4 Ranked pairs

In this section, we prove that the UCMU and UCMC problems under ranked pairs are NP-complete (even for a single manipulator) by giving a reduction from 3SAT.

Definition 5 The 3SAT problem is: Given a set of variables $X = \{x_1, \ldots, x_q\}$ and a formula $Q = Q_1 \land \ldots \land Q_t$ such that

1. for all $1 \leq i \leq t$, $Q_i = l_{i,1} \lor l_{i,2} \lor l_{i,3}$, and
2. for all $1 \leq i \leq t$ and $1 \leq j \leq 3$, $l_{i,j}$ is either a variable x_k, or the negation of a variable $\neg x_k$.

we are asked whether the variables can be set to true or false so that Q is true.

Theorem 2 The UCMU and UCMC problems under ranked pairs are NP-complete, even when there is only one manipulator.

Proof of Theorem 2: It is easy to verify that the UCMU and UCMC problems under ranked pairs are in NP. We first prove that UCMU is NP-complete. Given an instance of 3SAT, we construct a UCMU instance as follows. Without loss of generality, we assume that for any variable x, x and $\neg x$ appears in at least one clause, and none of the clauses contain both x and $\neg x$.

Set of alternatives: $\mathcal{C} = \{c, Q_1, \ldots, Q_t, Q_{1}', \ldots, Q_{t}'\} \cup \{x_1, \ldots, x_q, \neg x_1, \ldots, \neg x_q\}$

$\bigcup \{Q_{l_{1,1}}, Q_{l_{1,2}}, Q_{l_{1,3}}, \ldots, Q_{l_{t,1}}, Q_{l_{t,2}}, Q_{l_{t,3}}\} \bigcup \{Q_{l_{1,1}}, Q_{l_{1,2}}, Q_{l_{1,3}}, \ldots, Q_{l_{t,1}}, Q_{l_{t,2}}, Q_{l_{t,3}}\}$

Alternative preferred by the manipulator: c.

Number of unweighted manipulators: $|M| = 1$.

Non-manipulators’ profile: P_{NM} satisfying the following conditions.

1. For any $i \leq t$, $D_{PNM}(c, Q_i) = 30, D_{PNM}(Q_i', c) = 20$; for any $x \in C \setminus \{Q_i, Q_i' : 1 \leq i \leq t\}$, $D_{PNM}(c, x) = 10$.
2. For any $j \leq q$, $D_{PNM}(x_j, \neg x_j) = 20$.
3. For any $i \leq t, j \leq 3$, if $l_{i,j} = x_k$, then $D_{PNM}(Q_i, Q_{i,x_k}) = 30$, $D_{PNM}(Q_{i,x_k}, Q_{i,x_k}) = 30$, $D_{PNM}(\neg x_k, Q_{i,x_k}) = 30$, $D_{PNM}(Q_{i,x_k}, Q_{i,x_k}) = 30$; if $l_{i,j} = \neg x_k$, then $D_{PNM}(Q_i, Q_{i-x_k}) = 30$, $D_{PNM}(Q_{i-x_k}, Q_{i-x_k}) = 30$, $D_{PNM}(Q_{i-x_k}, Q_{i-x_k}) = 30$, $D_{PNM}(Q_{i-x_k}, Q_{i-x_k}) = 30$.
4. For any $x, y \in C$, if $D_{PNM}(x, y)$ is not defined in the above steps, then $D_{PNM}(x, y) = 0$.

For example, when $Q_1 = x_1 \lor \neg x_2 \lor x_3$, D_{PNM} is illustrated in Figure 1.

The existence of such a P_{NM} is guaranteed by Lemma 1, and the size of P_{NM} is in polynomial in t and q.

First, we prove that if there exists an assignment v of truth values to X so that Q is satisfied, then there exists a vote R_M for the manipulator such that $RP(P_{NM} \cup \{R_M\}) = \{c\}$. We construct R_M as follows.

- Let c be on the top of R_M.
- For any $k \leq q$, if $v(x_k) = \top$ (that is, x_k is true), then $x_k \succ_{R_M} \neg x_k$, and for any $i \leq t, j \leq 3$ such that $l_{i,j} = \neg x_k$, let $Q_{i,x_k} \succ_{R_M} Q_{i-x_k}$.
- For any $k \leq q$, if $v(x_k) = \bot$ (that is, x_k is false), then $\neg x_k \succ_{R_M} x_k$, and for any $i \leq t, j \leq 3$ such that $l_{i,j} = \neg x_k$, let $Q_{i-x_k} \succ_{R_M} Q_{i-x_k}$.
- The remaining pairs of alternatives are ranked arbitrarily.
If \(x_k = \top \), then \(\text{DPNM} \cup \{ R_M \} \left(x_k, \neg x_k \right) = 21 \), and for any \(i \leq t, j \leq 3 \) such that \(l_{i,j} = \neg x_k \), \(\text{DPNM} \cup \{ R_M \} \left(Q^{\neg x_k}, Q^i_{x_k} \right) = 19 \). It follows that in the final ranking, this is because there is no directed path from \(\neg x_k \) to \(x_k \).

Similarly if \(x_k = \bot \), then \(\text{DPNM} \cup \{ R_M \} \left(x_k, \neg x_k \right) = 19 \), and for any \(i \leq t, j \leq 3 \) such that \(l_{i,j} = \neg x_k \), \(\text{DPNM} \cup \{ R_M \} \left(Q^{\neg x_k}, Q^i_{x_k} \right) = 21 \). It follows that if \(x_k = \bot \), then \(\neg x_k > x_k \), and for any \(i \leq t, j \leq 3 \) such that \(l_{i,j} = \neg x_k \), \(Q^{\neg x_k} > Q^i_{x_k} \) in the final ranking, which means that for any alternatives \(x \) in \(c \setminus \{ c, Q_1, \ldots, Q_3 \} \), \(x \) in the final ranking because \(\text{DPNM} \cup \{ R_M \} \left(c, x \right) > 0 \). Hence, \(c \) is the unique winner of \(\text{DPNM} \cup \{ R_M \} \) under ranked pairs.

Next, we prove that if there exists a vote \(R_M \) for the manipulator such that \(\text{RP} \left(\text{DPNM} \cup \{ R_M \} \right) = \{ c \} \), then there exists an assignment \(v \) of truth values to \(x \) such that \(Q \) is satisfied. We construct the assignment \(v \) so that \(v(x_k) = \top \) if and only if \(x_k > R_M \neg x_k \), and \(v(x) = \bot \) if and only if \(\neg x_k > R_M x_k \). We claim that \(v(Q) = \top \). If, on the contrary, \(v(Q) = \bot \), then there exists \(c \), without loss of generality, such that \(v(Q_1) = \bot \). We now construct a way to fix the pairwise rankings such that \(c \) is not the winner ranked pairs, as follows. For any \(j \leq 3 \), if there exists \(k \leq q \) such that \(l_{i,j} = \neg x_k \), then \(x_k > R_M \neg x_k \), which is a contradiction.

For any \(j \leq 3 \), if there exists \(k \leq q \) such that \(l_{i,j} = x_k \), then \(\neg x_k > R_M x_k \) because \(v(x_k) = \bot \). Therefore, \(\text{DPNM} \cup \{ R_M \}(x_k, \neg x_k) = 21 \). Then, after trying to add all pairs \(x \succ x' \) such that \(\text{DPNM} \cup \{ R_M \}(x, x') > 21 \) (that is, all solid directed edges in Figure 1), it follows that \(x_k \succ \neg x_k \) can be added to the final ranking.

We choose to add \(x_k \succ \neg x_k \) first, which means that \(Q^1_{x_k} > Q^{\neg x_k} \) in the final ranking (otherwise, we have \(Q^1_{x_k} > Q^{\neg x_k} \succ x_k \succ \neg x_k \succ Q^{\neg x_k} \), which is a contradiction).

For any \(j \leq 3 \), if there exists \(k \leq q \) such that \(l_{i,j} = \neg x_k \), then \(\neg x_k > R_M x_k \) because \(v(x_k) = \bot \). Therefore, \(\text{DPNM} \cup \{ R_M \}(x_k, \neg x_k) = 19 \). We note that after trying to add all pairs \(x \succ x' \) such that \(D_{\text{PNM}}(x, x') > 19 \), \(Q^1_{x_k} \neq Q^{\neg x_k} \). We recall that for any \(j \leq 3 \), if there exists \(k \leq q \) such that \(l_{i,j} = \neg x_k \), then \(Q^{\neg x_k} \neq Q^i_{x_k} \). Hence, it follows that \(Q^i_{x_k} \succ c \) is consistent with all pairwise rankings.
added so far. Then, since \(D_{P^NM∪R_M}(Q'_1, c) ≥ 19 \), if \(Q'_1 ∗ c \) has not been added, we choose to add it first of all pairwise rankings of alternatives \(x ∗ x' \) such that \(D_{P^NM∪R_M}(x, x') = 19 \), which means that \(Q'_1 ∗ c \) in the final ranking—in other words, \(c \) is not at the top in the final ranking. Therefore, \(c \) is not the unique winner, which contradicts the assumption that \(RP(P^{NM}∪\{R_M\}) = \{c\} \).

For UCMC, we modify the reduction as follows: we let \(P^{NM} \) be such that for any \(i ≤ t \), \(D_{P^NM}(Q'_i, c) = 22 \), and for any \(j ≤ q \), \(D_{P^NM}(x_j, ¬x_j) = 22 \).

Similarly, we can prove that when \(|M|\) is a constant greater than one, UCMU and UCMC under ranked pairs remain NP-complete.

Theorem 3 The UCMU and UCMC problems under ranked pairs are NP-complete, even when the number of manipulators is fixed to some constant \(|M| > 1\).

Proof of Theorem 3: We prove UCMU is NP-complete. The proof is similar to that of Theorem 2.

We let \(P^{NM} \) satisfy the following conditions.

1. For any \(i ≤ t \), \(D_{P^NM}(c, Q_i) = 30|M|, D_{P^NM}(Q'_i, c) = 22|M| − 2 \); for any \(x ∈ C \setminus \{Q_i, Q'_i : 1 ≤ i ≤ t\}, D_{P^NM}(c, x) = 10|M| \).
2. For any \(j ≤ q \), \(D_{P^NM}(x_j, ¬x_j) = 22|M| − 2 \).
3. For any \(i ≤ t, j ≤ 3 \), if \(l_{i,j} = x_k \), then \(D_{P^NM}(Q_i, Q^{x_k}_i) = 30|M|, D_{P^NM}(Q^{x_k}_i, x_k) = 30|M|, D_{P^NM}(¬x_k, Q^{x_k}_i) = 30|M| \); if \(l_{i,j} = ¬x_k \), then \(D_{P^NM}(Q_i, Q^{¬x_k}_i) = 30|M|, D_{P^NM}(Q^{¬x_k}_i, x_k) = 30|M|, D_{P^NM}(¬x_k, Q^{¬x_k}_i) = 30|M| \), \(D_{P^NM}(Q^{x_k}_i, Q^{¬x_k}_i) = 30|M|, D_{P^NM}(Q^{¬x_k}_i, Q^{x_k}_i) = 20|M| \).
4. For any \(x, y ∈ C \), if \(D_{P^NM}(x, y) \) is not defined in the above steps, then \(D_{P^NM}(x, y) = 0 \).

First, if there exists an assignment \(v \) of truth values to \(X \) so that \(Q \) is satisfied, then we let \(R_M \) be defined as in the proof for Theorem 2. It follows that \(RP(P^{NM}∪\{M|R_M\}) = \{c\} \) (all the manipulators can vote \(R_M \)).

Next, if there exists a profile \(P^M \) for the manipulators such that \(RP(P^{NM}∪P^M) = \{c\} \), then we construct the assignment \(v \) so that \(v(x_k) = V \) if \(x_k ∗ V \ x_k \) for all \(V ∈ P^M \), and \(v(¬x_k) = ⊥ \) if \(¬x_k ∗ V \ x_k \) for all \(V ∈ P^M \); the values of all the other variables are assigned arbitrarily. Then by similar reasoning as in the proof for Theorem 2, we know that \(Q \) is satisfied under \(v \).

For UCMC, the proof is similar (by slightly modifying the \(D_{P^NM} \) as we did in the proof of Theorem 2).

5 Bucklin

In this section, we present a polynomial-time algorithm for the UCM problem under Bucklin (a polynomial-time algorithm for the UCMC problem under Bucklin can be obtained similarly). For any alternative \(x \), any natural number \(d \), and any profile \(P \), let \(B(x, d, P) \) denote the number of times that \(x \) is ranked among the top \(d \) alternatives in \(P \). The idea behind the algorithm is as follows. Let \(d_{min} \) be the minimal depth so that \(c \) is ranked among the top \(d_{min} \) alternatives in more than half of the votes (when all of the manipulators rank \(c \) first). Then, we check if there is a way to assign the manipulators’ votes so that none of the other alternatives is ranked among the top \(d_{min} \) alternatives in more than half of the votes.

Algorithm 1

Input: A UCM instance \((\text{Bucklin}, P^{NM}, c, M), C = \{c, c_1, \ldots, c_{m−1}\}\).

1. Calculate the minimal depth \(d_{min} \) such that \(B(c, d_{min}, P^{NM}) + |M| > \frac{1}{2}(|NM| + |M|) \).