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Abstract

The Condorcet Jury Theorem justifies the wisdom of
crowds and lays the foundations of the ideology of
the democratic regime. However, the Jury Theorem and
most of its extensions focus on two alternatives and
none of them quantitatively evaluate the effect of agents’
strategic behavior on the mechanism’s truth-revealing
power.
We initiate a research agenda of quantitatively extend-
ing the Jury Theorem with strategic agents by charac-
terizing the price of anarchy (PoA) and the price of
stability (PoS) of the common interest Bayesian voting
games for three classes of mechanisms: plurality, MAPs,
and the mechanisms that satisfy anonymity, neutrality,
and strategy-proofness (w.r.t. a set of natural probabil-
ity models). We show that while plurality and MAPs
have better best-case truth-revealing power (lower PoS),
the third class of mechanisms are more robust against
agents’ strategic behavior (lower PoA).

Introduction
Social choice theory studies how to aggregate agents’
preferences to make a join decision. In many new appli-
cations of social choice, especially in multi-agent sys-
tems and electronic commerce, the main goal is to re-
veal the ground truth or to make an objectively optimal
decision. Examples of such applications include meta-
search engines (Dwork et al. 2001), recommender sys-
tems (Ghosh et al. 1999), crowdsourcing (Mao, Procac-
cia, and Chen 2013), semantic webs (Porello and En-
driss 2013), and peer grading for MOOC (Raman and
Joachims 2014). These are not purely statistical prob-
lems, as agents are often strategic and may have in-
centive to misreport their preferences to obtain a more
preferable outcome.

The (Condorcet) Jury Theorem (Condorcet 1785)
has been widely recognized as the first approach to-
wards truth-revealing social choice. It states that when
there are two alternatives, agents’ signals are generated
i.i.d. from a simple statistical model, and the agents
report sincerely, then the probability for the majority
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rule to reveal the ground truth goes to 1 as the num-
ber of agents goes to infinity. The Jury Theorem has
been very influential in economics and political sci-
ence as it “lays, among other things, the foundations
of the ideology of the democratic regime” (Paroush
1998), but it only received due attention in the 20th
century after Condorcet’s manuscript was discovered
by Black (1958). Since then, many extensions have
been obtained to relax the i.i.d. assumption, initiated
by Nitzan and Paroush (1984), Shapley and Grof-
man (1984), and Grofman, Owen, and Feld (1983);
and to consider strategic agents, initiated by Austen-
Smith and Banks (1996) and Feddersen and Pesendor-
fer (1997).

However, most previous extensions of the Jury The-
orem focused on two alternatives (more details below).
In modern applications of social choice, the number of
alternatives is often much larger. Moreover, we are not
aware of an extension that quantitatively measures the
effect of agents’ strategic behavior on a mechanism’s
truth-revealing power. Such measures are important for
us to choose an “optimal” truth-revealing mechanism
when agents are strategic. Therefore, the following im-
portant question is still largely open: “Quantitatively to
what extent does the Condorcet Jury Theorem hold for
strategic agents with more than two alternatives?”
Our contributions. To answer the question we initiate
a research agenda of quantitatively extending the Jury
Theorem by studying the Bayesian price of anarchy
(PoA) (Koutsoupias and Papadimitriou 1999), which
evaluates the worst-case social welfare loss caused by
agents’ strategic behavior, and the Bayesian price of
stability (PoS) (Anshelevich et al. 2004), which eval-
uates the social welfare loss in the best equilibrium, of
the common interest Bayesian voting games (Austen-
Smith and Banks 1996) under a wide range of statistical
models including Mallows’ model (Mallows 1957). We
study three classes of mechanisms: the plurality rule,
maximum a posteriori estimators (MAPs), and proba-
bility mixtures of random dictatorship rRD and the uni-
form rule rUni. Our results are summarized in Table 1.

These PoA and PoS results help us understand and
measure the effect of agents’ strategic behavior on
mechanisms’s truth-revealing power and thus provide a



new angle of quantitatively comparing mechanisms. It
follows that in the best case plurality and MAPs are bet-
ter because they have lower PoS’s, but the third class is
more robust against agents’ strategic behavior because
it has a lower PoA. MAPs might be the best from the
information aggregation perspective, but the other two
classes of mechanisms may satisfy more desirable ax-
iomatic properties and may be easier to use in practice.

Mechanism PoA PoS
Plurality ≥ m (weak BNE)

≥ m/2 (strict BNE, even m) 1MAP
rRD + rUni [Z,m]

Table 1: PoA and PoS of the common interest Bayesian vot-
ing games for three mechanisms. m is the number of alterna-
tives, n is the number of agents. All results hold for n → ∞.
Z < m is the normalization factor in the Mallows-like model.

To study the PoA and PoS we prove that sincere vot-
ing is a BNE in the common interest Bayesian voting
games with plurality and MAPs. We also prove a novel
axiomatic characterization, which states that a mech-
anism satisfies anonymity, neutrality, and strategy-
proofness w.r.t. all distance-based models if and only
if it is a probability mixture of the random dictator-
ship and the uniform mechanism. Combined with the
PoA and PoS in Table 1, this characterization illus-
trates a tradeoff between desirable axiomatic properties,
especially strategy-proofness, and the best-case truth-
revealing power.
Related work and discussions. While PoA and PoS
have been widely studied for various games, it is hard
to apply them in social choice settings because the no-
tion of social welfare is often not well-defined. Taking
a truth-revealing viewpoint, we use the mechanisms’
truth-revealing power as the social welfare function.
This is in sharp contrast to a recent paper by Brânzei
et al. (2013), who studied the PoA of social choice
mechanisms by using some natural scores computed
from agents’ subjective preferences as the social wel-
fare function. Therefore, we believe that our definitions
of PoA and PoS provide a new angle towards truth-
revealing social choice. These are our main conceptual
contributions.

There is a large literature in economics and politi-
cal science about extending the Jury Theorem to strate-
gic agents, see the survey by Gerlinga et al. (2005). A
few recent work studied strategic agents for more than
2 (and 3 in most cases) alternatives (Nunez 2010; Go-
ertz and Maniquet 2011; Bouton and Castanheira 2012;
Goertz and Maniquet 2014; Goertz 2014). However,
it is often further assumed that the number of agents
is unknown and is generated from a Poisson distribu-
tion (Myerson 1998). This is mainly due to the techni-
cal hardness of obtaining an analytical solution to the
probability for an agent to be pivotal, noted by Myer-
son (2002): “Unfortunately, it can be very difficult to

calculate the probabilities of these close-race events,
where two candidates’ scores are within one vote of
each other and are ahead of all the other candidates.”

We tackle the aforementioned technical difficulty by
focusing on weakly neutral statistical models and the
uniform prior, so that terms in the calculation can be
grouped and efficiently bounded in a non-trivial way.
We note that our PoA and PoS results are obtained
for any fixed number of agents, and we analyze their
asymptotic values as the number of agents goes to in-
finity. The theorems and techniques we used to analyze
agents’ strategic behavior for plurality, and our charac-
terization of mechanisms that satisfy anonymity, neu-
trality, and stragety-proofness, are our main technical
contributions.

Our game-theoretic setting is quite different from
Gibbard’s setting for randomized voting (Gibbard
1977). First, in Gibbard’s setting, agents’ preferences
are given exogenously while in our setting the prefer-
ences are generated endogenously from correlated sig-
nals. Second, strategy-proofness is defined differently.
In Gibbard’s setting, agents should not have incentive
to misreport in order to increase their expected util-
ity w.r.t. all utility functions compatible with their or-
dinal preferences. In our setting, agents’ utilities are
the posterior probabilities for the mechanism to reveal
the ground truth w.r.t. all distance-based models. Third,
the strategy-proof mechanisms are different. We char-
acterize strategy-proof mechanisms as certain proba-
bility mixtures of two unilateral mechanisms (Theo-
rem 4) while in Gibbard’s characterization the strategy-
proof mechanisms are probabilistic mixtures of unilat-
erals and duples.

Our PoA and PoS of strategy-proof mechanisms are
also related to mechanism design without money (Pro-
caccia and Tennenholtz 2009; Meir, Procaccia, and
Rosenschein 2010), where the question is about the effi-
ciency loss for using strategy-proof mechanisms. There
has been some recent work in the AI community on
equilibrium analysis in voting games (Meir et al. 2010;
Obraztsova, Markakis, and Thompson 2013; Thomp-
son et al. 2013; Meir, Lev, and Rosenschein 2014;
Meir 2015). These approaches often focused on dif-
ferent dynamics, and agents’ strategic behavior is an-
alyzed based on their subjective preferences (often a
ranking over alternatives). In our setting, agents’ het-
erogeneity comes from the signals they receive. Lastly,
our work is remotely related to Bayesian vote manipu-
lation (Lu et al. 2012), and recent progress in statistical
approaches to social choice, see e.g. (Lu and Boutilier
2011; Caragiannis, Procaccia, and Shah 2013; Elkind
and Shah 2014; Azari Soufiani, Parkes, and Xia 2014;
Hughes, Hwang, and Xia 2015) and references therein.

Preliminaries
Let A denote a set of m alternatives. Each agent re-
ceives a signal s ∈ A about the ground truth, and cast a
vote v ∈ A∪{φ} to represent her preferences, where φ



means abstention. The collection of agents’ (reported)
votes is called a profile, denoted by P . A (randomized)
social choice mechanism is a mapping r that takes a
profile (where some agents may absent) as input, and
outputs a probability distribution overA. For any profile
P and any alternative a ∈ A, we let PluP (a) denote the
plurality score of a in P , which is the number of occur-
rences of a in P . The plurality mechanism rPlu chooses
an alternative with the highest plurality score uniformly
at random. The random dictatorship mechanism rRD
chooses an alternative with probability that is propor-
tional to its plurality score, that is, for any alternative
a, rRD(P )(a) = PluP (a)∑

b∈A PluP (b) . The uniform mechanism
rUni outputs an alternative uniformly at random. If all
agents choose abstention, then all mechanisms degen-
erate to rUni. A mechanism satisfies anonymity if it is
insensitive to permutations over agents’ votes; it satis-
fies neutrality if it is insensitive to permutations overA.
rPlu, rRD, and rUni satisfy both anonymity and neutrality.

A statistical model M = (Θ,S, ~π) has three parts:
a parameter space Θ, a sample space S, and a set of
probability distributions over S, one for each param-
eter, denoted by ~π = {πθ(·) : θ ∈ Θ}. The maxi-
mum a posteriori estimator (MAP) of a model outputs a
parameter with maximum posterior probability, namely
rMAP(P ) ∈ arg maxa Pr(a|P ).

In this paper, we focus on Mallows-like models where
the parameter space is A and the sample space is com-
posed of i.i.d. samples in A (the signals), and the prob-
ability of a signal is determined by its similarity to the
parameter as follows.
Definition 1 (Mallows-like model with fixed disper-
sion). Given A, a dispersion 0 < ϕ < 1, a similarity
function d : A×A → R≥0, and the number of agents n,
the model isMd = (A,An, ~π), where for each θ ∈ A
and S ∈ An we have πθ(S) =

∏
V ∈S

(
1
Zϕ

d(V,θ)
)
,

where Z =
∑
U∈A ϕ

d(U,W ) is the normalization fac-
tor that does not depend on θ.

In this paper we require the similarity function d be
symmetric, namely d(a, b) = d(b, a), and satisfy the
coincidence axiom, namely d(a, b) = 0 if and only if
a = b. If d further satisfies the triangle inequality then
it becomes a distance function. We say that a similar-
ity function d is weakly neutral, if for all a ∈ A, the
multiset Da = {d(c, a) : c ∈ A} are the same.
Example 1. Let C denote a set of k candidates (which
are not the alternatives) and let A = L(C) denote
the set of all linear orders over C as the alternatives.
The Kendall-tau distance between V,W ∈ L(C) is the
number of different pairwise comparisons in V and W .
The Kendall-tau distance is weakly neutral. Mallows’
model (Mallows 1957) is based on the Kendall-tau dis-
tance.

Other popular weakly neutral distances over L(C)
include Spearman’s footrule distance and its varia-
tions (Diaconis and Graham 1977) and the Cayley dis-
tance. Results in this paper can be applied to all of them.

We study the common interest Bayesian voting game
formulated by (Austen-Smith and Banks 1996), where
there are n homogeneous agents whose utility functions
are the same before receiving signals I : A × A →
{0, 1}. I takes the winning alternative and the ground
truth as inputs, and I(a, b) = 1 if and only if a = b,
meaning that the winner correctly reveals the ground
truth. I can be naturally extended to evaluate a distribu-
tion π over A and a ground truth θ, so that I(π, θ) =∑
a∈A π(a)I(a, θ). An agent is sincere, if she reports

a ∈ A with the maximum posterior probability given
her signal. An agent is informative, if she reports her
signal.

Given a model M and a mechanism r, the game
proceeds as follows. Initially each agent holds a com-
mon prior over A, which is the uniform distribution in
this paper. Each agent then receives a signal s ∈ A
about the ground truth as her type, and her action is
to cast a vote in A ∪ {φ}. We recall that φ means ab-
stention. Therefore, an agent’s (pure) strategy µ is a
mapping from the signal space to vote space. That is,
µ : A → (A ∪ {φ}). Let ~µ = (µ1, . . . , µn) denote the
collection of all agents’ strategies, called a strategy pro-
file. After agent j receives a signal sj , she updates her
belief about the ground truth to Pr(·|sj). Her expected
utility for reporting v ∈ A ∪ {φ} is the expected prob-
ability for the outcome of voting to reveal the ground
truth distributed as Pr(·|sj), where other agents’ sig-
nals S−j are generated given the ground truth, and their
reported preferences are thus P−j = ~µ−j(S−j), where
~µ−j = (µ1, . . . , µj−1, µj+1, . . . , µn). Formally, the ex-
pected utility EUsj (v) is defined as follows.

EUsj (v) = Eθ∼Pr(·|sj)ES−j∼πθI(r(µ−j(S−j)∪{v}, θ)

Formally, we define the game as follows.
Definition 2. Given n agents, a modelM and a mech-
anism r, we let Gn(M, r) denote the Bayesian game
where the state space is A, agents’ type space is A,
agents’ action space is A ∪ {φ}, r is used to choose
the winner, and all agents have the same utility function
I . In this paper all agents have uniform prior.

A strategy profile ~µ is a Bayesian Nash Equilibrium
(BNE), if no agent has incentive to deviate from her cur-
rent strategy, given that other agents play ~µ. More pre-
cisely, ~µ is a BNE if and only if for any agent j, any sig-
nal sj , and any v ∈ A∪{φ}, we have EUsj (µj(sj)) ≥
EUsj (v). If the inequality is strict then we say that the
BNE is strict. A BNE is symmetric if all agents use the
same strategy. In this paper, BNE means strict sym-
metric pure BNE unless stated otherwise.

It is easy to see that when the modelM is based on
a weakly neutral similarity function, sincere voting is
the same as informative voting and truthful voting in
Gn(M, r). The next example shows that sometimes an
insincere BNE exists.
Example 2 (Insincere BNE). LetA = {a1, a2, a3, a4}.
Consider a Mallows-like model based on the weakly
neutral distance dt(·, ·) illustrated in Figure 1, where
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Figure 1: A similarly function dt where t > 0.

t = 1. Let n = 4. The following strategy µ is an insin-
cere BNE in G4(Md1 , rPlu): if an agent receives signal
a1 or a2 then she reports a1; if she receives a3 or a4
then she reports a4. To see this, we first note that no
agent has incentive to vote for a2 or a3 because condi-
tioned on other agents playing µ, a2 or a3 never wins.
When an agent receives a1, the difference in expected
utility between voting for a1 and voting for a4 is com-
posed of two parts:
1. The difference when the ground truth is a1. This hap-
pens with the posterior probability of a1, which is 1/Z.
2. The difference when the ground truth is a4. This
happens with the posterior probability of a4, which is
ϕ3/Z.

By weak neutrality of d1 we have that the first differ-
ence is positive, the second is negative, and they sum up
to zero. Because 1 > ϕ3, the agent prefers reporting a1
to a4. Following similar calculations we can verify that
µ is an insincere BNE.

BNE for Plurality and MAPs
Let MGn(b|θ) denote an agent’s marginal gain of re-
porting b over abstention when the ground truth is
θ and the other n − 1 agents are sincere. Formally,

MGn(b|θ) =
∑

P∈An−1

Pr(P |θ)[I(r(P∪{b}), θ)−I(r(P ), θ)]

We next define the expected marginal gain of an
agent when she receives signal a and reports b.

EMGn(b|a) =
∑
θ∈A Pr(θ|a)MGn(b|θ)

Theorem 1. For any neutral r and any Mallows-like
model Md based on a weakly neutral distance func-
tion d with uniform prior, sincere voting is a BNE in
Gn(Md, r) if the following conditions hold:

(i) For any a ∈ A, EMGn(a|a) > 0.
(ii) For any a ∈ A and b 6= a, MGn(b|a) ≤ 0

Condition (i) states that all agents strictly prefer sin-
cere voting to abstention. Condition (ii) states that sup-
pose the ground truth is a, then reporting anything dif-
ferent from a is not better than abstention.

Proof. It suffices to prove that for any
b 6= a, EMGn(a|a) > EMGn(b|a). We have:

EMGn(a|a) = Pr(a|a)MGn(a|a)︸ ︷︷ ︸
>0, by (i) and (ii)

+
∑
θ 6=a

Pr(θ|a)MGn(a|θ)︸ ︷︷ ︸
≤0, by (ii)

Because d is weakly neutral, there exists a permutation
M over A such that (i) M(a) = b and M(b) = a, and
(ii) for any c ∈ A, d(c, a) = d(M(c), b).

EMGn(b|a)

= Pr(b|a)MGn(b|b)︸ ︷︷ ︸
>0

+
∑
θ 6=b

Pr(θ|a)MGn(b|θ)︸ ︷︷ ︸
≤0

= Pr(b|a)MGn(M(b)|M(b))

+
∑

M(θ)6=M(b)

Pr(M(θ)|M(a))MGn(M(b)|M(θ))

= Pr(b|a)MGn(a|a) +
∑
θ 6=a

Pr(θ|b)MGn(a|θ)

where MGn(a|a) = MGn(b|b) is because d
is weakly neutral and r is neutral. Therefore,

Z(EMGn(a|a)−EMGn(b|a)) = (1− ϕd(a,b))MGn(a|a)

+
∑
θ 6=a

(ϕd(a,θ) − ϕd(b,θ))MGn(a|θ)

We recall that Z is the normalization factor. Because
d(b, θ) ≤ d(a, θ) + d(a, b) (triangle inequality), 0 <
ϕ < 1, and for all a 6= θ, MGn(a|θ) ≤ 0, we have∑

θ 6=a

(ϕd(a,θ) − ϕd(b,θ))MGn(a|θ)

≥
∑
θ 6=a

(ϕd(a,θ) − ϕd(a,θ)+d(a,b))MGn(a|θ)

=(1− ϕd(a,b))
∑
θ 6=a

ϕd(a,θ)MGn(a|θ)

Therefore,

Z(EMGn(a|a)− EMGn(b|a))

≥(1− ϕd(a,b))(MGn(a|a) +
∑
θ 6=a

ϕd(a,θ)MGn(a|θ))

∝ EMGn(a|a) > 0

Theorem 1 can be applied to any neutral mechanism
including plurality. One may wonder whether the the-
orem is obvious and the proof can be simplified using
only weak neutrality of the model and the neutrality of
the mechanism. The next proposition states that triangle
inequality is necessary even for the game with plurality.
Proposition 1. There exists a Mallows-like modelMd

based on a weakly neutral similarity function d such
that both conditions in Theorem 1 hold but sincere vot-
ing is not a BNE in Gn(Md, rPlu).
Proof sketch: We prove the proposition by contra-
diction using the similarity function dt in Figure 1
with a sufficiently small t > 0 in the 3-agent game
G3(M, rPlu). It can be verified that both conditions
in Theorem 1 hold following the proof of Theorem 2,
which does not use triangle inequality.

Suppose for the sake of contradiction that sincere vot-
ing is a BNE. When an agent receives signal a1, we will



show that reporting a2 has a higher expected payoff,
namely EMGn(a2|a1) > EMGn(a1|a1).

Let Zt = 1 +ϕt +ϕ2 +ϕ3 denote the normalization
factor. When the ground truth is a3, there are two cases
where reporting a1 and reporting a2 have different ex-
pected utilities:

1. The other two votes are {a3, a1}. This happens
with probability 2ϕ2/Z2

t . In this case voting for a1 re-
duces the marginal gain by 0.5 and voting for a2 reduces
the marginal gain by 1/6, which means that the differ-
ence in marginal gain is − 1

3 .
2. The other two votes are {a3, a2}. This happens

with probability 2ϕ3/Z2
t . The difference in the marginal

gain is 1
3 .

Therefore, MGn(a1|a3) − MGn(a2|a3) =
2

3Z2
t

[ϕ3−ϕ2]. Similarly MGn(a1|a4)−MGn(a2|a4) =
2

3Z2
t

[ϕ2 − ϕ3]. Therefore, Pr(a3|a1)(MGn(a1|a3) −
MGn(a2|a3)) + Pr(a4|a1)(MGn(a1|a4) −
MGn(a2|a4)) = 2

3Z3
t

[2ϕ5−ϕ4−ϕ6]. LetDt(ϕ) denote
this term. It is easy to verify that limt→0Dt(ϕ) < 0 for
all 0 < ϕ < 1.

It is easy to verify that MGn(a1|a1) −MGn(a2|a1)
is bounded so that limt→0 Pr(a1|a1)(MGn(a1|a1) −
MGn(a2|a1)) + Pr(a2|a1)(MGn(a1|a2) −
MGn(a2|a2)) ∝ limt→0(1 − ϕt)(MGn(a1|a1) −
MGn(a2|a1)) = 0. Therefore, there exists t > 0 such
that EMGn(a1|a1)− EMGn(a2|a1) < 0, which means
that the agent prefers reporting a2 to a1 upon receiving
a1, which contradicts the assumption. 2

Theorem 2 (Plurality). For any Mallows-like model
Md based on a weakly neutral distance d with uniform
prior, sincere voting is a BNE in Gn(Md, rPlu).

Proof. We prove the theorem by applying Theorem 1.
Condition (ii) obviously holds. To verify Condition (i),
we take a closer look at MGn(b|θ) in Gn(Md, rPlu).
For any l ≤ n and any C ⊆ A, let P lC denote the set
of all (n − 1)-profiles Pn−1 such that C is the set of
alternatives with the maximum plurality score in Pn−1.

For any l ≤ n, any alternative c ∈ A, and any C ⊆
A − {c}, we let QlC,c denote the set of all (n − 1)-
profiles Pn−1 that satisfy the following conditions: (1)
C is the set of alternatives with the maximum plurality
score (which is l) in Pn−1, and (2) the plurality score of
c is l − 1.

For any profile P and any θ ∈ A, I(rPlu(P ∪
{θ}), θ) − I(rPlu(P ), θ) 6= 0 if and only if one of the
following two cases hold.

1. P ∈ P lC for some l ≤ n and θ ∈ C. In this case
I(rPlu(P ∪ {θ}), θ)− I(rPlu(P ), θ) = 1− 1

|C| .

2. P ∈ QlC,θ for some l ≤ n and C ⊆ A with θ 6∈ C.
In this case I(rPlu(P∪{θ}), θ)−I(rPlu(P ), θ) = 1

|C|+1 .

Therefore, we can rewrite MGn(θ|θ) using P lC and

QlC,θ as follows.

MGn(θ|θ) =
∑
l≤n

∑
C:θ∈C

∑
P∈PlC

Pr(P |θ)(1− 1

|C|
)

︸ ︷︷ ︸
MGLn(θ|θ)

+
∑
l≤n

∑
C:θ 6∈C

∑
P∈QlC,θ

Pr(P |θ)( 1

|C|+ 1
)

︸ ︷︷ ︸
MGRn(θ|θ)

Let MGn(θ|θ) = MGLn(θ|θ) + MGRn(θ|θ) as in
the previous formula. For any b 6= θ, we note that
I(rPlu(P ∪ {b}), θ) − I(rPlu(P ), θ) 6= 0 if and only if
(1) P ∈ P lC for some l ≤ n, and C with {θ, b} ⊆ C,
or (2) P ∈ QlC,b for some l ≤ n and C with θ ∈ C and
b 6∈ C. Therefore, we can rewrite MGn(b|θ) using P lC
and QlC,θ as follows.

MGn(b|θ) =
∑
l≤n

∑
C:{θ,b}⊆C

∑
P∈PlC

Pr(P |θ)(− 1

|C|
)

︸ ︷︷ ︸
MGLn(b|θ)

+
∑
l≤n

∑
C:θ∈C and b 6∈C

∑
P∈QlC,θ

Pr(P |θ)(− 1

|C|(|C|+ 1)
)

︸ ︷︷ ︸
MGRn(b|θ)

Similarly, we define MGn(b|θ) = MGLn(b|θ) +
MGRn(b|θ) as above.

Suppose an agent receives a signal a ∈ A. We will
show that EMGn(a|a) =

∑
θ∈A Pr(θ|a)MGn(a|θ) >

0, which means that the agent strictly prefers reporting
a to abstention. This is established by the following two
lemmas, whose proofs can be found in the full version
of this paper at arXiv.

Lemma 1. For any a ∈ A, MGLn(a|a) +∑
b 6=a MGLn(a|b) = 0.

Lemma 2. Pr(a|a)MGRn(a|a) +∑
b 6=a Pr(b|a)MGRn(a|b) = 0.

Combining Lemma 1 and 2, we have:
EMGn(a|a) (1)

=
∑
θ∈A

Pr(θ|a)MGn(a|θ)

=
∑
θ∈A

Pr(θ|a) (MGLn(a|θ) + MGRn(a|θ))

=(Pr(a|a)MGLn(a|a) +
∑
b6=a

Pr(b|a)MGLn(a|b))

+ (Pr(a|a)MGRn(a|a) +
∑
b6=a

Pr(b|a)MGRn(a|b))

= Pr(a|a)(MGLn(a|a) +
∑
b6=a

Pr(b|a)

Pr(a|a)
MGLn(a|b))

(2)



>Pr(a|a)(MGLn(a|a) +
∑
b6=a

MGLn(a|b)) (3)

=0 (Lemma 1)

(2) follows Lemma 2. (3) is because for any b 6= a, we
have Pr(b|a)

Pr(a|a) = ϕd(b,a) < 1 and MGLn(a|b) < 0. This
verifies Condition (i) in Theorem 1.

Example 2 shows that sincere voting may not be the
unique BNE in Gn(Md, rPlu).

Theorem 3. For any ranking modelM, sincere voting
is a BNE in Gn(M, rMAP).

Strategy-proof Mechanisms
We say a mechanism r is strategy-proof w.r.t. a model
M, if for any agent, any signal she receives, and any
profile P of the other agents, sincere voting gives her
the highest expected payoff.

Theorem 4. A mechanism r satisfies anonymity, neu-
trality, and is strategy-proof w.r.t. all distance-based
Mallows-like models for all n ∈ N if and only if the
following two conditions hold:

(1) For all n ∈ N, r is a probabilistic mixture of the
uniform rule and the frequency rule, that is,

r = αn · rUni + (1− αn) · rRD
(2) For all n, αn+1 ≤ αn ≤ αn+1 + m

n+1 (1−αn+1).

Proof sketch: The “only if” part. Let r denote
such a mechanism. Suppose an agent receives a
signal a ∈ A. Let P denote the reported pro-
file of other n − 1 agents. The difference in the
agent’s utility of reporting a and reporting b 6= a is∑
θ∈A Pr(θ|a) (I(r(P ∪ {a}), θ)− I(r(P ∪ {b}), θ)).

Claim 1. For any P , a, b, and any c 6∈ {a, b}, we have
(i) I(r(P ∪{a}), c) = I(r(P ∪{b}), c) and (ii) I(r(P ∪
{a}), a) = I(r(P ∪ {b}), b) > 0.

Claim 1 states that the change in the winning proba-
bility of any alternative c is the same for all additional
vote that is not c. Then, we can show that the winning
probability of any alternative c only depends on the total
number of agents and the number of votes for c.

The “if” part is easy to prove because no agent has
incentive to report a different signal, and the inequality
for αn guarantees that no agent wants to absent. 2

PoA and PoS
GivenGn(M, r), a signal profile S ∈ An, and a winner
θ ∈ A, we use the posterior probability Pr(θ|S) as the
social welfare function. LetQ denote the set of all BNE,
we define the PoA and PoS as follows.

PoA(Gn(M, r)) =
ES maxθ∈A Pr(θ|S)

min~µ∈Q ESPr(r(~µ(S))|S)

That is, the PoA is the maximum expected social wel-
fare for sincere agents divided by the smallest expected
social welfare in equilibrium.

PoS(Gn(M, r)) =
ES maxθ∈A Pr(θ|S)

max~µ∈Q ESPr(r(~µ(S))|S)

The next proposition states that if all agents are sin-
cere, then plurality reveals the ground truth with prob-
ability 1 as n → ∞. The proof follows directly after
Hoeffding’s inequality.
Proposition 2. For any Mallows-like modelMd based
on a weakly neutral distance d and any θ ∈ A,
Pr(rPlu(Sn) 6= θ) = exp(−Ω(n)), where Sn is a signal
profile of n i.i.d. signals generated from Pr(·|θ).

Meanwhile, it is easy to see that there are at least two
other equilibria in Gn(M, rPlu) and Gn(M, rMAP) for
some Mallows-like models and a sufficiently large n:
(1) the BNE that is similar to Example 2, where agents
only vote for two alternatives, and (2) the weak BNE
where all agents report the same alternative a regard-
less of the signals. These are inefficient equilibria be-
cause if the ground truth does not get any vote, then the
probability to reveal the ground truth is 0. Therefore, we
obtain the following corollary on the PoA and PoS.
Corollary 1. For any Mallows-like model Md based
on a weakly neutral distance d with uniform prior, the
PoA of Gn(Md, rPlu) (respectively, Gn(Md, rMAP)) is
at least m/2 for even m, and is m for weak BNE;
the PoS of Gn(Md, rPlu) (respectively, Gn(Md, rMAP))
goes to 1 as the number of agents goes to infinity.

An open question is the characterization of the
upper bounds on the PoA of Gn(Md, rPlu) and
Gn(Md, rMAP). This seems to be challenging because
most PoA upper bounds proved in the literature are
based on smoothness analysis, which requires (1) the
social welfare function is as large as agents’ total utility,
and (2) agents’ types are not correlated, or the welfare-
maximizing strategies are not correlated. Neither seems
to hold for Gn(Md, rPlu) and (1) does not seem to hold
for Gn(Md, rMAP).

By the central limit theorem, when n → ∞, for any
ground truth a, with probability that goes to 1, the fre-
quency of a in the signal profile is 1

Z +O( 1√
n

). There-
fore, we have the following proposition by Theorem 4.
Corollary 2. For any mechanism that is anonymous,
neutral, and strategy-proof for all distance-based mod-
els, the PoA and PoS are the same and in [Z,m]. The
bounds are tight.

Future Work
There are many open question and directions for future
research as the PoA and PoS provide a new angle on
truth-revealing social choice with strategic agents. For
example, we have not obtained an upper bound on the
PoA for plurality and MAPs. More generally, can we
characterize PoA and PoS for other types of equilib-
rium, for non-uniform prior, for cases where the signal
space is different from the parameter space, and/or for
correlated and heterogeneous agents? Do strategy-proof
mechanisms exist for other classes of models?
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