2.

posable DAG is a strong condition. Therefore, in practice
We note that essentially Pis compatible with a DAG it is important to study how to approximately update the
where there are only two edges: one frdf to X3 and  market price distribution when a securiyis not compat-
the other fromX, to X3. Therefore, in Pr, Pag(X2) is ible with G, while keeping the Bayesian network structure
independent fromX;, X,, and X3. For any valuations/ G the same. Intuitively there are at least two ways to do
of Paz(X5), we have the following calculations. For any so. The first is to approximate by a G-compatible log-
k =1,2,3, we letE] denote the valuatioi’;, = 1. ical formulaF” that is closest t&” in terms of Hamming
. distance. Then, aftar is sold, we update the market price
* Pr.(Es|0) = Pr(E5) = % distribution as ifF” is sold. We do not pursue this approach

e Pr.(E3|E},¥) = Pr.(FE3|El) = 3, Pr.(F3|E]3,0) =  inthis paper.

1171y _ 3
Pr.(B5|Fs) = §- In this section, we propose an approximation in light of
e Pr.(E3|E{, E},0) = Pr.(E3|E},E}) = L. the connection we revealed in Section 3. We recall that

F corresponds to a distribution Pr(Definition 4), and
subsequently price-updating in LMSR-based markets cor-
responds to aggregating Pr and-Ry LogOP. Therefore,

We calculatePr, (E1|%) by Lemma 1 as follows (where
A= E}, B=E} andE = 7).

Pr.(E3|7) we seek for a probability distribution Rithat is compatible
Apr(BLEL 5) 4 Pr. (BTIEL & with &, and is as close to Pras possible. A natural metric -
=Pr,(E}|7) e Pr (B3| By, 0) + Pr, (_3| 2,7) that measures the closeness between two probability dis-
eAPr.(E3|0) + Pr.(E3|0) tributions is theKL divergencdalso known aselative en-
L [e26 + 10 tropy). For any pair ofﬁprobabiliti/ distributions Pr and Pr
=Pr.(E3) {m] KL (Pr,Pr) = > - Pr(7)log(Pr(v)/Pr(v)). We note that

KL divergence is not a distance, because it is not commuta-

We then calculat®r, (£ |E}, %) by Lemma 1 as follows tive, thatis, usually KIPr, Pr') £ KL (Pr', Pr). Then, after
(whered = El, B = El, andE = (E}, 7). BecauseX;  Ab shares of" is sold, we update the market price distribu-

is independent fronX, in Pr,, we have Pr(El|EL, ) =  tion by using Algorithm 1 to compute LogQ@Pr, APry),
Pr.(EYEL) = Pr,(ED). where Pr is the market price distribution befdres sold.

Given Pr, finding Pi; that minimizes its KL divergence

Pr.(E;3|E}, @ : - : -
«(E2| By, 0) from Prz is a classical problem in Bayesian network learn-

—pr, (EL|EL, §) [eAP&(EiE3=E5773>+Pf*<E_.%|E117E5773> ing, for which there is a conceptually simple and intuitive
2D e®Pr.(E3|EL,9)+Pr. (B} EL,7) solution, defined as follows.
—Pr.(EY) e®2+6 Definition 6 For any logical formulaF, let Pr;. denote
T2 eA3 45 the G-compatible distribution where for any variablé;,

Pri(Xk|Pac(Xk)) = Prr(Xk|Pac(Xk)).

eA24+6 e26+ 10
For anyA_# 0 eA3 —l—i# eAT+9
A # 0, Pr.(E;|0) # Pr.(E3|Eq,v), which means that oo, probability Pg (X4|7).
given any valuatiori of the parents ofX; in G, X; and ) )
X, are not independent. However, becalige is G-  1heorem S (Theorem 17.2 in Darwiche [10])
compatible andX; is not a descendant of,, we must Pri. = arg min KL(Prg, Pr)
have thatX; and X, are independent given any valuation PI~G

of the parents ofX, which is a contradiction. Therefore, \yhenris notG-compatible, P (Xx|Pac(X;)) might be

G is decomposable. 0 hard to compute. The following proposition simplifies the
It follows from Theorem 1 and Corollary 3 that for any computation, whose proof directly follows the definition of
variable X, and any value < [y, the security{ X, = i] Prrz and Bayes’ rule, and therefore is omitted.

is structure preserving for any decomposable DAG d¥er Proposition 4 For any variableX;,, any set of variable¥’
which leads to the following theorem. such thatX;, ¢ Y, any valuationy of Y, and anyi < Iy,

. Therefore, when Thatis, in P, the CPT entry ofX;, given any valuation’
of the parents o, in G is exactly the same as the condi-



we have:
Pre(Xy =ily) =
(e = Vgr(Xe = 0. ) + [ gvopxep 11
(e — 1)gr(@) + x, gy 1]

Here for any set of variable&Z and any valuatiory’ of 7,
gr(2) = {v: F(¥) = landd(Z) = Z}|, wherev(Z) is
the valuation ovetZ that agrees withy.

Therefore, computing R X} = i|3) amounts to comput-

ing gr (X, = i,9) andgr(y). These are standard mod-

(3]

(4]

(5]

(6]

el counting problems, which are #P-complete. However, 7]

there are many practical algorithms for computing their ex-

act values as well as approximations [14].

7 Future Work

(8]

(9]

A number of questions remain for future research. Can we

design efficient (randomized/approximation) algorithms t

compute the price of a security when the market price dis{10]
tribution is represented by a sparse decomposable Bayesian
network® How can we evaluate our approximation tech- [11]

nigue in real-life combinatorial prediction markets? Are

there any better approximation methods? Can we find a

natural set of (not necessarily structure-preservingj-sec

rities such that the market price distribution is always

compatible, if only the securities in this set are traded?

[12]

More generally, we believe that the connection between

prediction markets and probabilistic belief aggregatidh w

[13]

shed some light on designing better combinatorial predic-

tion markets.
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