4 Ranked pairs

In this section, we prove that the UCMU and UCMC problems under ranked pairs are NP-complete (even for a single manipulator) by giving a reduction from 3SAT.

Definition 5 The 3SAT problem is: Given a set of variables $X=\left\{x_{1}, \ldots, x_{q}\right\}$ and a formula $Q=Q_{1} \wedge \ldots \wedge Q_{t}$ such that

1. for all $1 \leq i \leq t, Q_{i}=l_{i, 1} \vee l_{i, 2} \vee l_{i, 3}$, and
2. for all $1 \leq i \leq t$ and $1 \leq j \leq 3, l_{i, j}$ is either a variable x_{k}, or the negation of a variable $\neg x_{k}$,
we are asked whether the variables can be set to true or false so that Q is true.
Theorem 2 The UCMU and UCMC problems under ranked pairs are NP-complete, even when there is only one manipulator.

Proof of Theorem 2: It is easy to verify that the UCMU and UCMC problems under ranked pairs are in NP. We first prove that UCMU is NP-complete. Given an instance of 3SAT, we construct a UCMU instance as follows. Without loss of generality, we assume that for any variable x, x and $\neg x$ appears in at least one clause, and none of the clauses contain both x and $\neg x$.
Set of alternatives: $\mathcal{C}=\left\{c, Q_{1}, \ldots, Q_{t}, Q_{1}^{\prime}, \ldots, Q_{t}^{\prime}\right\} \bigcup\left\{x_{1}, \ldots, x_{q}, \neg x_{1}, \ldots, \neg x_{q}\right\}$
$\bigcup\left\{Q_{l_{1,1}}, Q_{l_{1,2}}, Q_{l_{1,3}}, \ldots, Q_{l_{t, 1}}, Q_{l_{t, 2}}, Q_{l_{t, 3}}\right\} \bigcup\left\{Q_{\neg l_{1,1}}, Q_{\neg l_{1,2}}, Q_{\neg l_{1,3}}, \ldots, Q_{\neg l_{t, 1}}, Q_{\neg l_{t, 2}}, Q_{\neg l_{t, 3}}\right\}$.
Alternative preferred by the manipulator: c.
Number of unweighted manipulators: $|M|=1$.
Non-manipulators' profile: $P^{N M}$ satisfying the following conditions.

1. For any $i \leq t, D_{P^{N M}}\left(c, Q_{i}\right)=30, D_{P^{N M}}\left(Q_{i}^{\prime}, c\right)=20$; for any $x \in \mathcal{C} \backslash\left\{Q_{i}, Q_{i}^{\prime}: 1 \leq i \leq t\right\}$, $D_{P^{N M}}(c, x)=10$.
2. For any $j \leq q, D_{P^{N M}}\left(x_{j}, \neg x_{j}\right)=20$.
3. For any $i \leq t, j \leq 3$, if $l_{i, j}=x_{k}$, then $D_{P^{N M}}\left(Q_{i}, Q_{x_{k}}^{i}\right)=30, D_{P^{N M}}\left(Q_{x_{k}}^{i}, x_{k}\right)=30$, $D_{P^{N M}}\left(\neg x_{k}, Q_{\neg x_{k}}^{i}\right)=30, D_{P^{N M}}\left(Q_{\neg x_{k}}^{i}, Q_{i}^{\prime}\right)=30$; if $l_{i, j}=\neg x_{k}$, then $D_{P^{N M}}\left(Q_{i}, Q_{\neg x_{k}}^{i}\right)=$ $30, D_{P^{N M}}\left(Q_{x_{k}}^{i}, x_{k}\right)=30, D_{P_{N M}}\left(\neg x_{k}, Q_{\neg x_{k}}^{i}\right)=30, D_{P^{N M}}\left(Q_{x_{k}}^{i}, Q_{i}^{\prime}\right)=30$, $D_{P^{N M}}\left(Q_{\neg x_{k}}^{i}, Q_{x_{k}}^{i}\right)=20$.
4. For any $x, y \in \mathcal{C}$, if $D_{P^{N M}}(x, y)$ is not defined in the above steps, then $D_{P^{N M}}(x, y)=0$.

For example, when $Q_{1}=x_{1} \vee \neg x_{2} \vee x_{3}, D_{P^{N M}}$ is illustrated in Figure 1 .
The existence of such a $P^{N M}$ is guaranteed by Lemma 1, and the size of $P^{N M}$ is in polynomial in t and q.

First, we prove that if there exists an assignment v of truth values to X so that Q is satisfied, then there exists a vote R_{M} for the manipulator such that $R P\left(P^{N M} \cup\left\{R_{M}\right\}\right)=\{c\}$. We construct R_{M} as follows.

- Let c be on the top of R_{M}.
- For any $k \leq q$, if $v\left(x_{k}\right)=\top$ (that is, x_{k} is true), then $x_{k} \succ_{R_{M}} \neg x_{k}$, and for any $i \leq t, j \leq 3$ such that $l_{i, j}=\neg x_{k}$, let $Q_{x_{k}}^{i} \succ_{R_{M}} Q_{\neg x_{k}}^{i}$.
- For any $k \leq q$, if $v\left(x_{k}\right)=\perp$ (that is, x_{k} is false), then $\neg x_{k} \succ_{R_{M}} x_{k}$, and for any $i \leq t, j \leq 3$ such that $l_{i, j}=\neg x_{k}$, let $Q_{\neg x_{k}}^{i} \succ_{R_{M}} Q_{x_{k}}^{i}$.
- The remaining pairs of alternatives are ranked arbitrarily.

Figure 1: For any vertices v_{1}, v_{2}, if there is a solid edge from v_{1} to v_{2}, then $D_{P^{N M}}\left(v_{1}, v_{2}\right)=30$; if there is a dashed edge from v_{1} to v_{2}, then $D_{P_{N M}}\left(v_{1}, v_{2}\right)=20$; if there is no edge between v_{1} and v_{2} and $v_{1} \neq c, v_{2} \neq c$, then $D_{P^{N M}}\left(v_{1}, v_{2}\right)=0$; for any x such that there is no edge between c and $x, D_{P^{N M}}(c, x)=10$.

If $x_{k}=\top$, then $D_{P^{N M} \cup\left\{R_{M}\right\}}\left(x_{k}, \neg x_{k}\right)=21$, and for any $i \leq t, j \leq 3$ such that $l_{i, j}=\neg x_{k}$, $D_{P^{N M} \cup\left\{R_{M}\right\}}\left(Q_{\neg x_{k}}^{i}, Q_{x_{k}}^{i}\right)=19$. It follows that no matter how ties are broken when applying ranked pairs to $P^{N M} \cup\left\{R_{M}\right\}$, if $x_{k}=\top$, then $x_{k} \succ \neg x_{k}$ in the final ranking. This is because for any $l_{i, j}=\neg x_{k}, D_{P^{N M} \cup\left\{R_{M}\right\}}\left(Q_{\neg x_{k}}^{i}, Q_{x_{k}}^{i}\right)=19<21=D_{P^{N M} \cup\left\{R_{M}\right\}}\left(x_{k}, \neg x_{k}\right)$, which means that before trying to fix $x_{k} \succ \neg x_{k}$, there is no directed path from $\neg x_{k}$ to x_{k}.

Similarly if $x_{k}=\perp$, then $D_{P^{N M} \cup\left\{R_{M}\right\}}\left(x_{k}, \neg x_{k}\right)=19$, and for any $i \leq t, j \leq 3$ such that $l_{i, j}=\neg x_{k}, D_{P^{N M} \cup\left\{R_{M}\right\}}\left(Q_{\neg x_{k}}^{i}, Q_{x_{k}}^{i}\right)=21$. It follows that if $x_{k}=\perp$, then $\neg x_{k} \succ x_{k}$, and for any $i \leq t, j \leq 3$ such that $l_{i, j}=\neg x_{k}, Q_{\neg x_{k}}^{i} \succ Q_{x_{k}}^{i}$ in the final ranking. This is because $Q_{\neg x_{k}}^{i} \succ Q_{x_{k}}^{i}$ will be fixed before $x_{k} \succ \neg x_{k}$.

Because Q is satisfied under v, for each clause Q_{i}, at least one of its three literals is true under v. Without loss of generality, we assume $v\left(l_{i, 1}\right)=\top$. If $l_{i, 1}=x_{k}$, then before trying to add $Q_{i}^{\prime} \succ c$, the directed path $c \rightarrow Q_{i} \rightarrow Q_{x_{k}} \rightarrow x_{k} \rightarrow \neg x_{k} \rightarrow Q_{\neg x_{k}} \rightarrow Q_{i}^{\prime}$ has already been fixed. Therefore, $c \succ$ Q_{i}^{\prime} in the final ranking, which means that for any alternatives x in $\mathcal{C} \backslash\left\{c, Q_{1}, \ldots, Q_{t}, Q_{1}^{\prime}, \ldots, Q_{t}^{\prime}\right\}$, $c \succ x$ in the final ranking because $D_{P^{N M} \cup\left\{R_{M}\right\}}(c, x)>0$. Hence, c is the unique winner of $P^{N M} \cup\left\{R_{M}\right\}$ under ranked pairs.

Next, we prove that if there exists a vote R_{M} for the manipulator such that $R P\left(P^{N M} \cup\left\{R_{M}\right\}\right)=$ $\{c\}$, then there exists an assignment v of truth values to X such that Q is satisfied. We construct the assignment v so that $v\left(x_{k}\right)=\top$ if and only if $x_{k} \succ_{R_{M}} \neg x_{k}$, and $v\left(x_{k}\right)=\perp$ if and only if $\neg x_{k} \succ_{R_{M}} x_{k}$. We claim that $v(Q)=\top$. If, on the contrary, $v(Q)=\perp$, then there exists a clause (Q_{1}, without loss of generality) such that $v\left(Q_{1}\right)=\perp$. We now construct a way to fix the pairwise rankings such that c is not the winner under ranked pairs, as follows. For any $j \leq 3$, if there exists $k \leq q$ such that $l_{i, j}=\neg x_{k}$, then $x_{k} \succ_{R_{M}} \neg x_{k}$ because $v\left(\neg x_{k}\right)=\perp$. Therefore, $D_{P^{N M} \cup R_{M}}\left(x_{k}, \neg x_{k}\right)=21$. Then, after trying to add all pairs $x \succ x^{\prime}$ such that $D_{P^{N M} \cup R_{M}}\left(x, x^{\prime}\right)>$ 21 (that is, all solid directed edges in Figure 1), it follows that $x_{k} \succ \neg x_{k}$ can be added to the final ranking. We choose to add $x_{k} \succ \neg x_{k}$ first, which means that $Q_{x_{k}}^{1} \succ Q_{\neg x_{k}}^{1}$ in the final ranking (otherwise, we have $Q_{\neg x_{k}}^{1} \succ Q_{x_{k}}^{1} \succ x_{k} \succ \neg x_{k} \succ Q_{\neg x_{k}}^{1}$, which is a contradiction).

For any $j \leq 3$, if there exists $k \leq q$ such that $l_{i, j}=x_{k}$, then $\neg x_{k} \succ_{R_{M}} x_{k}$ because $v\left(x_{k}\right)=\perp$. Therefore, $D_{P^{N M} \cup R_{M}}\left(x_{k}, \neg x_{k}\right)=19$. We note that after trying to add all pairs $x \succ x^{\prime}$ such that $D_{P^{N M} \cup R_{M}}\left(x, x^{\prime}\right)>19, Q_{x_{k}}^{1} \nsucc Q_{\neg x_{k}}^{1}$. We recall that for any $j \leq 3$, if there exists $k \leq q$ such that $l_{i, j}=\neg x_{k}$, then $Q_{\neg x_{k}}^{1} \nsucc Q_{x_{k}}^{1}$. Hence, it follows that $Q_{1}^{\prime} \succ c$ is consistent with all pairwise rankings
added so far. Then, since $D_{P^{N M} \cup R_{M}}\left(Q_{1}^{\prime}, c\right) \geq 19$, if $Q_{1}^{\prime} \succ c$ has not been added, we choose to add it first of all pairwise rankings of alternatives $x \succ x^{\prime}$ such that $D_{P^{N M} \cup R_{M}}\left(x, x^{\prime}\right)=19$, which means that $Q_{1}^{\prime} \succ c$ in the final ranking-in other words, c is not at the top in the final ranking. Therefore, c is not the unique winner, which contradicts the assumption that $R P\left(P^{N M} \cup\left\{R_{M}\right\}\right)=\{c\}$.

For UCMC, we modify the reduction as follows: we let $P^{N M}$ be such that for any $i \leq t$, $D_{P^{N M}}\left(Q_{i}^{\prime}, c\right)=22$, and for any $j \leq q, D_{P^{N M}}\left(x_{j}, \neg x_{j}\right)=22$.

Similarly, we can prove that when $|M|$ is a constant greater than one, UCMU and UCMC under ranked pairs remain NP-complete.

Theorem 3 The UCMU and UCMC problems under ranked pairs are NP-complete, even when the number of manipulators is fixed to some constant $|M|>1$.

Proof of Theorem 3: We prove UCMU is NP-complete. The proof is similar to that of Theorem 2. We let $P^{N M}$ satisfy the following conditions.

1. For any $i \leq t, D_{P^{N M}}\left(c, Q_{i}\right)=30|M|, D_{P^{N M}}\left(Q_{i}^{\prime}, c\right)=22|M|-2$; for any $x \in \mathcal{C} \backslash\left\{Q_{i}, Q_{i}^{\prime}\right.$: $1 \leq i \leq t\}, D_{P^{N M}}(c, x)=10|M|$.
2. For any $j \leq q, D_{P^{N M}}\left(x_{j}, \neg x_{j}\right)=22|M|-2$.
3. For any $i \leq t, j \leq 3$, if $l_{i, j}=x_{k}$, then $D_{P^{N M}}\left(Q_{i}, Q_{x_{k}}^{i}\right)=30|M|, D_{P^{N M}}\left(Q_{x_{k}}^{i}, x_{k}\right)=$ $30|M|, D_{P^{N M}}\left(\neg x_{k}, Q_{\neg x_{k}}^{i}\right)=30|M|, D_{P^{N M}}\left(Q_{\neg x_{k}}^{i}, Q_{i}^{\prime}\right)=30|M|$; if $l_{i, j}=\neg x_{k}$, then $D_{P_{N M}}\left(Q_{i}, Q_{\neg x_{k}}^{i}\right)=30|M|, D_{P_{N M}}\left(Q_{x_{k}}^{i}, x_{k}\right)=30|M|, D_{P^{N M}}\left(\neg x_{k}, Q_{\neg x_{k}}^{i}\right)=30|M|$, $D_{P^{N M}}\left(Q_{x_{k}}^{i}, Q_{i}^{\prime}\right)=30|M|, D_{P^{N M}}\left(Q_{\neg x_{k}}^{i}, Q_{x_{k}}^{i}\right)=20|M|$.
4. For any $x, y \in \mathcal{C}$, if $D_{P^{N M}}(x, y)$ is not defined in the above steps, then $D_{P^{N M}}(x, y)=0$.

First, if there exists an assignment v of truth values to X so that Q is satisfied, then we let R_{M} be defined as in the proof for Theorem 2. It follows that $R P\left(P^{N M} \cup\left\{|M| R_{M}\right\}\right)=\{c\}$ (all the manipulators can vote R_{M}).

Next, if there exists a profile P^{M} for the manipulators such that $R P\left(P^{N M} \cup P^{M}\right)=\{c\}$, then we construct the assignment v so that $v\left(x_{k}\right)=\top$ if $x_{k} \succ_{V} \neg x_{k}$ for all $V \in P^{M}$, and $v\left(x_{k}\right)=\perp$ if $\neg x_{k} \succ_{V} x_{k}$ for all $V \in P^{M}$; the values of all the other variables are assigned arbitrarily. Then by similar reasoning as in the proof for Theorem 2 , we know that Q is satisfied under v.

For UCMC, the proof is similar (by slightly modifying the $D_{P^{N M}}$ as we did in the proof of Theorem 2).

5 Bucklin

In this section, we present a polynomial-time algorithm for the UCMU problem under Bucklin (a polynomial-time algorithm for the UCMC problem under Bucklin can be obtained similarly). For any alternative x, any natural number d, and any profile P, let $B(x, d, P)$ denote the number of times that x is ranked among the top d alternatives in P. The idea behind the algorithm is as follows. Let $d_{\text {min }}$ be the minimal depth so that c is ranked among the top $d_{\text {min }}$ alternatives in more than half of the votes (when all of the manipulators rank c first). Then, we check if there is a way to assign the manipulators' votes so that none of the other alternatives is ranked among the top $d_{\text {min }}$ alternatives in more than half of the votes.

Algorithm 1
Input: A UCM instance (Bucklin, $\left.P^{N M}, c, M\right), C=\left\{c, c_{1}, \ldots, c_{m-1}\right\}$.

1. Calculate the minimal depth $d_{\text {min }}$ such that $B\left(c, d_{\text {min }}, P^{N M}\right)+|M|>\frac{1}{2}(|N M|+|M|)$.
