Voting with partial orders

Lirong Xia1 Vincent Conitzer1 Jérôme Lang2 Mingsheng Ying 3

1Department of Computer Science
Duke University
Durham, NC, USA

2IRIT
Université Paul Sabatier
Toulouse, France

3DCST
Tsinghua University
Beijing, China

Outline

1. Introduction
2. On the neutrality and efficiency of decomposable voting rules
3. Computing possible/necessary unique/co-winner
4. Summary
Outline

1 Introduction

2 On the neutrality and efficiency of decomposable voting rules

3 Computing possible/necessary unique/co-winner

4 Summary
Basic setting of voting

- **Candidates**: A set of candidates \mathcal{X}.
- **Voters**: A set of voters \mathcal{A}.
- **Preference**: $\mathcal{D}_\mathcal{X}$, the preference structure over candidate set \mathcal{X} (linear order, subset, etc).
- **Profile**: $\mathcal{D}_\mathcal{X}^{\mathcal{A}}$, each voter picks a vote from the preference structure $\mathcal{D}_\mathcal{X}$.
- **Collective decision**: A mapping from $\mathcal{D}_\mathcal{X}^{\mathcal{A}}$ to specific range:
 - **Rule**: $r : \mathcal{D}_\mathcal{X}^{\mathcal{A}} \rightarrow \mathcal{X}$.
 - **Correspondence**: $c : \mathcal{D}_\mathcal{X}^{\mathcal{A}} \rightarrow 2^\mathcal{X} \setminus \emptyset$.
Why partial orders?

- Voters themselves might not be able/willing to give linear order
- Space/ Time consuming

Take partial orders as preferences
CP-net \mathcal{N} [C. Boutilier et al 99]

- Set of variables $I = \{x_1, \ldots, x_p\}$, taking values in D_1, \ldots, D_p

 Combinatorial domain $\mathcal{X} = D_1 \times \ldots \times D_p$

- Directed acyclic graph $G = (I, E)$
- CPT for each x_i indicating the conditional preference on D_i

A CP-net naturally induces a partial order over $\mathcal{X} = D_1 \times \ldots \times D_p$.
CP-net: an example

The partial order \mathcal{N} induces is

$$xyz \leftrightarrow x\bar{y}\bar{z} \leftrightarrow x\bar{y}z \rightarrow \bar{x}\bar{y}z \rightarrow \bar{x}yz \rightarrow \bar{x}y\bar{z}$$
Extension of partial order

A linear order V on X is said to

- extend a partial order P, if $P \subseteq V$. We say V is an extension (completion) of P.
- extend a CP-net \mathcal{N} over X, if V extends the partial order that \mathcal{N} induces.
- be compatible with a linear order O on I, if it extends a CP-net that is compatible with O.

Voting with partial orders
Voting on combinatorial domain with preferences modeled by CP-nets [J.Lang 07]

- A set of issues \(I = \{x_1, \ldots, x_p\} \) on \(X = D_1 \times \ldots \times D_p \).
- A linear order \(O \) over \(I \), for example \(O = x_1 > \ldots > x_p \).
- \(p \) local voting rules \(r_1, \ldots, r_p \).
- Input: A profile \(P = (V_1, \ldots, V_N) \) s.t. \(V_j \) is compatible with \(O \).
Output: \((d_1, \ldots, d_p) \in \mathcal{X}\) through a \(p\)-step process

1. Select \(d_1\) by \(r_1\) from \(P|_{x_1}\).
2. Select \(d_2\) by \(r_2\) from \(P|_{x_2|x_1=d_1}\).

 \[\vdots\]
3. \(p\). Select \(d_p\) by \(r_p\) from \(P|_{x_p|x_1=d_1,\ldots,x_{p-1}=d_{p-1}}\).

Such a rule is defined to be the *sequential composition* of \(r_1, \ldots, r_p\), denoted by \(\text{Seq}(r_1, \ldots, r_p)\). It is said to be *decomposable*.

Special case: Seat-by-seat voting: No edges in CP-net, all issues are voted on separately.
Output: \((d_1, \ldots, d_p) \in \mathcal{X}\) through a \(p\)-step process

1. Select \(d_1\) by \(r_1\) from \(P|_{x_1}\).
2. Select \(d_2\) by \(r_2\) from \(P|_{x_2|x_1=d_1}\).

 \[\vdots\]

\(p\). Select \(d_p\) by \(r_p\) from \(P|_{x_p|x_1=d_1, \ldots, x_{p-1}=d_{p-1}}\).

Such a rule is defined to be the sequential composition of \(r_1, \ldots, r_p\), denoted by \(\text{Seq}(r_1, \ldots, r_p)\). It is said to be decomposable.

Special case: Seat-by-seat voting: No edges in CP-net, all issues are voted on separately.
Output: $(d_1, \ldots, d_p) \in \mathcal{X}$ through a p-step process

1. Select d_1 by r_1 from P_{x_1}.
2. Select d_2 by r_2 from $P_{x_2|x_1=d_1}$.

\vdots

p. Select d_p by r_p from $P_{x_p|x_1=d_1, \ldots, x_{p-1}=d_{p-1}}$.

Such a rule is defined to be the sequential composition of r_1, \ldots, r_p, denoted by $\text{Seq}(r_1, \ldots, r_p)$. It is said to be decomposable.

Special case: Seat-by-seat voting: No edges in CP-net, all issues are voted on separately.
Output: \((d_1, \ldots, d_p) \in \mathcal{X}\) through a \(p\)-step process

1. Select \(d_1\) by \(r_1\) from \(P|_{x_1}\).

2. Select \(d_2\) by \(r_2\) from \(P|_{x_2|x_1=d_1}\).

\[\vdots\]

p. Select \(d_p\) by \(r_p\) from \(P|_{x_p|x_1=d_1, \ldots, x_{p-1}=d_{p-1}}\).

Such a rule is defined to be the \textit{sequential composition} of \(r_1, \ldots, r_p\), denoted by \(\text{Seq}(r_1, \ldots, r_p)\). It is said to be \textit{decomposable}.

Special case: Seat-by-seat voting: No edges in CP-net, all issues are voted on separately.
Output: \((d_1, \ldots, d_p) \in \mathcal{X}\) through a \(p\)-step process

1. Select \(d_1\) by \(r_1\) from \(P|_{x_1}\).
2. Select \(d_2\) by \(r_2\) from \(P|_{x_2|x_1=d_1}\).

\[
\vdots
\]

\(p\). Select \(d_p\) by \(r_p\) from \(P|_{x_p|x_1=d_1,\ldots,x_{p-1}=d_{p-1}}\).

Such a rule is defined to be the \textit{sequential composition} of \(r_1, \ldots, r_p\), denoted by \(\text{Seq}(r_1, \ldots, r_p)\). It is said to be \textit{decomposable}.

Special case: Seat-by-seat voting: No edges in CP-net, all issues are voted on separately.
Outline

1. Introduction

2. On the neutrality and efficiency of decomposable voting rules

3. Computing possible/necessary unique/co-winner

4. Summary
Question: Is there any neutral or Pareto efficient decomposable voting rules or correspondences?

- **Neutrality**: the voting rule is insensitive to any permutation of candidates
- **Pareto efficiency**: for any two candidates c_1, c_2, if c_1 is preferred to c_2 by all voters, then c_2 cannot be the winner
1. If the domain is not the product of two binary issues, then the only Pareto efficient seat-by-seat voting rule is a dictatorship.
 i.e. \(\{a_1, b_1\} \times \{a_2, b_2, c_2\} \).

2. If there are three or more issues, and each local rule satisfies efficiency, then the only neutral seat-by-seat voting rule is a dictatorship.
 i.e. \(\{a_1, b_1\} \times \{a_2, b_2\} \times \{a_3, b_3\} \).
Our impossibility theorems

1. If the domain is not the product of two binary issues, then the only Pareto efficient seat-by-seat voting rule or correspondence is a dictatorship or a trivial one.

2. If the domain is not the product of two binary issues, then the only neutral seat-by-seat voting rule or correspondence is a dictatorship, or an anti-dictatorship, or a trivial one.
More on neutrality and Pareto efficiency

- Sequential composition of two plurality rules on two binary issues is neutral and Pareto efficient

- The theorems can be easily extended to sequential voting rules/correspondences

1 L.Xia, J. Lang, M. Ying 07.
Outline

1. Introduction
2. On the neutrality and efficiency of decomposable voting rules
3. Computing possible/necessary unique/co-winner
4. Summary
Possible (necessary) winner, [Konczak and Lang, 2005]

Definition

A candidate c is a possible (necessary) winner for a set of partial orders P, w.r.t. voting rule r, if there exists a (for any) set of linear orders P' extending P, $r(P') = c$.

Need to distinguish between unique winner and co-winner ($c \in r(P')$).
Example: Possible (unique) winner under Plurality rule

Preferences:

- V_1: $a < b < c$
- V_2: $a > b > c$
- V_3: $a > b$

a is a possible (unique) winner:

- V_1: $a < b < c$
- V_2: $a > b > c$
- V_3: $a > b$

a is not a necessary winner:

- V_1: $a < b < c$
- V_2: $a > b > c$
- V_3: $a > b$

L. Xia, V. Conitzer, J. Lang, M. Ying

Duke University, IRIT, Tsinghua University

Voting with partial orders
Example: Necessary (unique) winner

Preferences:

\[
\begin{array}{c}
V_1 \\
\begin{array}{c}
V_2 \\
\begin{array}{c}
V_3 \\
\end{array}
\end{array}
\end{array}
\]

Candidate \(a \) will always win!
Possible/necessary unique/co-winner determination

Input:
1. A voting rule r
2. A candidate c
3. A set of partial orders P.

Question: is c is a possible/necessary unique/co-winner?
The votes are unweighted.
Complexity results

<table>
<thead>
<tr>
<th>Voting rule</th>
<th>Possible winner</th>
<th>Necessary winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoring1</td>
<td>NP-hard</td>
<td>$O(nm^2)$</td>
</tr>
<tr>
<td>STV</td>
<td>NP-hard2</td>
<td>coNP-hard2</td>
</tr>
<tr>
<td>Copeland1</td>
<td>NP-hard</td>
<td>coNP-hard</td>
</tr>
<tr>
<td>Maximin1</td>
<td>NP-hard</td>
<td>$O(nm^3)$</td>
</tr>
<tr>
<td>Bucklin1</td>
<td>NP-hard</td>
<td>$O(nm^2)$</td>
</tr>
<tr>
<td>Ranked pairs1</td>
<td>NP-hard</td>
<td>coNP-hard</td>
</tr>
</tbody>
</table>

n: # votes
m: # candidates

- Holds for both unique/co-winner.

1 Even when the # incomparable (unknown) pairs in each vote is small (less than 16)
2 Even when the partial orders are modeled by CP-nets.
Summary

- Impossibility theorem about seat-by-seat voting
- Complexity of computing possible/necessary unique/co-winners given partial orders

Future work

- Possible/necessary unique/co-winners when inputs are CP-nets
- Is it usually easy to compute possible/necessary unique/co-winners