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ABSTRACT
The coalitional manipulation problem is one of the central
problems in computational social choice. In this paper we
focus on solving the problem under the important family of
positional scoring rules, in an approximate sense that was
advocated by Zuckerman et al. [SODA 2008, AIJ 2009]. Our
main result is a polynomial-time algorithm with (roughly
speaking) the following theoretical guarantee: given a ma-
nipulable instance with m alternatives the algorithm finds a
successful manipulation with at most m− 2 additional ma-
nipulators. Our technique is based on a reduction to the
scheduling problem known as Q|pmtn|Cmax, along with a
novel rounding procedure. We demonstrate that our analy-
sis is tight by establishing a new type of integrality gap. We
also resolve a known open question in computational social
choice by showing that the coalitional manipulation prob-
lem remains (strongly) NP-complete for positional scoring
rules even when votes are unweighted. Finally, we discuss
the implications of our results with respect to the question:
“Is there a prominent voting rule that is usually hard to
manipulate?”

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Computer Applications]: Social and Be-
havioral Sciences—Economics

General Terms
Economics, Theory

Keywords
Social choice, Coalitional manipulation, Positional scoring
rules, Scheduling

1. INTRODUCTION
In settings with multiple agents, the agents often need to

make a group decision regarding a set of alternatives (also
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called “candidates”). A natural way of doing this is by vot-
ing. Each agent (also known as voter) is asked to submit
a linear order over the set of alternatives, which represents
her preferences, and a winning alternative is determined by
applying a voting rule to the collection of submitted linear
orders.

Ideally the voters would submit linear orders that rep-
resent their true preferences. However, sometimes a voter
can submit a false vote (an order that does not represent
her true preferences) that makes her better off. This phe-
nomenon is called manipulation, and the culprit is called a
manipulator. If, under voting rule r, there is no instance
where a voter benefits from manipulation, then r is said to
be strategy-proof.

Unfortunately, it is impossible to design a strategy-proof
voting rule that satisfies some very basic additional prop-
erties, due to the well-known Gibbard-Satterthwaite the-
orem [12, 18] (see [15] for an overview). To get around
this very negative result, it has been suggested to consider
computational complexity as a barrier against manipulation.
The idea is that the mere existence of an effective manipula-
tion does not guarantee that the manipulators can find it in
a reasonable amount of time. The computational complexity
of manipulation in voting systems is one of the main research
topics in the burgeoning field of computational social choice;
numerous papers have been devoted to this problem, cover-
ing different rules and different assumptions regarding the
manipulation setting.

In the earliest work on the complexity of manipulation [2,
1] it was shown that (if the number of alternatives is un-
bounded) it is NP-complete to determine whether a single
manipulator can effectively manipulate the election, under
both the second-order Copeland and the STV rules. Later
work studied how to modify prominent voting rules in a way
that makes them hard to manipulate for a single voter [4,
8].

A more general manipulation setting is that of weighted
coalitional manipulation (WCM). In this setting multiple
manipulators have formed a coalition, with the goal of mak-
ing an agreed-upon alternative win the election. Further-
more, the voters in this setting are weighted, that is, a
voter with weight k is equivalent to k unweighted voters
that cast identical ballots. Weights are common, e.g., in
corporate elections, where voters are weighted according to
the amount of stock they hold. Conitzer et al. [6] have es-
tablished that this problem is computationally hard under
a variety of prominent voting rules, even when the number
of alternatives is constant.



Subsequent work by Hemaspaandra et al. [14] has dealt
with positional scoring rules. Each rule in this family can
be represented by a vector ~s = (s1, . . . , sm). Each voter
then awards si points to the alternative that she ranks in
the ith position; the alternative with most points wins the
election. This family includes three of the most prominent
voting rules: Plurality (where each voter awards one point
to her favorite alternative), Borda (where each voter awards
m− i points to the alternative ranked ith), and Veto (where
each voter awards one point to all the alternatives, except for
the last-ranked one). Hemaspaandra et al. have established
a dichotomy theorem for WCM in scoring rules: it is either
NP-complete or in P, depending on the parameters ~s.

A special case of weighted coalitional manipulation is its
unweighted version (UCM), which is perhaps more natural
in most settings (e.g., political elections). Progress on the
UCM problem has been significantly slower than on other
variations, but many of the questions have recently been re-
solved. The exact complexity of the problem is now known
with respect to almost all of the prominent voting rules [9,
20, 21], with the glaring exception of Borda. Researchers
have believed for some years that UCM in Borda is NP-
complete; this belief was explicitly put forward as a conjec-
ture by Zuckerman et al. [21], but the question still remains
open. In fact, although UCM under some positional scor-
ing rules is known to be tractable (e.g., Plurality and Veto),
previous work has failed to establish that UCM is hard even
under some specific scoring rule.

The main thrust of the results of Zuckerman et al. [21]
is the design of algorithms for WCM and UCM with un-
usual approximation guarantees. The most interesting of
these results deals with Borda in the context of WCM: it is
shown that a greedy manipulation algorithm has the curi-
ous property that given an instance of WCM in Borda where
there is a manipulation, the algorithm is guaranteed to find
a manipulation that requires only one additional manipu-
lator with maximum weight, that is, with weight as large
as any of the original manipulators. Furthermore, it is ob-
served that the unweighted coalitional manipulation setting
begs the consideration of a natural optimization problem,
unweighted coalitional optimization (UCO). In this problem,
we are given the votes of an unweighted set of voters, and
the goal is to determine the minimum number of manipu-
lators needed to make a given alternative win the election.
It follows from the result mentioned above that the greedy
algorithm approximates UCO in Borda to an additive term
of one.

Our results and techniques. In this paper, we focus
on WCM, UCM, UCO, and WCO (the weighted version of
UCO) under positional scoring rules; we look for approx-
imability in the sense of Zuckerman et al. [21], as discussed
above. Our main contribution is the exploration of a surpris-
ing and fruitful connection between coalitional manipulation
and scheduling. We demonstrate that the huge body of work
on the latter problem can be leveraged to obtain nontrivial
algorithmic results for the former problem.

The intuition behind the reduction is as follows. The
scheduling problem to which we reduce is that of scheduling
on parallel machines where the goal is to minimize makespan.
In the coalitional manipulation problem, each manipulator
j always ranks the coalition’s preferred alternative c first,
but must award si ·wj points to the alternative it ranks ith,
where wj is the manipulator’s weight. For any i ≥ 2, we

define a machine for si; the larger si is in relation to s1, the
slower the machine is. Furthermore, each alternative besides
c is a job; the larger the gap between the score of this al-
ternative and the score of c, the larger the job is. When a
manipulator with weight wj ranks an alternative in the ith
position, it decreases the gap between c and this alternative
by (s1 − si)wj points, which, under the detailed reduction,
is equivalent to processing the corresponding job on the ith
slowest machine for wj time units.

In Section 3.1 we consider a version of WCM where votes
are divisible, that is, each voter is allowed to submit a con-
vex combination of linear orders (instead of a single linear
order, as in the traditional setting). This “divisible” variant
of the problem is denoted by WCMd, whereas the tradi-
tional coalitional manipulation problem (the indivisible ver-
sion) is denoted by WCMi. WCMd may be interesting in
its own right, but mainly serves to prepare the ground for
our results regarding WCMi. We give a polynomial-time
algorithm for WCMd under any positional scoring rule by
reducing it to the well-studied scheduling problem known
as Q|pmtn|Cmax (in which preemptions are allowed). This
algorithm also solves WCO.

In Section 3.2 we deal with the indivisible case (WCMi),
and augment the WCMd algorithm with a rounding tech-
nique. Indeed, based on existing results from the scheduling
literature, we can assume that the scheduling solutions use
relatively few preemptive break points. We then show that
in the coalitional manipulation problem, we need at most
one additional voter per preemptive break point. We ob-
tain the following theorem, which is a somewhat weaker but
far more general version of the main result of Zuckerman et
al. regarding Borda [21, Theorem 3.4].

Theorem 3.7. Given an instance of WCMi under some
scoring rule with m alternatives and an upper bound of W
on the weight of the manipulators, Algorithm 2 runs in poly-
nomial time, and

1. if the algorithm returns false, then there is no success-
ful manipulation;

2. otherwise the algorithm returns a successful manipula-
tion with at most m− 2 additional manipulators, each
with weight at most W/2, where W is the maximum
weight of the non-manipulators.

Crucially, in most settings of interest (e.g., political elec-
tions) the number of alternatives m is small compared to
the number of voters, or even the number of manipulators.
Moreover, WCMi is NP-complete under scoring rules such
as Borda and Veto, even when there are only three alter-
natives [6]. Therefore, in many important scenarios m − 2
additional manipulators are a very small fraction of the total
number of manipulators, that is, the algorithm gives a good
“approximation” to WCMi.

A direct implication of Theorem 3.7 is that in the un-
weighted case (UCMi) our approximation algorithm always
finds a manipulation with at most m−2 additional manipu-
lators, if there exists one for the given instance. Put another
way, the algorithm approximates UCOi to an additive term
of m− 2.

In Section 4 we establish an “integrality gap,” in the fol-
lowing sense: the optimal solution to UCOi can require
m−2 more manipulators than the optimal solution to UCOd
(Theorem 4.3). Moreover, we show that there is a family of



instances of UCOi such that any algorithm that is based on
rounding an optimal solution for the weighted case (WCO)
requires m − 2 more votes than the optimal UCOi solution
(Theorem 4.4). These results suggest that the analysis of
the guarantees provided by our technique is tight.

Our final major result asserts that UCMi under a specific
positional scoring rule is strongly NP-complete. This gives
a negative answer to the open question of whether there
exists an efficient algorithm that solves UCMi under any
positional scoring rule. While the problem remains open
for Borda, the positional scoring rule for which we show
the hardness result displays significant similarities to Borda;
hence, we believe that our result gives strong support to the
conjecture that UCMi under Borda is hard to compute. This
result also justifies our approximation results for UCMi and
UCOi, since it implies that we are approximating a problem
that is indeed NP-hard. Moreover, our result implies that
Q|pmtn|Cmax is strongly NP-complete in discrete time, that
is, when preemptions are only allowed at integral times; this
sheds new light on some results of Pinedo [16].

Implications with respect to frequency of manipula-

tion. Despite the large volume of work on worst-case hard-
ness of manipulation, it is becoming increasingly clear that
the question should be: “Is there a prominent voting rule
that is usually hard to manipulate?” A stream of papers in
recent years lends support to the belief that the answer is
negative. It is possible to identify two main approaches.

One approach tries to define general basic properties that
cannot be satisfied by any voting rule that is usually hard to
manipulate (see, e.g., [10, 19, 7]). In this line of work, “usu-
ally” refers to the uniform distribution over the preferences
of the agents, known in the social choice literature as the im-
partial culture assumption. However, in realistic settings one
would expect to encounter biased distributions that, e.g., fa-
vor specific alternatives or exhibit a concentration of voters
around opposing camps.

A second approach strives to design efficient heuristic ma-
nipulation algorithms for prominent voting rules that are
NP-hard to manipulate. Early work on this includes the
work of Procaccia and Rosenschein [17] and Conitzer and
Sandholm [5]. The work of Zuckerman et al. [21] also falls
into this framework, but has the important advantage of
allowing for theoretical guarantees without making any dis-
tributional assumptions.

Let us reconsider our Theorem 3.7 according to the per-
spective offered by Zuckerman et al. Our algorithm might
fail on a given“yes”instance of WCMi, but given a similar in-
stance with slightly more manipulation power, the algorithm
would be able to find a manipulation (without requiring ad-
ditional manipulators). In other words, adding more manip-
ulators creates a new “yes” instance on which the algorithm
is guaranteed to succeed. Hence, if m is relatively small, the
algorithm’s “window of error”—the family of instances on
which the algorithm might fail—is relatively small. With-
out claiming anything formally, it would appear to follow
that under “reasonable” distributions over preferences, the
probability of drawing an instance on which the algorithm
fails is small. Put another way, our results suggest that,
although coalitional manipulation is NP-hard under promi-
nent positional scoring rules, the problem is in fact usually
quite easy under any positional scoring rule.

Future research. Several intriguing questions remain open.

The first is whether a better additive approximation is pos-
sible.

Open Question 1. Is there a polynomial-time algorithm
that gives an additive approximation of less than m − 2 to
UCOi under all positional scoring rules?

Our Theorem 4.4 shows that any such algorithm will have
to use a fundamentally different technique. Another open
problem is to understand the guarantees that the Greedy
algorithm—the algorithm that was used by Zuckerman et
al. [21] to prove the earlier result for Borda—gives with re-
spect to general scoring rules.

Open Question 2. What additive approximation to UCOi
does the Greedy algorithm give for positional scoring rules?

Finally, we note that our Theorem 5.1 still has not re-
solved the complexity of UCMi for Borda.

Open Question 3. Is UCMi under Borda NP-complete?

2. PRELIMINARIES
Let C be the set of alternatives. A linear order on C is a

transitive, antisymmetric, and total relation on C. The set
of all linear orders on C is denoted by L(C). The set of all
convex combinations over L(C) is denoted by ∆(L(C)). An
(indivisible) vote is a linear order over C, that is, it is an
element of L(C). A divisible vote is an element of ∆(L(C)).
An n-voter indivisible profile P on C consists of n linear
orders on C, that is, P = (R1, . . . , Rn), where for every
i ≤ n, Ri ∈ L(C). Similarly, an n-voter divisible profile
P on C consists of n convex combinations over L(C). In
the remainder of the paper we let m denote the number of
alternatives (that is, m = |C|), and let C = {c, c1, . . . , cm−1}.

A voting rule r is a function from the set of all indivis-
ible profiles on C to nonempty subsets of C, that is, the
rule designates a nonempty subset of winners. A (posi-
tional) scoring rule over C is defined by a scoring vector
~s = (s1, . . . , sm). For any linear order V ∈ L(C) and any
c′ ∈ C, let s(V, c′) = sj , where j is the rank of c′ in V . For
any k ∈ N, any V1, . . . , Vk ∈ L(C), and any α1, . . . , αk ≥ 0

such that
Pk

i=1 αi = 1, we let

s(

kX

i=1

αkVk, c′) =

kX

i=1

αk · s(Vk, c′).

For any profile P = (V1, . . . , Vn), let s(P, c′) =
Pn

i=1 s(Vi, c
′).

The rule selects alternatives c′ ∈ C that maximize s(P, c′).
Three prominent examples of scoring rules are Borda, for
which the scoring vector is (m−1,m−2, . . . , 1, 0); Plurality,
for which the scoring vector is (1, 0, . . . , 0, 0); and Veto, for
which the scoring vector is (1, 1, . . . , 1, 0).

The definitions naturally extend to the case in which vot-
ers are weighted; the weights are represented by a vector
~w = (w1, . . . , wn) ∈ R

n
+, where for any i ≤ n, wi is the

weight of voter i. In particular, we let

s(P, ~w, c′) =

nX

i=1

wi · s(Vi, c
′),

and let r(P, ~w) denote the set of winners (the alternatives
with the highest score).



Let us now turn to the definition of the computational
problems that we shall investigate. We study the so-called
constructive manipulation variants, in which the goal is to
make a given alternative win.1

Definition 2.1. The Unweighted Coalitional Manipula-
tion (UCM) problem is defined as follows. An instance is
a tuple (r, P NM , c, k), where r is a voting rule, P NM is the
non-manipulators’ profile, c is the alternative preferred by
the manipulators, and k is the number of manipulators. We
are asked whether there exists a profile P M for the manip-
ulators such that c ∈ r(P NM ∪ P M ).

Definition 2.2. The Weighted Coalitional Manipulation
(WCM) problem is defined as follows. An instance is a tuple
(r, P NM , ~wNM , c, k, ~wM ), where r is a voting rule, P NM is
the non-manipulators’ profile, ~wNM represents the weights
of P NM , c is the alternative preferred by the manipulators,
k is the number of manipulators, and ~wM = (w1, . . . , wk)
represents the weights of the manipulators. We are asked
whether there exists a profile P M for the manipulators such
that c ∈ r((P NM , P M ), (~wNM , ~wM )).

Since we only focus on positional scoring rules in this
paper, r will simply be represented by the scoring vector
(s1, s2, . . . , sm). In the above definitions, we use the co-
winner formulation. Another possibility is to consider the
unique winner formulation which is similar, only we re-
quire that the winning set be the singleton {c}, that is,
r((P NM , P M ), (~wNM , ~wM )) = {c}. Unless explicitly men-
tioned otherwise, our results hold for the unique winner for-
mulation as well.

Zuckerman et al. [21] noted that the unweighted manipu-
lation setting allows for a natural optimization problem: the
unweighted coalitional optimization problem. Given, essen-
tially, an unweighted coalitional manipulation instance, we
ask how many manipulators are needed in order to make c
win. Formally:

Definition 2.3. The Unweighted Coalitional Optimiza-
tion (UCO) problem is defined as follows. An instance is
a tuple (r, P NM , c), where r is a voting rule, P NM is the
non-manipulators’ profile, and c is the alternative preferred
by the manipulators. We must find the minimum k such
that there exists a a profile P M consisting of k manipulator
votes that satisfies c ∈ r(P NM ∪ P M ).

In the weighted case of the optimization problem, we look
for the minimum total weight of the manipulators that is
sufficient to make c a co-winner.2

Definition 2.4. The Weighted Coalitional Optimization
(WCO) problem is defined as follows. An instance is a tu-
ple (r, P NM , ~wNM , c), where r is a voting rule, P NM is the

1Contrast with the destructive versions of these problems,
where the goal is to ensure that a given alternative does not
win. The constructive versions are by far the more com-
monly studied ones, in part because an algorithm for a con-
structive version can be used to obtain an algorithm for a
destructive version, simply by solving the constructive ver-
sion for each other alternative.
2Our approach can be easily extended to the solve the case of
unique winner, in which the objective is to find the infimum
of the total weight of the manipulators that is sufficient to
make c the unique winner.

non-manipulators’ profile, ~wNM represents the weights of
P NM , and c is the alternative preferred by the manipula-
tors. We are asked to find the minimum W M such that
there exist weights ~wM that sum up to W M and a pro-
file P M for manipulators with these weights, such that c ∈
r((P NM , P M ), (~wNM , ~wM )).

We let WCMd, UCMd, UCOd denote the subproblems of
WCM, UCM, UCO, respectively, in which votes are divisi-
ble; and we let WCMi, UCMi, UCOi denote the subproblems
in which votes are indivisible. For WCO, the minimum sum
of weights for the divisible and indivisible cases is the same,
so we use WCO to represent either one. We note that it
is irrelevant whether the votes of the non-manipulators are
divisible or not; what matters is whether the manipulators’
votes are divisible.

3. ALGORITHMS FOR WCM AND WCO
In this section we present algorithms for WCM. For the

divisible case, we devise a polynomial-time algorithm that
solves WCMd by reducing it to the scheduling problem known
as Q|pmtn|Cmax. This algorithm also solves WCO (ex-
actly). For WCMi, we augment the algorithm for WCMd
with a rounding technique, and obtain an approximation al-
gorithm as a result. While our solution for WCMd may be
interesting in its own right, its main purpose is to provide
intuitions and techniques that are subsequently leveraged
for approximating WCMi.

3.1 The divisible case
We will show how to reduce WCMd/WCO to the schedul-

ing problem of parallel uniform machines with preemption,
categorized as Q|pmtn|Cmax (see, for example, [3] for the
meaning of the notation). In an instance of Q|pmtn|Cmax,
we are given n′ jobs J = {J1, . . . Jn′} and m′ machines
M = {M1, . . . , Mm′}; each job Ji has a workload pi ∈ R+,
and the processing speed of machine Mi is si ∈ R+, that
is, it will finish si amount of work in one unit of time. A
preemption is an interruption of the job that is being pro-
cessed on one machine (the job may be resumed later, not
necessarily on the same machine). Preemptions are allowed
in Q|pmtn|Cmax. We are asked for the minimum makespan,
i.e., the minimum time to complete all jobs, and an optimal
schedule.

We first draw a natural connection between WCMd/WCO
under positional scoring rules and Q|pmtn|Cmax. After count-
ing the non-manipulators’ votes only, each alternative will
have a total non-manipulator score. For any i ≤ m − 1,
we let pi denote the gap between the non-manipulator score
of ci and the non-manipulator score of c (which is positive
if the former is larger; the case where the gap is negative is
trivial). In particular, the pi’s can be seen as the workload of
m−1 jobs. We note that, without loss of generality, the ma-
nipulators will always rank c in the top position. Therefore,
a manipulator vote in which cj is ranked in the ith position
decreases the gap between cj and c by s1 − si points.

We consider a set of m−1 machines M1, . . . , Mm−1 whose
speeds are s1 − s2, . . . , s1 − sm, respectively. A ranking (a
vote) is equivalent to an allocation of the m − 1 jobs to
machines: an alternative ranked i positions below c corre-
sponds to a job allocated to the ith slowest machine. We
can now see that the minimum makespan of the scheduling
problem is the minimum total weight of the manipulators



required to make c a winner, that is, the optimal solution
to WCO. For WCMd, the goal is to compute the votes for
Pk

i=1 wi “amount”of manipulators (since the votes are divis-
ible, a problem instance with k manipulators with weights ~w
is equivalent to a problem instance with a single manipula-
tor whose weight is

Pk

i=1 wi), such that the final total score
of c is at least the final total score of any other alternative.
This is equivalent to computing a schedule that completes
all jobs within time at most

Pk

i=1 wi.

Formally, for a WCMd instance ((s1, . . . , sm), P NM , wNM ,
c, k, (w1, . . . , wk)), we construct an instance of Q|pmtn|Cmax

with m−1 jobs and m−1 machines (that is, m′ = n′ = m−1)
as follows. For any i ≤ m − 1, we let si = s1 − si+1,
pi = max{s(P NM , wNM , ci) − s(P NM , wNM , c), 0}. We do
not distinguish between alternative ci and job Ji. This re-
duction is illustrated in the following example.

Example 3.1. Let m = 4, C = {c, c1, c2, c3}. The posi-
tional scoring rule is Borda (which corresponds to the scor-
ing vector (3, 2, 1, 0)). The non-manipulators are unweighted
(that is, their weights are 1), and their profile is
P NM = (V NM

1 , V NM
2 , V NM

3 , V NM
4 ), defined as follows.

V NM
1 = [c1 � c2 � c3 � c], V NM

2 = [c2 � c1 � c3 � c]

V NM
3 = [c1 � c3 � c � c2], V NM

4 = [c3 � c2 � c � c1]

We have that s(P NM , c) = 2, s(P NM , c1) = 8, s(P NM , c2) =
7, s(P NM , c3) = 7. Therefore, we construct a Q|pmtn|Cmax

instance in which there are 3 machines M1, M2, M3 whose
speeds are s1 = 1, s2 = 2, s3 = 3, corresponding to the 2nd,
3rd, and 4th position in the votes respectively, and 3 jobs
J1, J2, J3, whose workloads are p1 = 6 = (8 − 2), p2 = 5 =
(7− 2), p3 = 5 = (7− 2), respectively.

Let W0 = 0, W = maxj≤k wj , and for any 1 ≤ i ≤ k,

Wi =
Pi

j=1 wj . A schedule is usually represented by a Gantt
chart, as illustrated in Figure 1.

J1 J2 J3

J1 J3 J2

J2 J3 J1

M1

M2

M3

0 T1 T2 T3 T4 w

Figure 1: An example schedule. The machines are

idle in shaded areas.

Let w be the minimum makespan for the Q|pmtn|Cmax

instance constructed above, and let f∗ :M×[0, w]→ J∪{I}
be an optimal solution to Q|pmtn|Cmax, where I means that
the machine is idle. If w > Wk, then there is no successful
manipulation that makes c a winner. If w ≤ Wk, we first
extend the optimal solution f∗ to make it fully occupy the
whole time interval [0, Wk]; any way of allocating jobs to
machines in the added time would suffice.3 Let f be the

3This works for the co-winner case. For the unique-winner
case, in order to have a solution we need w < Wk, and
then in the time interval [w, Wk] we allocate the jobs in an
arbitrary way such that each job runs on each machine for
some time.

solution obtained in this way.
Given f , for any time t ∈ [0, Wk], we say that t is a pre-

emptive break point if there is a preemption at t—formally,
there exists a machine Mi such that for some ε′ > 0, we
have that for all ε ∈ [0, ε′], f(Mi, t − ε) 6= f(Mi, t + ε),
that is, the job being processed at time t − ε on Mi is dif-
ferent from the job being processed at time t + ε. We let
Bf = {T1, . . . , Tl} denote the preemptive break points of f ,
where 0 < T1 < T2 < . . . < Tl < Wk. For example, the
set of preemptive break points of the schedule in Figure 1 is
Bf = {T1, T2, T3, T4}.

Any solution to the Q|pmtn|Cmax instance obtained from
the reduction can be converted to a solution to WCMd in the
following way. First, we assign jobs to all idle machines arbi-
trarily to ensure that at any time between 0 and Wk, no ma-
chines are idle and all jobs are allocated. Formally, we define
f ′ :M×[0, Wk]→ J such that {f ′(M1, t), . . . , f

′(Mm−1, t)} =
{J1, . . . , Jm−1} for all t, and for any M ∈ M and t ∈ [0, Wk],
we have that if f(M, t) ∈ J , then f ′(M, t) = f(M, t). For
example, we can assign jobs to the shaded areas (which rep-
resent idle time) in the schedule in Figure 1 in the way il-
lustrated in Figure 2.

J1 J1 J2 J3

J1 J3 J2

J2 J3 J1J3 J3

J2 J2

J1

M1

M2

M3

J3 J2

J1

W0 T1 T2 T3 T4 W2W1

α1
1 α1

2 α1
3 α2

1 α2
2 α2

3{ { { { { {

{ {w1 w2

Figure 2: Conversion of an optimal schedule to a

solution for WCMd.

Next, for any 1 ≤ i ≤ k, we convert the schedule to the
manipulators’ votes in the natural way:

• If there are no preemption break points in (Wi−1, Wi),
we let manipulator i vote for c � f ′(M1, Wi−1 + ε) �
f ′(M2, Wi−1 + ε) � . . . � f ′(Mm−1, Wi−1 + ε), where
ε > 0 is sufficiently small.

• If there are preemptive break points in (Wi−1, Wi), de-
noted by Ta, Ta+1, . . . , Ta+b−1, then we let V i

1 , . . . , V i
b+1

denote the orders that correspond to the schedule at
times Wi−1+ε, Ta+ε, . . . , Ta+b−1+ε, respectively. Let
αi

1 = Ta −Wi−1, αi
2 = Ta+1 − Ta, . . . , αi

b+1 = Wi −

Ta+b−1. We let manipulator i vote for
Pb+1

j=1[α
i
j/(Wi−

Wi−1)] · V
i

j .

Example 3.2. Suppose there are two manipulators whose
weights w1 and w2 are illustrated in Figure 2. Manipula-
tor 1 votes [(1/4)(c � c1 � c3 � c2) + (1/4)(c � c1 �
c2 � c3) + (1/2)(c � c2 � c1 � c3)]; manipulator 2 votes
[(1/3)(c � c2 � c1 � c3) + (1/3)(c � c2 � c3 � c1) +
(1/3)(c � c3 � c2 � c1)].

On the basis of the exposition above we now refer the
reader to Algorithm 1. The algorithm solves WCMd in three



Algorithm 1: compWCMd

∀i ≤ m− 1, si ← s1 − si+11

∀i ≤ m− 1,2

pi ← max{s(P NM , wNM , ci)− s(P NM , wNM , c), 0}
Solve the Q|pmtn|Cmax instance (for example, using3

the algorithm in [13]). Let w and f denote the
minimum makespan and an extended optimal schedule;
let T1, . . . , Tl denote the preemptive break points.
if w > Wk then4

return false.5

end6

Let f ′ :M× [0, Wk]→ J be such that7

{f ′(M1, t), . . . , f
′(Mm−1, t)} = {J1, . . . , Jm−1}, and for

any M ∈M, any t ∈ [0, Wk], we have that if
f(M, t) ∈ J , then f ′(M, t) = f(M, t).
for i = 1 to k do8

Let V i
1 = [c � f ′(M1, Wi−1 + ε) � . . . �9

f ′(Mm−1, Wi−1 + ε)]
j ← 210

for each preemptive break point T ∈ (Wi−1, Wi) (in11

order) do

Let12

V i
j = [c � f ′(M1, T +ε) � . . . � f ′(Mm−1, T +ε)]

j ← j + 113

end14

For any j, let αi
j be the length of the jth interval in15

[Wi−1, Wi] induced by the preemptive break points.
Let manipulator i vote

P

j [α
i
j/(Wi −Wi−1)] · V

i
j ,16

and add this vote to P M

end17

return P M
18

steps: 1. convert the WCMd instance to a Q|pmtn|Cmax

instance; 2. apply a polynomial-time algorithm that solves
Q|pmtn|Cmax (for example, the algorithm in [13]); 3. con-
vert the solution of the scheduling problem to the solu-
tion of WCMd. Algorithm 1 also solves WCO, because the
makespan w computed in Line 3 is the optimal solution to
WCO. It is easy to verify that the algorithm runs in poly-
nomial time. To conclude, we have the following result.

Theorem 3.3. Algorithm 1 solves WCMd and WCO (ex-
actly) in polynomial time.

3.2 The indivisible case
We now move on to the more difficult indivisible case.

We first note that Algorithm 1 cannot be directly applied
to WCMi, because the manipulators’ votes constructed in
Line 16 can be divisible. For any positional scoring rule, if
there is a successful manipulation (in which all manipulators
rank c in the top position), and we increase the weights
of the manipulators, then c still wins the election. This
property is known as monotonicity in weights (see [21] for
a formal definition and the proof). Therefore, instead of
having manipulator i cast the divisible vote

P

j [α
i
j/(Wi −

Wi−1)] · V
i
j , we let her cast the indivisible vote V i

j∗ , which

is one of the V i
j with the highest weight among all the V i

j ’s
constructed for manipulator i. In addition, for any j 6= j∗,
we add one extra manipulator whose weight is αi

j , and let

the new manipulator vote V i
j . It turns out that if we use

a particular algorithm for the scheduling problem, then the
solution will not require too many additional manipulators.
This gives us Algorithm 2 for WCMi.

Algorithm 2: compWCMi

This algorithm is the same as Algorithm 1, except for the
following two lines:

3 Use the algorithm in [13] to solve the scheduling
problem

16 Let manipulator i vote for V i
j∗ , where for any j 6= j∗,

αi
j∗ ≥ αi

j ; and for any j 6= j∗, we add a new

manipulator whose weight is αi
j , and let her vote V i

j

Example 3.4. Suppose there are two manipulators whose
weights are illustrated in Figure 2. The vote of manipulator
1 is c � c2 � c1 � c3, and we introduce two new manip-
ulators with weight w1/4 whose votes are c � c1 � c3 �
c2 and c � c1 � c2 � c3; the vote of manipulator 2 is
c � c2 � c1 � c3, and we introduce two new manipulators
with weight w2/3 whose votes are c � c2 � c3 � c1 and
c � c3 � c2 � c1. Since |Bf | (the number of preemptive
break points) is 4, there are in total four additional manip-
ulators.

For any j 6= j∗, we must have αi
j ≤ (Wi−Wi−1)/2 ≤W/2

(recall that W = maxj≤k wj). Moreover, for any preemptive
break point we introduce at most one extra manipulator.
Therefore, we immediately have the following lemma that
relates the number of the new manipulators to the number
of preemptive break points.

Lemma 3.5. If w ≥ Wk, then there is no successful ma-
nipulation for WCMd (nor for WCMi); otherwise, Algo-
rithm 2 returns a manipulation with at most |Bf | additional
manipulators, each with weight at most W/2.

Therefore, the smaller |Bf | is, the fewer new manipulators
are introduced by Algorithm 2. |Bf | depends on which algo-
rithm we use to solve Q|pmtn|Cmax in Line 3. In fact, there
are many efficient algorithms that solve Q|pmtn|Cmax. For
example, Q|pmtn|Cmax can be solved in time O(n′2m′) by
a greedy algorithm [3]. At each time point t, the algorithm
(called the level algorithm) assigns jobs to the machines in a
way such that the greater the remaining workload of a job,
the faster the machine it is assigned to.4 However, this algo-
rithm in some cases generates a schedule that has as many as
m′(m′ − 1)/2 preemptive break points. Therefore, we turn
to the algorithm by Gonzalez and Sahni [13], which runs in
time O(n′ +m′ log n′) using at most 2(m′− 1) preemptions.
Gonzalez and Sahni also showed that this bound is tight.
We note that one preemptive break point corresponds to at
least two preemptions, and in the instances that were used
to show that the 2(m′−1) bound is tight, m′−1 preemptive
break points are required. Therefore, we immediately have
the following lemma.

Lemma 3.6. The number of preemptive break points in
the solution of the algorithm of Gonzalez and Sahni [13] is
at most m′ − 1. Furthermore, this bound is tight.

4The greedy algorithm of Zuckerman et al. [21] is effectively
a discrete-time version of the level algorithm.



We note that m′ = m− 1. Hence, combining Lemma 3.5
and Lemma 3.6, we have the following theorem, which is our
main result.

Theorem 3.7. Algorithm 2 runs in polynomial time and

1. if the algorithm returns false, then there is no success-
ful manipulation;

2. otherwise, the algorithm returns a successful manipu-
lation with a set of at most m− 2 additional manipu-
lators, each with weight at most W/2.

4. ALGORITHMS FOR UCM AND UCO
We now consider the case where votes are unweighted.

UCMd/UCOd can be solved using Algorithm 1. As for
UCMi/UCOi, every manipulator’s weight is one (so that
W = 1), and we are only allowed to add new manipula-
tors whose weight is also 1. We recall that increasing the
weights of the manipulators never prevents c from winning.
Therefore, in the context of UCMi/UCOi we use a slight
modification of Algorithm 2, by adding one unweighted ma-
nipulator whenever Algorithm 2 proposes adding a weighted
manipulator (whose weight can be at most 1/2).

Algorithm 3: compWCMi

This algorithm is the same as Algorithm 1, except for the
following two lines:

3 Use the algorithm in [13] to solve the scheduling
problem.

16 Let manipulator i vote for V i
1 ; for any j > 1, we add a

new manipulator who votes for V i
j .

The following corollary immediately follows from Theo-
rem 3.7.

Corollary 4.1. For UCMi, if Algorithm 3 returns false,
then there is no successful manipulation; otherwise, Algo-
rithm 3 returns a successful manipulation with at most m−2
additional manipulators.

Recall that Lines 1-3 of Algorithm 3 compute the mini-
mum makespan w (the solution to WCO) of the scheduling
problem that is obtained from the UCMi instance. It is
easy to see that if votes are divisible then dwe is the mini-
mum number of unweighted manipulators required to make
c win the election, that is, dwe is the optimal solution to
UCOd. Therefore, Algorithm 1 can easily be modified to
yield an algorithm that solves UCOd. We further note that
Algorithm 3 is an approximation algorithm for UCOi, as the
number of manipulators returned by Algorithm 3 is no more
than dwe+ m− 2. Put another way, Algorithm 3 returns a
solution to UCOi (with indivisible votes) that approximates
the optimal solution to UCOd (with divisible votes) to an
additive term of m− 2.

Generally, if there exists a successful manipulation, then
Algorithm 3 returns a manipulation with additional manip-
ulators. However, there are some special positional scoring
voting rules under which UCMi can always be solved ex-
actly by Algorithm 1. Given k ∈ {1, . . . , m − 1}, the k-
approval rule is the scoring rule where s1 = . . . = sk = 1
and sk+1 = . . . = sm = 0. For example, Plurality (with
scoring vector (1, 0, . . . , 0)) and Veto (with scoring vector

(1, . . . , 1, 0)) are 1-approval and (m − 1)-approval, respec-
tively. We note that UCM under any k-approval rule re-
duces to the scheduling problem in which all machines have
the same speed. This corresponds exactly to the scheduling
problem P |pmtn|Cmax in discrete time (that is, the preemp-
tions are allowed only at integer time points), which has a
polynomial-time algorithm: Longest Remaining Processing
Time first (LRPT) [16]. Therefore, if we modify Algorithm 3
by solving the reduced scheduling instance with LRPT, then
we can solve UCMi under any k-approval voting rule in poly-
nomial time.5 To summarize:

Corollary 4.2. Let k ∈ {1, . . . , m − 1}. UCMi/UCOi
under k-approval is in P.

4.1 On the tightness of the results
We presently wish to argue that we have made the most

of our technique. The next theorem states that the m − 2
bound is tight in terms of the difference between the opti-
mal solution to UCOi and the optimal solution to UCOd
under the same input. It also implies that Algorithm 3 is
optimal in the sense that for any q < m − 2, there is no
approximation algorithm for UCOi that always outputs a
manipulation with at most q manipulators more than the
optimal solution to UCOd. This result can be seen as a new
type of integrality gap, which applies to our special flavor of
rounding.

Theorem 4.3. For any m ≥ 3, there exists a UCO in-
stance such that the (additive) gap between the optimal so-
lution to UCOd and the optimal solution to UCOi is m− 2.

Proof. For any m ≥ 3, we let the scoring vector be
(m(m − 1)(m − 2) − 1, . . . , m(m − 1)(m − 2) − 1, m(m −
1)(m− 2) − 2, 0). Let V = [c1 � . . . � cm−1 � c], and let π
be the cyclic permutation on C \ {c}, that is, π : c1 → . . .→
cm−1 → c1. For any i ≤ m−1, let Vi be the linear order over
C in which c is ranked in position (m − 1), and πi(c1) �Vi

πi(c2) �Vi
. . . �Vi

πi(cm−1). Let P = (V, V1, . . . , Vm−1),
P NM = P ∪ π(P ) ∪ . . . ∪ πm−2(P ). It follows that for any
i ≤ m − 1, s(P NM , ci) − s(P NM , c) = (m − 1)2 − 1. Let
V ′ = [c � c1 . . . � cm−1]; it can be verified that the divisible
vote

1

m− 1
(V ′, π(V ′), π2(V ′), . . . , πm−2(V ′))

is sufficient to make c win, hence the optimal solution to
UCOd is 1.

We next prove that the solution to UCOi is m−1. Clearly
the profile (V ′, π(V ′), π2(V ′), . . . , πm−1(V ′)) is a successful
manipulation. Hence, it remains to show that the solution is
at least m−1. For the sake of contradiction we assume that
the solution is m−2, and P M is the corresponding successful
manipulation. Therefore, there must exists i ≤ m − 1 such
that ci is not ranked at the bottom of any of the votes of
P M . Therefore,

s(P M , c)− s(P M , ci) ≤ m− 2 < (m− 1)2 − 1,

which means that s(P NM ∪ P M , c)− s(P NM ∪P M , ci) < 0.
This contradicts the assumption that P M is a successful
manipulation.

5The simple observation that UCMi is in P under approval
voting rules was also recently made by Andrew Lin (via per-
sonal communication), who employed a completely different
(greedy) approach.



We next ask the following natural question: is it possible
to improve the rounding technique so that the algorithm
achieves a better bound, relative to the optimal solution for
the indivisible case? This is not ruled out by Theorem 4.3,
since that theorem compares to the optimal UCOd solution
rather than the optimal UCOi solution. Nevertheless, the
answer is negative, as long as all linear orders in an optimal
solution to the WCO problem appear in the output of the
algorithm. We say that an approximation algorithm A for
UCOi is based on WCO if for any UCO instance, there exists
an optimal solution to WCO such that every linear order
that appears in that solution also appears in the output of
A (as the vote of some manipulator).

Theorem 4.4. Let A be an approximation algorithm based
on WCO. For any m ≥ 3, there exists a UCO instance such
that the gap between the optimal solution to UCOi and the
output of A is m− 2.

Proof. For any m ≥ 3, we construct a UCO instance
such that the solution to the UCOi problem is 1, and at
least m − 1 linear orders appear in any optimal solution to
WCO (so the gap is m− 2).

We let the scoring vector be (m + 2, 1, 0, . . . , 0). Let

V = [c � c1 � . . . � cm−1],

and

V ′ = [cm−1 � c1 � c � c2 � . . . � cm−2].

Furthermore, let

π : c1 → c2 → . . .→ cm−1 → c1,

and

π∗ : c→ c1 → . . .→ cm−1 → c.

We define preference profiles by letting

P = (V ′, V, π∗(V ), (π∗)2(V ), . . . , (π∗)m−2(V ))

and P NM = P ∪ π(P ) ∪ . . . ∪ πm−2(P ).

We have that s(P, c) = m +2, s(P, c1) = m +4, and for any
2 ≤ i ≤ m − 1, s(P, ci) = m + 3. Therefore, s(P NM , c) =
(m + 2)(m − 1) and for any 2 ≤ i ≤ m − 1, s(P NM , ci) =
(m+3)(m−1)+1. Therefore, for any i ≤ m−1, s(P NM , ci)−
s(P NM , c) = m. It follows that one manipulator suffices to
make c the winner (by voting c � c1 � . . . � cm−1).

On the other hand, the minimum total weight for WCO
is (m− 1)/m, for example,

P M =
1

m
(V, π(V ), . . . , πm−2(V )).

In any manipulators’ profile corresponding to the minimum
total weight, every alternative except c must appear in the
second position for a fraction of vote. Therefore, any al-
gorithm based on WCO must output at least m − 1 linear
orders.

5. UCMI UNDER POSITIONAL SCORING
RULES IS STRONGLY NP-COMPLETE

In this section, we show that UCMi under a specific posi-
tional scoring rule is strongly NP-complete, even when there
are only two manipulators. We slightly abuse terminology
here, since a voting rule is formally defined with respect to a

specific number of alternatives; for the purposes of this sec-
tion, a positional scoring rule defines a separate score vector
for each possible number of alternatives. Indeed, Plurality,
Veto, and Borda fit this description, so the rule that we in-
troduce here is a single positional scoring rule in the same
sense that these three rules are.

Let us define our positional scoring rule, denoted by rweird.
Given K ∈ N, the scoring vector for 8K2 + 1 alternatives is

(10K, 10K − 1, . . . , 10K − 1
| {z }

2K

, 10K − 2, . . . , 10K − 2
| {z }

2K

, . . . ,

9K, . . . , 9K
| {z }

2K

, 7K, . . . , 7K
| {z }

2K2

, 3K, . . . , 3K
| {z }

2K2

, K, . . . , K
| {z }

2K

,

K − 1, . . . , K − 1
| {z }

2K

, . . . , 1, . . . , 1
| {z }

2K

)

If the number of alternatives m cannot be written as 8K2+1
for some K, our scoring rule behaves arbitrarily.

We have the following theorem, whose proof appears in
Appendix A.

Theorem 5.1. UCMi under rweird is strongly NP-complete,
even when the number of manipulators is two.

It follows from the proof that Q|pmtn|Cmax is strongly
NP-complete in discrete time.6
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Lang. When are elections with few candidates hard to
manipulate? Journal of the ACM, 54(3):1–33, 2007.

6Pinedo [16], after asserting that the special case of this
problem where all machines have the same speed can be
solved in polynomial time, claims that the results of his
chapter can be extended to the case where they do not have
the same speed (his Theorem 5.2.12). In light of our results,
and based on a correspondence with the author, we conclude
that this result is incorrect.



[7] Shahar Dobzinski and Ariel D. Procaccia. Frequent
manipulability of elections: The case of two voters. In
Proc. of WINE-08, pages 653–664, 2008.

[8] Edith Elkind and Helger Lipmaa. Hybrid voting
protocols and hardness of manipulation. In Proc. of
ISAAC-05, pages 206–215, 2005.

[9] Piotr Faliszewski, Edith Hemaspaandra, and Henning
Schnoor. Copeland voting: ties matter. In Proc. of
AAMAS-08, pages 983–990, 2008.

[10] Ehud Friedgut, Gil Kalai, and Noam Nisan. Elections
can be manipulated often. In Proc. of FOCS-08, pages
243–249, 2008.

[11] Michael Garey and David Johnson. Computers and
Intractability. W. H. Freeman and Company, 1979.

[12] Allan Gibbard. Manipulation of voting schemes: a
general result. Econometrica, 41:587–602, 1973.

[13] Teofilo Gonzalez and Sartaj Sahni. Preemptive
scheduling of uniform processor systems. J. ACM,
25(1):92–101, 1978.

[14] Edith Hemaspaandra and Lane A. Hemaspaandra.
Dichotomy for voting systems. Journal of Computer
and System Sciences, 73(1):73–83, 2007.

[15] Noam Nisan. Introduction to mechanism design (for

computer scientists). In N. Nisan, T. Roughgarden, É.
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APPENDIX

A. PROOF OF THEOREM 5.1
We prove the hardness by a reduction from numerical

matching with target sums (NMTS), which is strongly
NP-complete [11]. An NMTS instance consists of three dis-
joint sets A,B, Y where |A| = |B| = |Y | = l ≥ 2, and a
weight function w : A ∪B ∪ Y → N. We are asked whether
there is a partition S = S1 ∪ . . .∪Sl of A∪B ∪ Y such that
for any i ≤ l, Si = {ai, bi, yi}, where ai ∈ A, bi ∈ B, yi ∈ Y
and w(ai) + w(bi) = w(yi).

Let A,B, Y, w be an NMTS instance, where A = {a1, . . . , al},
B = {b1, . . . , bl}, Y = {y1, . . . , yl}, w(a1) ≤ w(a2) ≤ . . . ≤
w(al), w(b1) ≤ w(b2) ≤ . . . ≤ w(bl). W.l.o.g., we make the
following assumption about the NMTS instance.

Assumption 1.

• For any a, a′, a∗ ∈ A, and any b ∈ B, we have w(a∗) <
w(a) + w(a′) < w(b).

• For any a ∈ A, and any b, b′ ∈ B, we have w(a) <
w(b′) < w(a) + w(b).

• For any b, b′ ∈ B, and any y ∈ Y , we have w(b) <
w(y) < w(b) + w(b′).

This assumption does not limit generality since we can con-
vert any instance A, B, Y, w′ to an NMTS instance A, B, Y, w
whose inputs are polynomially larger (in the unary sense) in
the following way: let

w′
max = max

a∈A,b∈B,y∈Y
{w′(a), w′(b), w′(y)}

For any a ∈ A, b ∈ B, y ∈ Y , let w(a) = w′(a)+2(w′
max+1),

w(b) = w′(b)+6(w′
max+1), and w(y) = w′(y)+8(w′

max+1).
Given an NMTS instance that satisfies Assumption 1, we

construct the UCMi instance as follows. The manipulators’
goal is to make c a co-winner. A similar reduction exists for
the case of unique winner. Let K = max{wmax, l}, where
wmax = maxa∈A,b∈B,y∈Y {w(a), w(b), w(y)}.
Alternatives: There are 8K2 + 1 alternatives. C = {c} ∪
Y ∪ DA ∪ DB ∪ D, where DA = {dA

1 , . . . dA
2K2−l}, DB =

{dB
1 , . . . dB

2K2−l}, D = {d1, . . . , d4K2+l}.

Non-manipulators’ profile: P NM = P1 ∪ P2. We first
describe the properties that P1 and P2 satisfy, then show
how to construct them.

• P1 satisfies the following condition: Let F be a multi-
set, defined as

F = {1, . . . , 1
| {z }

2K

, 2, . . . , 2
| {z }

2K

, . . . , K, . . . , K
| {z }

2K

}.

That is, F is composed of 2K copies of {1, 2, . . . , K}.
Let E = EA ∪ EB, where EA = F \ w(A) and EB =
F \w(B), where w(A) is a multiset, defined as w(A) =
{w(a) : a ∈ A} (similar for w(B)). We also write EA =
{eA

1 , . . . , eA
2K2−l}; EB = {eB

1 , . . . , eB
2K2−l}.

For any i ≤ 2K2 − l, we have s(P1, c) − s(P1, d
A
i ) =

eA
i − 17K and s(P1, c)− s(P1, d

B
i ) = eB

i − 17K; for any
1 ≤ j ≤ l, we let s(P1, c)− s(P1, yj) = w(yj)− 20K.

• P2 satisfies the following conditions: for any x ∈ Y ∪
DA ∪ DB , we have s(P2, c) = s(P2, x); for any i ≤
4K2 + l, we have s(P1 ∪ P2, c) > s(P1 ∪ P2, di).

To construct P1, we first make the following observation:
for any {x1, . . . , xL} = X ⊆ C where L ≤ 4K2, and any
x ∈ C \X, let

V1 = [x1 � x � x2 � . . . � xL � (C \ (X ∪ {x}))]

and

V2 = [(C \X) � xL � xL−1 � . . . � x1],

where the elements in C \X are ranked in an arbitrary way;
letting P ∗ = (V1, V2), we must have that for any 2 ≤ i ≤ L,
s(P ∗, x1)− s(P ∗, xi) = 1. Therefore, P1 can be constructed



out of no more than 2 · 20K · (4K2 − l) votes (by choosing
X = {c} ∪ Y ∪ DA ∪ DB , and applying the P ∗ trick for
no more than 20K times per alternative in X), and for any
d ∈ D, we have s(P1, c)−s(P1, d) ≥ −2·20K ·(4K2−l)·10K.

Next we show how to construct P2. Let π1 be the cyclic
permutation on {c} ∪ Y ∪ DA ∪ DB , defined as c → y1 →
. . .→ yl → dA

1 → . . .→ dA
2K2−l → dB

1 → . . .→ dB
2K2−l → c.

Let π2 be the cyclic permutation on D, defined as: d1 →
d2 → . . .→ d4K2+l → d1.

For any t ∈ N, we let πt
1 = π1 ◦ πt−1

1 , π1
1 = π1, where for

any x ∈ {c}∪Y ∪DA∪DB , π1◦π
t−1
1 (x) = π1(π

t−1
1 (x)). πt

2 is

defined similarly. We note that π4K2−l+2
1 = π1, π4K2+l+1

2 =
π2. For any j ∈ N, we let

Wj =
ˆ
(πj

1(c) � πj
1(y1) � . . . � πj

1(yl) � πj
1(d

A
1 ) � . . .

� πj
1(d

A
2K2−l) � πj

1(d
B
1 ) � . . . � πj

1(d
B
2K2−l)

� πj
2(d1) � . . . � πj

2(d4K2+l)
˜

Let P ′ = (W1, . . . , W(4K2−l+1)(4K2+l)). It follows that for

any x ∈ Y ∪DA ∪DB , we have s(P ′, c) = s(P ′, x); for any
d ∈ D, we have

(P ′, c)− s(P ′, d)

>(4K2 + l) · 7K · (4K2 − l + 1)

− (4K2 − l + 1)(4K2 · 3K + 7K · l)

=(4K2 − l + 1)16K3

Let P2 be composed of 25 copies of P ′. For any d ∈ D, we
have

s(P1 ∪ P2, c)− s(P1 ∪ P2, d)

=s(P1, c)− s(P1, d) + s(P2, c)− s(P2, d)

>− 400K2(4K2 − l) + 25 · 16K2(4K2 − l + 1)

>0.

This completes the description of the reduction.
Next, we show that the UCMi instance has a solution

if and only if the NMTS instance has a solution. Assume
that the NMTS problem has a solution S1, . . . , Sl. W.l.o.g.,
for any i ≤ l, Si = {aπ(i), bγ(i), yi}, where π and γ are
permutations over {1, . . . l}. We construct two votes Q1, Q2

that satisfy the following conditions.

• For any i ≤ 2K2 − l, we have s({Q1}, d
A
i ) = eA

i and
s({Q1}, d

B
i ) = 3K; for any j ≤ l, we have s({Q1}, yj) =

w(aπ(j)).

• For any i ≤ 2K2 − l, we have s({Q2}, d
A
i ) = 3K,

s({Q2}, d
B
i ) = eB

i ; for any j ≤ l, we have s({Q2}, yj) =
w(bγ(j)).

In Q1 and Q2, c is ranked in the top position, and the
alternatives in D are ranked arbitrarily. Q1 and Q2 are well-
defined, because F = EA ∪ w(A) = EB ∪ w(B). Let P M =
(Q1, Q2). For any j ≤ l, we have the following calculations.
First,

s(P NM ∪ P M , c)− s(P NM ∪ P M , yj)

=w(yj)− 20K + 20K − (w(aπ(j)) + w(bγ(j))) = 0

For any i ≤ 2K2 − l, we have

s(P NM ∪ P M , c)− s(P NM ∪ P M , dA
i )

=eA
i − 17K + 20K − (eA

i + 3K) = 0,

and

s(P NM ∪ P M , c)− s(P NM ∪ P M , dB
i )

=eB
i − 17K + 20K − (eB

i + 3K) = 0.

For any 1 ≤ i ≤ 4K2 + l, we have

s(P NM ∪ P M , c)− s(P NM ∪ P M , di) > 0 + 2 > 0.

Therefore, c is a co-winner of the election.
Finally, we prove that if the UCMi instance has a solution

P M = (Q1, Q2), then the NMTS instance has a solution.
First we note that for any 1 ≤ i ≤ 2K2 − l, dA

i must be
ranked within 4K2 positions from the bottom in both Q1

and Q2, otherwise dA
i will obtain at least 7K points in P M ,

thus

s(P NM ∪ P M , c)− s(P NM ∪ P M , dA
i )

≤ K − 17K + 20K − 7K < 0,

which means that c does not win the election. Similarly,
any alternative in DB and Y must be ranked within 4K2

positions from the bottom in both Q1 and Q2.
It is easy to check that for any 1 ≤ i ≤ 2K2 − l, we must

have that s(P M , dA
i ) = 3K + eA

i and s(P M , dB
i ) = 3K + eB

i ;
for any y ∈ Y , we must have that s(P M , y) = w(y).

Next, for any 1 ≤ i ≤ 2K2 − l, we must have that

{s(Q1, d
A
i ), s(Q2, d

A
i )} = {3K, eA

i }

and

{s(Q1, d
B
i ), s(Q2, d

B
i )} = {3K, eB

i },

because eA
i ≤ K and eB

i ≤ K. For any y ∈ Y , we have
3K 6∈ {s(Q1, y), s(Q2, y)}, because 3K > w(y). Hence,

{s(Q1, y), s(Q2, y) : y ∈ Y }

={w(a1), . . . , w(al), w(b1), . . . , w(bl)}

Note that both sides are multisets. We further note that
for any y ∈ Y , any a, a′ ∈ A, and any b, b′ ∈ B, we have
w(a) + w(a′) < w(y) < w(b) + w(b′) and w(a) < w(b)
(Assumption 1). Therefore, {min(s(Q1, y), s(Q2, y)) : y ∈
Y } = w(A) and {max(s(Q1, y), s(Q2, y)) : y ∈ Y } = w(B).
Let fA : Y → A be a bijection such that for any y ∈ Y ,
min(s(Q1, x), s(Q2, x)) = w(fA(y)); let fB : Y → B be a
bijection such that for any y ∈ Y , max(s(Q1, x), s(Q2, x)) =
w(fB(y)). It follows that the partition

{y1, fA(y1), fB(y1)}, . . . , {yl, fA(yl), fB(yl)}

is a solution to the NMTS instance.
We remark that the size of the input of UCMi is polyno-

mial in l and wmax, even if all parameters are represented
in unary form. Because NMTS is strongly NP-complete,
UCMi is also strongly NP-hard. It is easy to check that
UCMi under any positional scoring rule is in NP. It follows
that UCMi under rweird is strongly NP-complete.


