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Manipulation with full/no information

We first investigate the following two special cases: (1) the
manipulator knows the profile of the other voters, and (2) the
manipulator knows nothing about the preferences of the non-
manipulators. The formal case corresponds to I = {{P} :
P ∈ Fn}, and the latter case corresponds to I = {Fn}.

When the manipulator has full information about the non-
manipulators’ votes, the DOMINANT-MANIPULATION prob-
lem reduces to the standard manipulation problem. There-
fore, we immediately obtain the following proposition from
the Gibbard-Satterthwaite theorem (Gibbard 1973; Satterth-
waite 1975).

Proposition 1. When the manipulator has full informa-
tion about the non-manipulators’ votes, and m ≥ 3, any
voting rule that satisfies non-imposition and is immune to
dominant-manipulation if and only if it is a dictatorship.

It is easy to see that for any voting rule r under which
computing the winner is in P, DOMINATION is in P; and
if the coalitional manipulation problem is NP-complete
(respectively, P), then DOMINANT-MANIPULATION is in
NP-complete (respectively, P). Therefore, the following
proposition immediately follows the computational com-
plexity of the coalitional manipulation problems for some
common voting rules (Bartholdi, Tovey, and Trick 1989;
Bartholdi and Orlin 1991; Conitzer, Sandholm, and Lang
2007; Zuckerman, Procaccia, and Rosenschein 2009; Xia et
al. 2009).

Proposition 1. When the manipulator has full information,
computing DOMINANT-MANIPULATION is NP-complete
for STV and ranked pairs; and it is in P for Copeland, STV,
positional scoring rules, plurality with Runoff, cup, max-
imin, ranked pairs, and Bucklin.

Now we move to the case where the manipulator has
no information about the non-manipulator’s votes. We first
prove a positive result, which states that any Condorcet con-
sistent voting rule is immune to dominant-manipulation.

Theorem 1. When the manipulator has no information
about the non-manipulators’ votes, any Condorcet consis-
tent voting rule r is immune to dominant-manipulation.
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Proof. For the sake of contradiction, let U dominates VM .
Since U 6= VM , there exist two alternatives a and b such
that a ≻VM

b and b ≻U a. We prove the theorem in the
following two cases.

Case 1: n is even. For any j such that 1 ≤ j ≤ n/2, we
let V2j−1 = [a ≻ b ≻ (C \ {a, b})], where the alternatives
in C \ {a, b} are ranked according to the ascending order
of their subscripts; let V2j = [b ≻ a ≻ Rev(C \ {a, b})].
Here Rev(C \ {a, b}) is the reverse of C \ {a, b}. Let P =
(V1, . . . , Vn). It follows that a is the Condorcet winner for
P ∪{VM} and b is the Condorcet winner for P ∪{U}. Since
a ≻VM

b, VM is not dominated by U , which contradicts the
assumption.

Case 2: n is odd. For any j such that 1 ≤ j ≤ (n− 1)/2,
we let V2j−1 = [a ≻ b ≻ (C \ {a, b})] and V2j = [b ≻ a ≻
Rev(C \ {a, b})]. Suppose a = ci1 and b = ci2 . Let Vn =
{

V1 if i1 > i2
V2 if i1 < i2

. Let P = (V1, . . . , Vn). It follows that a

is the Condorcet winner for P∪{VM} and b is the Condorcet
winner for P ∪ {U}, which contradicts the assumption.

Theorem 2. When the manipulator has no information
about the non-manipulators’ votes, Borda is immune to
dominant-manipulation.

Proof. For the sake of contradiction, let U dominates VM .
Since U 6= VM , there exist i∗ ≤ m such that Alt(VM , i∗) 6=
Alt(u, i∗) and for any i < i∗, Alt(VM , i) = Alt(U, i). That
is, i∗ is the first position from top where the alternatives in
VM and U are different. let ci1 = Alt(VM , i∗) and ci2 =
Alt(UM , i∗). We prove the theorem in the following three
cases.

Case 1: n is even. For any i < i′ ≤ m, let V
[i,i′]
M denote

the sub-linear-order of VM that starts at the ith position of
VM and ends at the i′th position of VM . For any j such that

1 ≤ j ≤ n/2, we let V2j−1 = [V
[i∗,m]
M ≻ Rev(V

[1,i∗−1])
M ]

and V2j = [Rev(V
[i∗,m]
M ) ≻ Rev(V

[1,i∗−1])
M ]. Let P =

(V1, . . . , Vn). It follows that Borda(P ∪ {VM}) = ci1 and
Borda(P ∪ {U}) = ci2 . We note that ci1 ≻VM

ci2 , which
contradicts the assumption.

Case 2: n is odd and c1 is ranked within top i∗ positions
in VM . For any j such that 1 ≤ j ≤ (n − 1)/2, we let
V2j−1 = [c1 ≻ c2 ≻ · · · ≻ cm] and V2j = [cm ≻ cm−1 ≻
· · · ≻ c1]. Let Vn = Rev(V ) and P = (V1, . . . , Vn). It



follows that Borda(P ∪{V }) = c1 and Borda(P ∪{U}) 6=
c1, which contradicts the assumption.

Case 3: n is odd and c1 is not ranked within top i∗ po-
sitions in VM . Let V1, . . . , Vn−1 be defined the same as

in Case 2. Let V ′ = [V
[i∗,m]
M ≻ V

[1,i∗−1]
M ]. Let U ′ =

[U [i∗,m] ≻ U [1,i∗−1]]. It follows that Borda(V ′, VM ) = ci1 .
Let a = Borda(V ′, U). If a 6= ci1 , then ci1 ≻VM

a. This
is because the alternatives ranked in top i∗ − 1 positions in
VM gets exactly the average score in {V ′, U}, which means
that in order for any of them to win, the score of any al-
ternative in {V ′, U} must be the same. However, due to
the tie-breaking mechanism, the winner is c1, which con-
tradicts the assumption that c1 is not ranked within top i∗

positions in VM . Let P = (V1, . . . , Vn−1, V
′), we have that

Borda(P ∪ {VM}) ≻VM
Borda(P ∪ {U}), which contra-

dicts the assumption. If a = ci1 , then Borda(U ′, VM ) =
Borda(V ′, U) = ci1 . We have that Borda(P ′ ∪ {VM}) =
ci1 ≻VM

ci2 = Borda(P ′ ∪ {U}), which is a contradiction.
Therefore, when n ≥ 1, VM is not dominated by any other

vote under Borda.

Theorem 3. When the manipulator has no information and
n ≥ 6(m − 2), any positional scoring rule is immune to
dominant-manipulation.

Proof. For the sake of contradiction, let U dominates
VM . Let c = argmaxc∗{~sm(VM , c∗) : ~sm(VM , c∗) >
~sm(U, c∗)}. It follows that there exists an alternative c′ such
that ~sm(VM , c′) < ~sm(VM , c) and ~sm(U, c′) = ~sm(VM , c).
We have that sm(VM , c) > ~sm(VM , c′) and ~sm(U, c′) =
~sm(VM , c) > ~sm(U, c).

We prove the theorem for the case where c = c1

and c′ = c2. The other cases can be proved
similarly. Let Mm−2 denote the cyclic permuta-
tion such that c3 → c4 → · · · → cm → c3.
Let W = [c1 ≻ c2 ≻ c3 ≻ · · · ≻ cm] and
W ′ = [c2 ≻ c1 ≻ c3 ≻ · · · ≻ cm]. Let P1 denote
the 6(m − 2)-profile that is composed of three copies of

{W, W ′, Mm−2(W ), Mm−2(W
′), . . . , Mm−3

m−2 (W ), Mm−3
m−2 (W )}.

If n is even, then let P be composed of P1 plus n/2 −
3(m − 2) copies of {W1, W2}. If n is odd, then let W ∗

denote the a vote obtained from VM by exchanging the po-
sitions of c and c′ and P be composed of ⌊n/2⌋− 3(m− 2)
copies of {W1, W2} and W ∗. Because ~sm(1) > ~sm(m), we
have that r(P ∪ {VM}) = c1 and r(P ∪ {U}) = c2. We
note that c1 ≻VM

c2. Therefore, we obtain a contradiction,
which means that VM is not dominated.

The next theorem states that for any voting rule that sat-
isfies anonymity and unanimity, the true preferences is not
dominated by any other vote that has a different top-ranked
alternative.

Theorem 4. When the manipulator has no information, for
any voting rule r that satisfies anonymity and unanimity, any
true preferences VM of the manipulator and any vote U such
that Alt(U, 1) 6= Alt(VM , 1), VM is not dominated by U .

Proof. For the sake of contradiction, let U be a vote that
dominates VM and Alt(U, 1) 6= Alt(VM , 1). For any 0 ≤

j ≤ n + 1, let Pj be the profile that consists of j copies of
U and n + 1− j copies of V . Because r satisfies unanimity,
r(P0) = Alt(VM , 1) and r(Pn+1) = Alt(U, 1). Let j∗ be
the smallest number such that r(Pj∗ ) 6= Alt(VM , 1). Ob-
viously j∗ ≥ 1. Let P be a profile that consists of j∗ − 1
copies of U and n + 1 − j∗ copies of VM . It follows that
r(P ∪ {VM}) = r(Pj∗−1) = Alt(VM , 1) ≻VM

r(Pj∗ ) =
r(P ∪ {U}), which contradicts the assumption.

Theorem 1, 2, and 3 tells that when the manipulator has no
information, then computing whether her true preferences is
dominated is trivial (it is often undominated.) We recall that
when the manipulator has full information, for many com-
mon voting rules (except STV and ranked pairs), computing
whether her preferences is dominated is easy. The next sec-
tion investigate the intermediate case—the manipulator has
partial information about the other votes, represented by par-
tial orders.

Information sets represented by partial orders

In this section, we focus on the cases where the manipula-
tor’s information about the non-manipulators’ votes is rep-
resented by a profile of partial orders. In such cases, a signal
is a profile partial order Ppo, and the corresponding informa-
tion set is S = {P ∈ Fn : P extends Ppo}. In other words,
in DOMINATION and DOMINANT-MANIPULATION with par-
tial orders, the input S is represented by a profile of partial
orders.

We note that the two cases discussed in the previous
section (full information and no information) are special
cases of manipulation with partial orders. Consequently,
by Proposition 1, when the manipulator’s information is
represented by partial orders and m ≥ 3, no voting rule
that satisfies non-imposition and non-dictatorship is im-
mune to dominant-manipulation. It also follows from Theo-
rem 2 that STV and ranked pairs are resistent to dominant-
manipulation.

The next theorem shows that even when the manipulator
has slightly imperfect information, the DOMINATION prob-
lem with partial orders becomes NP-hard for Borda.

Theorem 5. For any positional scoring rule r with scoring
vectors {~s1, ~s2, . . .}, suppose there exists a polynomial f(x)
such that for any x ∈ N, there exist l and k, such that x ≤
l ≤ f(x) and k ≤ l−4, and satisfy the following conditions:
(1) ~sl(k)−~sl(k +1) = ~sl(k +1)−~sl(k +2) = ~sl(k +2)−
~sl(k + 3) > 0,
(2) ~sl(k + 3) − ~sl(k + 4) > 0,
(3) ~sl(2) − ~sl(l + 1 − q) > 0,

Then, DOMINATION and DOMINANT-MANIPULATION

with partial orders are both NP-hard, even when the number
of undetermined pairs in each partial order is no more than
4.

Proof. The reductions is similar to the proof of the NP-
hardness for the possible winner problem under positional
scoring rules in (Xia and Conitzer accepted with minor re-
visions). We first show that if r satisfies the above three
conditions, then DOMINATION is NP-hard, via a reduction
from X3C.



Given an X3C instance V = {v1, . . . , vq}, S =
{S1, . . . , St}, we choose l and k that satisfy the conditions
in the statement of the theorem, where 2q + 3 ≤ l ≤
f(2q + 3). We construct a DOMINATION instance as fol-
lows.
Alternatives: C = {c, w, d} ∪ V ∪ A, where d and A =
{a1, . . . , al−q−3} are auxiliary alternatives. Ties are broken
in the following order: c ≻ w ≻ V ≻ A ≻ d.
Manipulator’s preferences: VM = [w ≻ c ≻ A ≻ d ≻ V ].
We are asked whether V = VM is dominated by U = [w ≻
A ≻ d ≻ c ≻ V ].
The profile of partial orders: Let Ppo = P1 ∪ P2, defined
as follows.

First part (P1) of the profile: For each i ≤ t, choose any
Bi ⊂ C \ (Si ∪ {w, d}) with |Bi| = k − 1. We define a
partial order Oi as follows.
Oi = [Bi ≻ w ≻ Si ≻ d ≻ Others] \ [{w} × (Si ∪ {d})]

That is, Oi is a partial order that agrees with Bi ≻ w ≻
Si ≻ d ≻ Others, except that the pairwise relations between
(w, Si) and (w, d) are not determined (and these are the only
4 undetermined relations). Let P1 = {O1, . . . , Ot}.
Second part (P2) of the profile: Here we give the prop-
erties that we need P2 to satisfy; P2 can be constructed in
polynomial-time. We omit the construction due to the space
constraint. We note that all votes in P2 are linear orders. Let
P ′

1 = {Bi ≻ w ≻ Si ≻ d ≻ Others : i ≤ t}. That is, P ′
1

(|P ′
1| = t) is an extension of P1 (in fact, P ′

1 is the set of lin-
ear orders that we started with to obtain P1, before removing
some of the pairwise relations). P2 is a set of linear orders
such that the following holds for Q = P ′

1 ∪ P2 ∪ {V }:
(1) For any i ≤ q, ~sl(Q, c)− ~sl(Q, vi) = ~sl(k)− ~sl(k + 1),
~sl(Q, w) − ~sl(Q, c) = q

3 × (~sl(k) − ~sl(k + 4)).
(2) For any i ≤ q, the scores of vi and w, c are much higher
than the scores of the other alternatives, in any extension of
P1 ∪ P2 ∪ {V }.
(3) P2’s size is polynomial in t + q.

We next prove that V is dominated by U if and only if c is
the winner in at least one extension of Ppo ∪ {V }. We note
that in U , for any alternative v ∈ V , the score difference
between w and v is the same as the score difference between
w and v in VM = V . Therefore, for any extension P ∗ of
Ppo, if r(P ∗ ∪ {V }) ∈ ({w} ∪ V), then r(P ∗ ∪ {V }) =
r(P ∗ ∪ {U}) (because d and the alternatives in A cannot
win). If there exists an extension P ∗ of Ppo such that r(P ∗∪
{V }) = c, then we claim that the manipulator is strictly
better off by casting U than casting V . Let P ∗

1 denote the
extension of P1 in P ∗. Then, because the total score of w is
no more than the total score of c, w is ranked lower than d for
at least q

3 times in P ∗
1 . Meanwhile, for each j ≤ q, vj is not

ranked higher than w for more than one time in P ∗
1 , because

otherwise the total score of vj will be higher than the total
score of c. That is, the votes in P ∗

1 where d ≻ w constitutes a
solutions to the X3C instance. Therefore, the only possibility
for c to win is that the scores of c, w,, and all alternatives
in V are the same (such that c wins according to the tie-
breaking mechanism). Now, we have w = r(P ∗ ∪ {U}).
Because w ≻VM

c, the manipulator is better off casting U .
It follows that V is dominated by U if and only if there exists
an extension of Ppo ∪ {V } where c is the winner.

The above reasoning also shows that V is dominated by
U if and only if the X3C instance has a solution. Therefore,
DOMINATION MANIPULATION is NP-hard to compute.

We note that Theorem 5 applies to Borda (by letting
f(x) = x + 4, l = x + 4, and k = x).

Intuitively, both DOMINATION and DOMINATING MANIP-
ULATION problems seem to be harder than the possible win-
ner problem under the same rule. Next, we present two the-
orems, which show that for any WMG-based rule, DOMI-
NATION and DOMINATING MANIPULATION are harder than
two special possible winner problems, respectively. We first
define a notion that will be used in defining the two special
possible winner problems. For any instance of the possi-
ble winner problem (r, Ppo, c), we define its WMG parti-
tion R = {Rc′ : c′ ∈ C} as follows. For any c′ ∈ C, let
Ri = {WMG(P ) : P extends Ppo and r(P ) = c′}. That
is, Rc′ is composed of all WMGs of the extensions of Ppo

where the winner is c′. It is possible that for some i ≤ m,
Ri is empty. For any set C′ ⊆ C \ {c}, we let GC′ denote the
weighted majority graph where for each c′ ∈ C′, there is an
edge c′ → c with weight 2, and these are the only edges in
the GC′ .

We are ready to define the two special possible winner
problems for WMG-based voting rules.

Definition 1. Let d∗ be an alternative and let C′ be an
nonempty subset of C \ {c, d∗}. For any WMG-based vot-
ing rule r, we let PW1(d

∗, C′) denote the set of possible
winner problem instances (r, Ppo, c) satisfying the follow-
ing conditions: (Rc is the element in the WMG partition of
this instance)

1. For any G ∈ Rc, r(G + GC′) = d∗.

2. For any c′ 6= c and any G ∈ Rc′ , r(G + GC′) = r(G).

3. For any c′ ∈ C′, Rc′ = ∅.

Definition 2. Let d∗ be an alternative and let C′ be an
nonempty subset of C \ {c, d∗}. For any WMG-based voting
rule r, we let PW2(d

∗, C′) denote the set of possible winner
problem instances (r, Ppo, c) satisfying:

1. For any G ∈ Rc, r(G + GC′) = d∗.

2. For any G ∈ Rd∗ , r(G + GC′) = r(G).

3. For any c′ ∈ C \ {c, d∗}, Rc′ = ∅.

Theorem 6. Let r be a WMG-based voting rule. There is
a polynomial time reduction from PW1(d

∗, C′) to DOMINA-
TION, both under r.

Proof. Let (r, Ppo, c) be a PW1(d
∗, C′) instance. We con-

struct the following DOMINATION instance. Let the profile
of partial orders be Qpo = Ppo ∪ {Rev(d∗ ≻ c ≻ C′ ≻
Others)}, V = VM = [d∗ ≻ c ≻ C′ ≻ Others], and
U = [d∗ ≻ C′ ≻ c ≻ Others]. Let P be an extension
of Ppo. It follows that WMG(P ∪ {Rev(d∗ ≻ c ≻ C′ ≻
Others), V }) = WMG(P ), and WMG(P ∪ {Rev(d∗ ≻
c ≻ C′ ≻ Others), U}) = WMG(P ) + GC′ . There-
fore, the manipulator can change the winner if and only if
WMG(P ) ∈ Rc, which is equivalent to that c is a possible
winner. We recall that by the definition of PW1(d

∗, C′), for
any G ∈ Rc, r(G + GC′) = d∗; for any c′ 6= c and any



G ∈ Rc′ , r(G + GC′) = c′; and d∗ ≻V c. It follows that
V (=VM ) is dominated by U if and only if the PW1(d

∗, C′)
instance has a solution.

Proof. The reductions is similar to the proof of the NP-
hardness for the possible winner problem under Borda (Xia
and Conitzer accepted with minor revisions). We first show
that if r satisfies the three conditions in the statement of the
theorem, then DOMINATION problem is NP-hard via a re-
duction from X3C.

Given an X3C instance V = {v1, . . . , vq}, S =
{S1, . . . , St}, let q+3 ≤ l ≤ f(q+3) (where q is the number
of elements in the X3C instance) satisfy the two conditions in
the assumption, and let k ≤ l−4 satisfy ~sl(k)−~sl(k+1) =
~sl(k + 1) − ~sl(k + 2) = ~sl(k + 2) − ~sl(k + 3) > 0, and
~sl(k + 3) − ~sl(k + 4) > 0. We construct a DOMINATION

instance as follows.
Alternatives: C = {c, w, d} ∪ V ∪ A, where d and A =
{a1, . . . , al−q−3} are auxiliary alternatives. Ties are broken
in the following order: c ≻ w ≻ V ≻ A ≻ d.
Preferences of the manipulator: VM = [w ≻ c ≻ A ≻
d ≻ V ]. We are asked if V is dominated by U = [w ≻ A ≻
d ≻ c ≻ V ].
First part (P1) of the profile: For any i ≤ t, choose any
Bi ⊂ C \ (Si ∪ {w, d}) with |Bi| = k − 1. We define a
partial order Oi as follows.
Oi = [Bi ≻ w ≻ Si ≻ d ≻ Others] \ [{w} × (Si ∪ {d})]

That is, Oi is a partial order that agrees with Bi ≻ w ≻
Si ≻ d ≻ Others, except that the pairwise relations between
(w, Si) and (w, d) are not determined (and these are the only
4 undetermined relations). Let P1 = {O1, . . . , Ot}.
Second part (P2) of the profile: We first give the properties
that we need P2 to satisfy; we will show how to construct P2

in polynomial time later in the proof. We recall that all votes
in P2 are linear orders. Let P ′

1 = {Bi ≻ w ≻ Si ≻ d ≻
Others : i ≤ t}. That is, P ′

1 (|P ′
1| = t) is an extension of P1

(in fact, P ′
1 is the set of linear orders that we started with to

obtain P1, before removing some of the pairwise relations).
P2 is a set of linear orders such that the following holds for
Q = P ′

1 ∪ P2 ∪ {V, Rev(V )}:
(1) For any i ≤ q, ~sl(Q, c)− ~sl(Q, vi) = ~sl(k)− ~sl(k + 1),
~sl(Q, w) − ~sl(Q, c) = q

3 × (~sl(k) − ~sl(k + 4)).
(2) For any i ≤ q, the scores of vi and w, c are higher than
those of the other alternatives in any extension of P1 ∪ P2.
(3) P2’s size is polynomial in t + q.

Given such a P2, c has the same total score as the total
score of w if and only if there exists an extension P ∗

1 of P1

such that w is ranked lower than c at least q
3 times, in order

for the total score of w to be no more than the total score
of c. Meanwhile, for any j ≤ q, vj is not ranked higher
than w more than once in P ∗

1 , because otherwise the total
score of vj will be higher than the total score of c. Now
due to the tie-breaking mechanism c is the winner. Since
~sl(2) − ~sl(l + 1 − q) > 0, the total score of c is strictly
smaller than the total score of w in P ∗

1 ∪P2∪{Rev(VM ), U}.
We note that in U , for any alternative v ∈ V , the score dif-
ference between w and v is the same as the score differ-
ence between w and v in VM . It follows that the winner for
P ∗

1 ∪P2 ∪ {Rev(VM ), VM} is different from the winner for

P ∗
1 ∪ P2 ∪ {Rev(VM ), U} if and only if c is the winner for

P ∗
1 ∪ P2 ∪ {Rev(VM ), VM}, which only happens when the

total scores of c, w,V are the same. Therefore, if there exists
an extension P ∗

1 of P1 such that the total scores of c, w,V are
the same, then VM is dominated by U , otherwise VM is not
dominated by U .

Given a solution to the DOMINATION instance, let I be
the set of subscripts of votes in P ∗

1 for which w is ranked
lower than c; then, SI = {Si : i ∈ I} is a solution to
the X3C instance. Conversely, given a solution to the X3C

instance, let I be the set of indices of Si that are included
in the X3C. Then, a solution to the DOMINATION instance
can be obtained by ranking c ahead of w exactly in the votes
with subscripts in I . Therefore, V is dominated by W if and
only if there exists a solution to the X3C problem, which
means that the DOMINATION problem with partial orders is
NP-complete under positional scoring rules that satisfy the
conditions stated in the theorem.

For the DOMINANT-MANIPULATION problem, we add to
P1 the following votes. For any e ∈ V ∪ {w} and i ≤ l − 1,
we obtain a vote Ve,i from VM by exchanging the alternative
ranked in the (i + 1)th position with e and then exchanging
the alternative ranked in the ith position with d; let Oe,i de-
note the partial order obtained from Ve,i by removing d ≻ e.
Let PE = {Oe,i, Rev(Ve,i) : e ∈ V ∪ {w}, i ≤ l − 1}.
We add q copies of PE to P1. For any vote W where there
exists v ∈ V such that the score difference between w and
v is different from the score difference between w and v in
VM , there must exists v′ ∈ C such that the score difference
between w and v′ in W is strictly smaller than their score
difference in VM . Then, it is easy to find an extension of
P1 such that if the manipulator cast VM , then w wins, and
if the manipulator cast W , then v′ wins, which means that
VM is not dominated by W . Therefore, in such an instance,
VM can only be dominated by a vote W where the score
difference between w and any alternative in V is the same
across VM and W . Following the same reasoning as for
the DOMINATION problem, we conclude that DOMINANT-
MANIPULATION is NP-hard.

Next, we show how to construct the profile P2 so that it
satisfies the three conditions. P2 consists of the following
three parts.

The first part, P ′
2. Let MV denote the cyclic permutation

among V ∪{c, w}. That is, MV = c → w → v1 → v2 →
. . . → vq → c. For any j ∈ N, and any e ∈ V∪{c, w}, we

let M0
V (e) = e, and M j

V (e) = MV (M j−1
V (e)). The first

part of P2 is P ′
2 = MV (P ′

1)∪M2
V (P ′

1)∪ . . .∪M q+1
V (P ′

1).
It follows that for any e, e′ ∈ V∪{c, w}, ~sl(P

′
1∪P ′

2, e) =
~sl(P

′
1 ∪ P ′

2, e
′).

The second part, P ∗
2 . Choose any B ⊆ C\{d, w, c} such

that |B| = k − 1, and any A′ ⊆ C \ (B ∪ {d, w}) such
that |A′| = 3. We define the following partial orders.

V1 = O(B, d, w, c, Others), V ′
1 = O(B, c, w, d, Others)

V2 = O(B, d, c, w, Others), V ′
2 = O(B, w, c, d, Others)

V3 = O(B, d, A′, w, Others), V ′
3 = O(B, w, A′, d, Others)

V4 = O(B, A′, d, w, Others), V ′
4 = O(B, A′, w, d, Others)



P ∗
2 is defined as follows.

P ∗
2 ={V ′

1 , V ′
2 , MV (V1), MV (V2), . . . , M

q+1
V (V1), M

q+1
V (V2)}

∪
q

3
× {V ′

3 , MV (V3), . . . , M
q+1
V (V3)} ∪ {V ′

4 , MV (V4), . . . , M
q+1
V (V4)}

Here
q

3
× {V ′

3 , MV (V3), . . . , M
q+1
V (V3)} represents

q

3
copies of {V ′

3 , MV (V3), . . . , M
q+1
V (V3)}. Putting P ′

2 and
P ∗

2 together, the condition (1) in the description of P2 is
satisfied.

The third part, P̃2. P̃2 is defined in a way such that in P̃2,
the total scores of any two alternatives in V∪{c, w} are the
same, and the total score of any alternative in V∪{c, w} is
significantly higher than the total score of any alternative
in C\(V∪{c, w}). Let MO be a cyclic permutation among
C \ (V ∪ {c, w}). That is, we let MO = d → a1 → a2 →
. . . → al−q−3 → d. Let V5 = [V ≻ c ≻ w ≻ Others].

We define the third part P̃2 as follows.

P̃2 = (|P1∪P ′
2∪P ∗

2 |+1)×{M i
V (M j

O(V5)) : i ≤ q+2, j ≤ l−q−2}

We note that |P1 ∪P ′
2 ∪P ∗

2 |+ 1 = t(q + 3) + 3(q + 2)+
q(q + 2)/3, which is polynomial in t + q.

It seems that both DOMINATION and DOMINATING-
MANIPULATION problems are harder than the possible win-
ner problem under the same rule. Next, we present two
theorems, which show that for any WMG-based rule, there
exist polynomial-time reductions from two restricted ver-
sions of the possible winner problems to DOMINATION

and DOMINATING-MANIPULATION, respectively. There-
fore, if computing such restricted possible winner prob-
lems is NP-hard, then DOMINATION and DOMINATING-
MANIPULATION are also NP-hard. We first define a no-
tion that will be used in defining the two restrictions of
the possible winner problems. For any instance of the pos-
sible winner problem, we define its WMG partition R =
{R1, . . . , Rm} as follows.

•
⋃m

i=1 Ri is the set of all weighted majority graphs corre-

sponding to the extensions of Ppo. That is,
⋃m

i=1 Ri =
{WMG(P ) : P extends Ppo}.

• For any i1 6= i2, Ri1 ∩ Ri2 = ∅, and for any i ≤ m, any
G ∈ Ri, the winner for G is ci.

It is possible that for some i ≤ m, Ri’s are empty. For any
set C′ ⊆ C \ {c}, we let GC′ denote the weighted majority
graph where for each c′ ∈ C′, there is an edge c′ → c with
weight 2, and these are the only edges in the graph.

In a possible winner problem, we are given (r, Ppo, c),
where r is a voting rule, Ppo is a profile that is composed of n
partial orders, and c is an alternative. We are asked whether
there exists an extension P of Ppo such that c = r(P ). We
now define the two restricted versions of the possible winner
problems for voting rules that are based on weighted major-
ity graphs.

Definition 3. Let d∗ be an alternative and let C′ be an
nonempty subset of C \ {c, d∗}. For any WMG-based voting

rule r, we let PW1(d
∗, C′) denote the set of possible win-

ner problem instances (r, Ppo, c) that satisfies the following
constraints.

1. For any G ∈ Rc, r(G + GC′) = d∗.

2. For any c′ 6= c and any G ∈ Rc′ , r(G + GC′) = r(G).

3. For any c′ ∈ C′, Rc′ = ∅.

Definition 4. Let d∗ be an alternative and let C′ be an
nonempty subset of C \ {c, d∗}. For any WMG-based voting
rule r, we let PW2(d

∗, C′) denote the set of possible win-
ner problem instances (r, Ppo, c) that satisfies the following
constraints.

1. For any G ∈ Rc, r(G + GC′) = d∗.

2. For any G ∈ Rd∗ , r(G + GC′) = r(G).

3. For any c′ ∈ C \ {c, d∗}, Rc′ = ∅.

Theorem 7. Let r be a WMG-based voting rule. There exists
a (many-one) reduction from PW1(d

∗, C′) to DOMINATION,
both under r.

Proof. Let (r, Ppo, c) be an instance of the PW1(d
∗, C′)

problem. We construct the following DOMINATION in-
stance. Let the profile of partial orders be Qpo = Ppo ∪
{Rev(d∗ ≻ c ≻ C′ ≻ Others)}, V = VM = [d∗ ≻
c ≻ C′ ≻ Others], and U = [d∗ ≻ C′ ≻ c ≻ Others].
Let P be an extension of Ppo. It follows that WMG(P ∪
{Rev(d∗ ≻ c ≻ C′ ≻ Others), V }) = WMG(P ), and
WMG(P ∪ {Rev(d∗ ≻ c ≻ C′ ≻ Others), U}) =
WMG(P ) + GC′ . Therefore, the manipulator can change
the winner if and only if WMG(P ∪ {Rev(d∗ ≻ c ≻ C′ ≻
Others), V }) = WMG(P ) ∈ Rc, which is equivalent to
saying that c is a possible winner. We recall that by the def-
inition of PW1(d

∗, C′), for any G ∈ Rc, r(G + GC′) = d∗;
for any c′ 6= c and any G ∈ Rc′ , r(G + GC′) = c′; and
d∗ ≻V c. It follows that V (=VM ) is dominated by U if and
only if the PW1(d

∗, C′) instance has a solution.

We next show how to use Theorem7 to prove that DOM-
INATION is NP-hard for Copeland, maximin, and voting
trees, even when the number of undetermined pairs in each
partial order is bounded above by a constant. It suffices to
show that the PW1(d

∗, C′) problems for these rules are NP-
hard.

Corollary 1. It is NP-hard to compute DOMINATION for
Copeland, maximin, and voting trees, even when the num-
ber of unknown pairs in each vote is bounded above by a
constant.

Proof. Copeland: We tweak the reduction in the NP-
completeness proof of PW w.r.t. Copeland (Theorem 3 (Xia
and Conitzer accepted with minor revisions)) by letting
D(c, v) = 1 for any alternative v ∈ V and use the tie-
breaking mechanism where w ≻ c ≻ Others. Let d∗ = w,
C′ = B, V = VM = [w ≻ c ≻ C′ ≻ Others] and
U = [w ≻ C′ ≻ c ≻ Others]. It follows that the al-
ternatives in B never wins the elections, and if c wins the
election in an extension P of Ppo, then the Copeland score
of c is 8t + 1 and the Copeland score of w = 8t. However,
in the weighted majority graph WMG(P ) + GC′ , c loses to
all alternatives in C′ in their pairwise elections, which means



that the Copeland score of c is t + 1. Consequently w is the
winner. On the other hand, for any extension P where c is
not the winner, w is the winner, and w is also the winner in
the weighted majority graph WMG(P ) + GC′ . Therefore,
the PW instance is a PW1(d

∗, C′) instance.

Maximin: We tweak the reduction in the NP-
completeness proof of PW w.r.t. maximin (Theorem 5 (Xia
and Conitzer accepted with minor revisions)) by letting
D(w′, w) = t. Let d∗ = w, C′ = {w′}, V = VM = [w ≻
c ≻ w′ ≻ V ] and U = [w ≻ w′ ≻ c ≻ V ]. We adopt the tie-
breaking mechanism where w ≻ c ≻ V ≻ w′. It is easy to
check that w′ never wins the elections. If c wins the election
in an extension P of Ppo, then the minimum pairwise score
of c is −t+2, and the minimum pairwise score of w and the
alternatives in V are −t. We note that in the majority graph
WMG(P ) + GC′ , the minimum pairwise score of c is −t
(against w′), which means that r(WMG(P ) + GC′) = w.
For any extension P of Ppo such that r(P ) 6= c, it is easy
to check that the winner is in {w} ∪ V , and the minimum
pairwise scores of them are the same as in the weighted ma-
jority graph WMG(P ) + GC′ . Therefore, the PW instance
is a PW1(d

∗, C′) instance.

Voting trees: We tweak the reduction in the NP-
completeness proof of PW w.r.t. voting trees (Theo-
rem 7 (Xia and Conitzer accepted with minor revisions)) by
letting D(c, d) = 1. Let d∗ = w, C′ = {d}, V = VM =
[w ≻ c ≻ d ≻ Others] and U = [w ≻ d ≻ c ≻ Others].
For any extension P of Ppo where c wins, the winner for the
weighted majority graph WMG(P ) + GC′ is w, because c
loses to d in the first round, and w beats any other alterna-
tives (except c) in their pairwise elections. For any extension
P of Ppo where c does not win, the winner is w. Therefore,
the PW instance is a PW1(d

∗, C′) instance.

Theorem 8. Let r be a WMG-based voting rule. There exists
a polynomial-time (many-one) reduction from PW2(d

∗, C′)
to DOMINATING-MANIPULATION, both under r.

Proof. The proof is similar to the proof for Theorem 7.
We note that d∗ is the manipulator’s top-ranked alternative.
Therefore, if c is not a possible winner, then V (= VM ) is
not weakly dominated by any other vote; if c is a possible
winner, then V is dominated by U = [w ≻ C′ ≻ c ≻
Others].

By Theorem 7 and the proofs for Theorem 3, Theorem 6,
and Theorem 7 in (Xia and Conitzer accepted with minor
revisions), we immediately have the following corollary.

Corollary 2. It is NP-hard to compute DOMINATING-
MANIPULATION for Copeland, ranked pairs, and voting
trees, even when the number of unknown pairs in each vote
is bounded above by a constant.

Theorem 9. It is NP-hard to compute DOMINATING-
MANIPULATION for maximin.

Proof: We prove the hardness result by a reduction
from X3C. Given an X3C instance V = {v1, . . . , vq},
S = {S1, . . . , St}, where q = t > 3, we construct a
DOMINATING-MANIPULATION instance as follows.

Alternatives: V ∪{c, w, w′}. Ties are broken in the order
w ≻ V ≻ c ≻ w′.

First part P1 of the profile: for each i ≤ t, we start with
the linear order Vi = [w ≻ Si ≻ c ≻ (V \ Si) ≻ w′], and
subsequently obtain a partial order Oi by removing the
relations in {w}×(Si∪{c}). For each i ≤ t, we let O′

i be
a partial order obtained from V ′

i = [w ≻ vi ≻ Others] by
removing w ≻ vi. We let O′ be a partial order obtained
from V ′ = [w′ ≻ w ≻ Others] by removing w′ ≻ w.
Let P1 be the profile composed of {O1, . . . , Ot}, 2 copies
of {O′

1, . . . , O
′
t}, and 3 copies of O′. Let P ′

1 denote the
extension of P1 that consists of V1, . . . , Vt, 2 copies of
{V ′

1 , . . . , V ′
t }, and 3 copies of V ′.

Second part P2 of the profile: P2 is defined to be a a set
of linear orders such that the pairwise score differences of
P ′

1 ∪ P2 ∪ {V } satisfy:

(1) D(w, c) = 2t+
2q

3
, D(w′, w) = 2t+6, D(w′, c) = 2t,

and for all i ≤ q, D(w, vi) = 2t + 4 and D(vi, w
′) =

4(t + q).

(2) D(l, r) ≤ 1 for all other pairwise scores not defined in
(1).

Preferences of the manipulator: VM = [w ≻ V ≻ c ≻
w′].

We note that in any extension of P1 ∪ P2, after the manipu-
lator changes her vote from VM to [w ≻ V ≻ w′ ≻ c], the
only change made to the weighted majority graph is that the
weight on w → c increases by 2. Since w′ never wins in
any extension, if c does not win when the manipulator votes
for VM , then the winner does not change after the manipu-
lator changes her vote to [w ≻ V ≻ w′ ≻ c]. It follows
from the proof of Theorem 7, Corollary 1, and Theorem 5
in (Xia and Conitzer accepted with minor revisions) that if
the X3C instance has a solution, then VM is dominated by
U = [w ≻ V ≻ w′ ≻ c]. Suppose that the X3C instance
does not have a solution, we next show that VM is not dom-
inated by any vote.

For the sake of contradiction, suppose the X3C instance
does not have a solution and VM is dominated by a vote U .
There are following cases.

• Case 1: There exist vi ∈ V such that w ≻V vi and vi ≻U

w. We let P ∗ be the extension of P1 ∪ P2 obtained from
P ′

1 ∪ P2 as follows. (1) Let w ≻ w′ in 3 extensions of
O′ (we recall that there are q > 3 copies of O′ in P1).
(2) Let vi ≻ w in 2 extensions of O′

i. It is easy to check
that in P ∗, the minimum pairwise score of w is −2t (via
w′) and the minimum pairwise score of vi is −2t (via w).
Therefore, due to the tie-breaking mechanism, w wins.
However, if the manipulator changes her vote from VM

to U , then the minimum pairwise score of w at most −2t
and the minimum pairwise score of vi is at least −2t + 2,
which means that vi wins. We note that w ≻V vi. This
contradicts the assumption that U dominates VM .

• Case 2: w ≻W vi for each vi ∈ V . By changing her vote
from VM to U , the manipulator might reduce the mini-
mum score of U by 2, increase the minimum score of c



by 2, or increase the minimum score of w′ by 2. There-
fore, by changing her vote to U , the manipulator would
either make no changes, make w lose, or make c win (we
note that w′ is not winning anyway). In each of these three
cases the manipulator is not better off, which means that
U does not dominate VM . This contradicts the assump-
tion.

⋄

Proposition 2. For any voting rule for which computing the
winner is in P, the DOMINATION problem with partial orders
is in PNP

|| .

For plurality and veto, we present polynomial-time
algorithms for both DOMINATION and DOMINATING-
MANIPULATION.

Given a DOMINATION instance, we let ci∗ denote the top-
ranked alternative in V and let cj∗ denote the top-ranked al-
ternative in U . The key idea behind the algorithm for DOMI-
NATION for plurality is that we check for all pairs of alterna-
tives d, d′ such that (1) d′ ≻VM

d, (2) d wins if the manipu-
lator votes for V , and (3) d′ wins if the manipulator votes for
U . It follows that either d = ci∗ or d′ = cj∗ (or both hold).
We will check whether there exists 0 ≤ l ≤ n, d, d′ ∈ C
and an extension P ∗ of Ppo, such that if the manipulator
votes for V , then the winner is d, whose plurality score in
P ∗ is l, and if the manipulator votes for U , then the winner
is d′. Here the plurality score of an alternative in a profile
is the number of times it is ranked in the top position in this
profile. To this end, we will convert it to multiple maximum-
flow problems. First we define the maximum-flow problems.

Let C′ ⊂ C denote a set of alternatives. Let ~e =
(e1, . . . , em) ∈ N

m be an arbitrary vector composed of m
natural numbers such that

∑m
i=1 ei ≥ n. Given an instance

of the DOMINATION problem, we define a maximum-flow
problem F~e

C′ that has the following property. F~e
C′ has a solu-

tion if and only if there exists an extension P ∗ of Ppo such
that for any ci ∈ C′, its plurality score is exactly ei, and the
plurality score of any cj ∈ C ⊆ C′ is at most ej , both in P ∗.

F~e
C′ is defined as follows.

Vertices: {s, O1, . . . , On, c1, . . . , cm, y, t}.

Edges:

– There is an edge from s to Oi with weight 1.

– For any Oi and cj , there is an edge Oi → cj with
weight 1 if and only if cj can be ranked in the top posi-
tion in at least one extension of Oi.

– For any ci ∈ C′, there is an edge ci → t with weight ei.

– For any cj ∈ C\C′, there is an edge cj → y with weight
ej .

– There is an edge y → t with weight n −
∑

ci∈C′ ei.

For example, F~e
{c1,c2}

is illustrated in Figure 1.

Proposition 3. Given an instance of the DOMINATION prob-
lem for plurality, F~e

C′ has a solution if and only if there exists
an extension P ∗ of Ppo such that the plurality score of any
alternative ci ∈ C′ is ei, and the plurality score of any alter-
native cj ∈ C \ C′ is at most ej , both in P ∗.

s
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c3

c1

cm

t

c2

y

1

1

1

1

1

1

1
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e2

e3

em

n− e1 − e2

...

...

Figure 1: F~e
{c1,c2}

.

Now, we are ready to present the algorithm for DOM-
INATION for plurality. For any pair of alternatives
ci and cj such that i 6= j, we define δ(ci, cj) =
{

1 if ci ≻ cj in tie-breaking
0 if cj ≻ ci in tie-breaking

. Given any instance of

the DOMINATION problem, any 0 ≤ l ≤ n, and any alterna-
tives ci∗ , cj∗ , d = ci, d

′ = cj such that d′ ≻V d, i∗ 6= j∗,
and either d = ci∗ or d′ = cj∗ , we define the set of admissi-
ble maximum-flow problems APlu as follows.

• If i = i∗ and j 6= j∗, then let ei = l, ej = l+1−δ(cj, ci),
and ej∗ = min(l + 1 − δ(j∗, i), ej − 1 − δ(j∗, j)). For
any ci′ ∈ C \ {ci, cj , cj∗}, we let ei′ = min(l + 1 −
δ(i′, i), ej − δ(i′, j)). Let APlu = {F~e

{ci,cj}
}.

• If i 6= i∗ and j = j∗, then let ei = l, ej = l − δ(cj , ci),
and ei∗ = min(l−1− δ(i∗, i), ej +1− δ(i∗, j)). For any
ci′ ∈ C \ {ci, cj , ci∗}, we let ei′ = min(l − δ(i′, i), ej +

1 − δ(i′, j)). Let APlu = {F~e
{ci,cj}

}.

• If i = i∗ and j = j∗, then we define APlu as follows.

– Let ei = l, ej = l + 1 − 2δ(cj , ci). For any ci′ ∈
C \ {ci, cj}, we let ei′ = min(l + 1− δ(i′, i), ej + 1−
δ(i′, j)).

– Let e′i = e′j = l. For any ci′ ∈ C \ {ci, cj}, we let

e′i′ = min(l + 1 − δ(i′, i), ej + 1 − δ(i′, j)). Let ~e′ =
(e′1, . . . , e

′
m).

– Let APlu = {F~e
{ci,cj}

, F~e′

{ci,cj}
}.

We are ready to present the algorithm that solves DOMI-
NATION (Algorithm 1).

The algorithm for DOMINATING-MANIPULATION for plu-
rality simply runs Algorithm 1 for m − 1 times, where
V = VM and the top-ranked alternatives in U are C \
{Alt(V, 1)}. If in any step V is dominated by U , then there
is a dominating-manipulation; otherwise V is not dominated
by any other vote.

The idea behind the algorithm for DOMINATION and
DOMINATING-MANIPULATION for veto are similar. Given
an instance of the DOMINATION problem, let ci∗ , cj∗ de-
note the alternatives that are ranked in the bottom posi-
tions in V and U , respectively. For any C′ ⊆ C and any
~e = (e1, . . . , em) ∈ N

m, where
∑

i ei ≤ n, we construct a

maximum-flow problem L~e
C′ as follows.

Vertices: {s, O1, . . . , On, c1, . . . , cm, y, t}.

Edges:



Algorithm 1: compDominationPlurality

Let ci∗ = Alt(V, 1) and cj∗ = Alt(U, 1).1

for any 0 ≤ l ≤ n and any pair of alternatives2

d = ci, d
′ = cj such that d′ ≻VM

d, i∗ 6= j∗, and either
d = ci∗ or d′ = cj∗ do

Compute APlu.3

for each maximum-flow problem F~e
C′ in APlu do4

if
∑

ci∈C′ ei ≤ n and F~e
C′ has a solution then5

Output that the V is dominated by U ,6

terminate the algorithm.
end7

end8

end9

Output that V is not dominated by U .10

– There is an edge from s to Oi with weight 1.

– For any Oi and cj , there is an edge Oi → cj with
weight 1 if and only if cj can be ranked in the bottom
position in at least one extension of Oi. There is an
edge from Oi to y if and only if there exists cj ∈ C \ C′

such that cj can be ranked in the bottom position in at
least one extension of Oi.

– For any ci ∈ C, there is an edge ci → t with weight ei.

– There is an edge y → t with weight n −
∑m

i=1 ei.

For example, L~e
{c1,c2}

is illustrated in Figure 2.
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Figure 2: L~e
{c1,c2}

.

Proposition 4. Given an instance of the DOMINATION prob-
lem for veto, L~e

C′ has a solution if and only if there exists an
extension P ∗ of Ppo such that the veto score of any alterna-
tive ci ∈ C′ is ei, and the veto score (the number of times
that an alternative is ranked in the bottom position in the
profile) of any alternative cj ∈ C \ C′ is at least ej , both in
P ∗.

Now, we are ready to present the algorithm for DOMI-
NATION for veto. Given an instance of the DOMINATION

problem, any 0 ≤ l ≤ n, and any alternatives ci∗ , cj∗ , d =
ci, d

′ = cj such that d′ ≻V d, i∗ 6= j∗, and either d = cj∗

or d′ = ci∗ , we define the set of admissible maximum-flow
problems AVeto as follows.

• If i = j∗ and j 6= i∗, then let ei = l, ej = l + δ(cj , ci),
and ei∗ = max(l−1+δ(i∗, i), ej+δ(i∗, j)). For any ci′ ∈
C\{ci, cj , ci∗}, we let ei′ = max(l+δ(i′, i), ej+δ(i′, j)).

Let AVeto = {L~e
{ci,cj}

}.

• If i 6= j∗ and j = i∗, then let ei = l, ej = l−1+δ(cj, ci),
and ej∗ = max(l + δ(j∗, i), ej − 1 + δ(j∗, j)). For any
ci′ ∈ C \ {ci, cj , cj∗}, we let ei′ = max(l + δ(i′, i), ej +

δ(i′, j)). Let AVeto = {L~e
{ci,cj}

}.

• If i = j∗ and j = i∗, then we define APlu as follows.

– Let ei = l, ej = l = 1 + 2δ(cj , ci). For any ci′ ∈
C \{ci, cj}, we let ei′ = max(l+δ(i′, i), ej +δ(i′, j)).

– Let e′i = e′j = l. For any ci′ ∈ C \{ci, cj}, we let e′i′ =
max(l + δ(i′, i), ej + δ(i′, j)). Let ~e′ = (e′1, . . . , e

′
m).

– Let AVeto = {L~e
{ci,cj}

, L~e′

{ci,cj}
}.

Now we are ready to present our algorithm (Algorithm 2).

Algorithm 2: compDominationVeto

Let ci∗ = Alt(V, m) and cj∗ = Alt(U, m).1

for any 0 ≤ l ≤ n and any pair of alternatives2

d = ci, d
′ = cj such that d′ ≻VM

d, i∗ 6= j∗, and either
d = cj∗ or d′ = ci∗ do

Compute AVeto.3

for each maximum-flow problem F~e
C′ in AVeto do4

if
∑

ei ≤ n and F~e
C′ has a solution then5

Output that the V is dominated by U ,6

terminate the algorithm.
end7

end8

end9

Output that V is not dominated by U .10

Similarly we can obtain a polynomial-time algorithm for
DOMINATING-MANIPULATION for Veto.

Table 1 summarizes our results in this section.

DOMINATION/DOMINATING-MANIPULATION

STV NP-hard (Proposition 1)

Ranked pairs NP-hard (Proposition 1)
Pos. scoring NP-hard (Theorem 5)

Copeland NP-hard (Corollary 1/Corollary 2)

Voting trees NP-hard (Corollary 1/Corollary 2)
Maximin NP-hard (Corollary 1/Theorem 9)

Plurality P (Algorithm 1)
Veto P (Algorithm 2)

Table 1: Computational complexity of DOMINATION and
DOMINATING-MANIPULATION for common voting rules.

Manipulation with Other Types of Partial

Information

We consider different amounts of information that the ma-
nipulators know about the other votes. For example, the



manipulators may know the current winner (that is, the can-
didate who wins if we ran the election on the votes of the
non-manipulators), the possible winners, the current scores
of the candidates (for counting rules like plurality or scoring
rules like Borda), the current elimination order (for elimina-
tion rules like STV or Nanson’s rule), or the current major-
ity graph (for rules like cup or Copeland which are based on
the majority graph). However, there are many other possi-
bilities like the top k scores, or those links in the majority
graph which are already decided and the manipulators can-
not change.

We suppose that the manipulators are risk averse. That is,
they will only vote strategically (that is, cast a vote different
to their preferences) if they can be sure that this will improve
the result for them or leave it the same. They will not vote
strategically if this could make the result worse for them.

We consider three properties which measure the degree
to which a voting rule is manipulable. We say that a vot-
ing rule is immune to manipulation based on the partial in-
formation known by the manipulators if the manipulators
can never safely vote strategically, resitant to manipulation
based on the partial informantion if the rule is not immune
but computing a safe manipulation is NP-hard, and vulner-
able to manipulation based on the partial information if the
rule is not immune and computing a safe manipulation is
polynomial. For example, plurality is immune to manipula-
tion based on the current winner, but becomes vulnerable as
soon as the manipulators known the possible winners.

Theorem 10. With weighted or unweighted votes plurality
is immune to manipulation based on the current winner, but
is vulnerable based on the possible winners.

Proof: Suppose the manipulators know the current winner.
There are two cases. In the first case, the current winner is
the manipulators’ first choice. In this case, the manipulators
should vote for this candidate. If they vote for anyone else,
there are situations in which someone less preferred wins.
In the second case, the current winner is not the manipula-
tors’ first choice. Voting for their first choice will either re-
sult in this candidate winning or the current winner. Voting
for anyone else may result in a less desirable outcome. In
both cases, the manipulators do not vote strategically. Sup-
pose, on the other hand, that the manipulators know the set
of possible winners. Then they can safely vote for their most
preferred candidate in this set. If the possible winners does
not include their most preferred candidate overall, this vote
is strategic. ⋄

Almost every voting rule is immune to manipulation
based on the current winner. This means in practice that
the returning officer does not have to keep the running result
secret provided nothing else is revealed. There are, however,
voting rules where even knowing just the current winner can
enable manipulation to take place. For example, consider
the 2/3rd rule used to change the result of an earlier vote in
Robert’s Rules of Order. A corresponding voting rule might
elect a fixed default candidate unless there is a 2/3rd major-
ity of votes for some other candidate. This rule is vulnerable
to manipulation based on the current winner. Suppose the
default winner is the manipulators’ third choice, the current

winner is the manipulators’ second choice and the manipu-
lators have no more votes than the non-manipulators. Then
the manipulators are better off voting strategically for their
second choice candidate and not for their first choice. Voting
for their first choice can only make the result worse for the
manipulators as their first choice cannot gain a 2/3rd major-
ity.

Results about manipulation with partial information can
provide new insight into the manipulability of voting rules.
For instance, it has been shown that the veto rule is NP-
hard to manipulate constructively with 3 or more candidates
and weighted votes (?). However, computational complexity
seems only to provide a weak shield here against manipula-
tion. In particular, the veto rule is vulnerable to manipula-
tion when the manipulators know just who are the possible
winners.

Theorem 11. With weighted votes, the veto rule is vulnera-
ble to manipulation based on the possible winners.

Proof: Consider the candidate in the set of possible win-
ners who the manipulators like least. A safe but (possibly)
strategic vote is for the manipulators to veto this candidate.
⋄

Note that computing the set of possible winners for the
veto rule with weighted votes is itself NP-hard.

Conclusions

Analysis of manipulation with partial information provides
insight into what needs to be kept confidential in an elec-
tion. For instance, in a plurality or veto election, revealing
(perhaps unintentionally) the set of possible winners may
result in manipulation. It would be interesting to identify
cases where voting rules are resitant to manipulation based
on partial information. It would also be interesting to consier
control of elections based on partial information. Finally,
we could also perform game theoretic analyses of sequential
voting games where participants only have partial informa-
tion about the current state (unlike the complete information
assumed by Xia and Conitzer).
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