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ABSTRACT

In a voting system, sometimes multiple new alternatives will join

the election after the voters’ preferences over the initial alternatives

have been revealed. Computing whether a given alternative can

be a co-winner when multiple new alternatives join the election is

called the possible co-winner with new alternatives (PcWNA) prob-

lem and was introduced by Chevaleyre et al. [6]. In this paper, we

show that the PcWNA problems are NP-complete for the Buck-

lin, Copeland0, and maximin (a.k.a. Simpson) rule, even when the

number of new alternatives is no more than a constant. We also

show that the PcWNA problem can be solved in polynomial time

for plurality with runoff. For the approval rule, we examine three

different ways to extend a linear order with new alternatives, and

characterize the computational complexity of the PcWNA problem

for each of them.

Categories and Subject Descriptors

J.4 [Computer Applications]: Social and Behavioral Sciences–

Economics; I.2.11 [ Distributed Artificial Intelligence]: Multia-

gent Systems

General Terms

Algorithms, Economics, Theory

Keywords
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1. INTRODUCTION
In many real-life situations, multiple voters have to choose a

common alternative out of a set that can grow during the process.

For instance, when a committee wants to decide which proposal

should be approved, some applications might arrive late (due to un-

expected delay in the mailing system, etc). Suppose that we have

already elicited the preference of the voters (members of the com-

mittee) on the initial proposals. It is important for the applicants to

know whether they are already out (so that they can submit the same

proposal to other founding sources right away without waiting for

the committee members to make the final decision). A recent paper
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by Chevaleyre et al. [6] considers the following problem: suppose

that the voters’ preferences about a set of initial alternatives have

already been elicited, and we know that a given number k of new

alternatives will join the election; we ask who among the initial al-

ternatives can possibly win the election in the end. This problem is

a special case of the possible winner problem [18, 21, 20, 3, 4, 2],

restricted to the case where the incomplete profile consists of a col-

lection of full rankings over the initial alternatives (nothing being

known about the voters’ preferences about the new alternatives).

It is somehow dual of another special case of the problem where

the incomplete profile consists of a collection of full rankings over

all alternatives for a subset of voters (nothing being known about

the remaining voters’ preferences), which itself is equivalent to the

coalitional manipulation problem. The problem is also related to

control by adding candidates [1, 11, 14, 12], as discussed in [6].

Ideally, given a voting rule, we would hope to find a polynomially-

computable characterization which would allow us to quickly iden-

tify the possible (co)winners given an incomplete profile P and a

number of new alternatives. Chevaleyre et al. [6] give such charac-

terizations for plurality and Borda for an arbitrary number of new

candidates, as well as for K-approval when there is a single new

candidate. They show that these positive results do not extend to

scoring rules in general, not even to K-approval, and show that

computing possible (co)winners for 3-approval is NP-hard with

three new candidates, as well as for some more sophisticated scor-

ing rules, for a single new candidate. These results were further

extended in [7], where a polynomial algorithm (but not an easy

characterization) was proposed for 2-approval, as well as for K-

approval for 2 new candidates.

The results given in [6] and [7] do not go beyond scoring rules.

In this paper we go further by considering major voting rules that

are outside the family of scoring rules, namely approval, Bucklin,

Copeland, maximin and plurality with runoff. We will give two

positive results, namely polynomially-computable characterization

of possible (co)winners with new alternatives, for plurality with

runoff and, with some specific assumptions we shall discuss later,

for approval. However, for all other rules considered in this paper,

we will show that finding such a characterization is hopeless, as we

show that the possible (co)winner problem with new alternatives

for these rules is NP-hard.

The reason why it is worth exploring the computational com-

plexity of the possible (co)winner problem with new alternatives

for various voting rules is threefold. First, it helps understanding

the various possible (co)winner problems better, by comparing our

results to complexity results of the possible (co)winner in the gen-

eral case [21] as well as as in the specific case corresponding to the

unweighted coalitional manipulation problem (see e.g., [13, 15]).

Second, these results help deciding which voting rules to apply



in situations where we know beforehand that new candidates may

come after the initial ones and where we want to know which of the

initial ones can win the election. Voting rules for which we have

an easy (polynomial) way to compute these possible winners are

better suited to this class of situations. Third, on the other hand,

hardness results can also be considered positive in settings where

we want a voting rule to be hard to control by adding candidates

without the chair knowing a priori the voters’ preferences on these

candidates. (We shall say more about this in Section 3).

We start by giving some background in Section 2. In Section 3

we recall the possible co-winner problem with respect to the addi-

tion of new alternatives (PcWNA). Each of the following sections

is devoted to the PcWNA problem for a specific voting rule.

In Section 4 we focus on approval voting. Since the notion of a

complete profile (including the new alternatives) extending a partial

profile over the initial alternatives is not straightforward, we inves-

tigate three possible definitions, which we think are the three most

reasonable definitions. To the best of our knowledge, two of these

definitions are new. We show that PcWNA problems are trivial for

two of these definitions, and NP-complete for the third one.

In Sections 5, 6 and 7 we show that the problem is NP-complete

for, respectively, the Bucklin rule, the Copeland rule, and the max-

imin (a.k.a. Simpson) rule, and finally in Section 8 we focus on

plurality with runoff, for which we give a polynomially computable

characterization.

2. PRELIMINARIES
Let C be the set of alternatives (or candidates), with |C| = m.

Let I(C) denote the set of votes. Most often, the set of votes is the

set of all linear orders over C. An n-profile P is a collection of n
votes for some n ∈ N, that is, P ∈ I(C)n. A voting rule r is a

mapping that assigns to each profile a set of winning alternatives1,

that is, r is a mapping from {∅} ∪ I(C) ∪ I(C)2 ∪ . . . to 2C . For

any profile P , the alternatives in r(P ) are called co-winners for P .

If r(P ) = {c}, then c is the unique winner for P .

Some common voting rules are listed below. For all of them

(except the approval rule), I(C) is the set of all linear orders over

C; for the approval rule, the set of votes is the set of all subsets of

C, that is, I(C) = {S : S ⊆ C}.

• (Positional) scoring rules: Given a scoring vector

~v = (v(1), . . . , v(m)), for any vote V ∈ L(C) and any c ∈ C,

let s(V, c) = v(j), where j is the rank of c in V . For any pro-

file P = (V1, . . . , Vn), let s(P, c) =
Pn

i=1 s(Vi, c). The rule

will select c ∈ C so that s(P, c) is maximized. Some examples of

positional scoring rules are Borda, for which the scoring vector is

(m − 1, m − 2, . . . , 0); l-approval (l ≤ m), for which the scoring

vector is v(1) = . . . = v(l) = 1 and vl+1 = . . . = vm = 0; and

plurality, for which the scoring vector is (1, 0, . . . , 0).

• Approval: Each voter submits a set of alternatives (that is, the

alternatives that are “approved” by the voter). The winner is the

alternative approved by the largest number of voters. Note that

the approval rule is different from the l-approval rule, in that for

the l-approval rule, a voter must approve l alternatives, whereas

for the approval rule, a voter can approve an arbitrary number of

alternatives.

• Bucklin: The Bucklin score of an alternative c, denoted by

BP (c) is the smallest number t such that more than half of the votes

rank c among top t positions. A Bucklin winner has the lowest

Bucklin score and is ranked within top BP (c) for most times.

1Such a function is often called a voting correspondence rather
than a voting rule. We will however stick to the terminology “rule”
throughout the paper.

• Copelandα (0 ≤ α ≤ 1): For any two alternatives ci and cj ,

we can simulate a pairwise election between them, by seeing how

many votes prefer ci to cj , and how many prefer cj to ci; the winner

of the pairwise election is the one preferred more often. Then, an

alternative receives one point for each win in a pairwise election,

α points for each tie, and zero point for each loss. The alternatives

that have the highest score win.

• maximin (a.k.a. Simpson): Let NP (ci, cj) denote the number

of votes that rank ci ahead of cj in P . The maximin score of alter-

native c ∈ C in profile P is defined as SimP (c) = min{NP (c, c′) :
c′ ∈ C \ {c}}. A maximin winner maximizes the maximin score.

• Plurality with runoff: The election has two rounds. In the first

round, all alternatives are eliminated except the two with the high-

est plurality scores. In the second round (runoff), the winner is the

alternative that wins the pairwise election between them. Here we

use the parallel-universe tie-breaking mechanism [8], where an al-

ternative c is a co-winner, if there exists a way to break ties in both

rounds to make c win.

In this paper, all NP-hardness results are proved by reductions

from the EXACT COVER BY 3-SETS problem (denoted by X3C) or

the 3-DIMENSIONAL MATCHING problem (denoted by 3DM). An

instance I = (S ,V) of X3C consists of a set V = {v1, . . . , v3q}
of 3q elements and t ≥ q 3-sets S = {S1, . . . , St} of V , i.e., for

any i ≤ t, Si ⊆ V and |Si| = 3. Without loss of generality,

we assume that for each v ∈ V , there exists S ∈ S such that

v ∈ S. For any v ∈ V , let dI(v) denote the number of 3-sets

containing element v in instance I . Let ∆(I) = maxv∈V dI(v).

We are asked whether there exists a subset J ⊆ {1, . . . , t} such

that |J | = q and
S

j∈J Sj = V (indeed, the sets Sj for j ∈ J form

a partition of V). This problem is known to be NP-complete, even

if ∆(I) ≤ 3 (problem [SP2] page 221 in [16]). In this paper, we

will use a special case of 3DM that is also a special case of X3C,

defined as follows.2 Given A,B, X, where A = {a1, . . . , aq},

B = {b1, . . . , bq}, X = {x1, . . . , xq}, T ⊆ A × B × X, T =
{S1, . . . , St} with t ≥ q. We are asked whether there exists M ⊆
T such that |M | = q and for any (a1, b1, x1), (a2, b2, x2) ∈ M ,

we have a1 6= a2, b1 6= b2, and x1 6= x2. That is, M corresponds

to an exact cover of V = A ∪ B ∪ X. This problem with the

restriction where no element of A ∪ B ∪ X occurs in more than

3 triples (i.e., ∆(I) ≤ 3) is known to be NP-complete (problem

[SP1] page 221 in [16]).

To prove our NP-hardness results, we first prove that another

useful special case of 3DM (as well as X3C) remains NP-complete.

Proposition 1 3DM is NP-complete, even if q is even, t = 3q/2,

and ∆(I) ≤ 6.

PROOF. Let I = (T, A × B × X) be an instance of 3DM with

A = {a1, . . . , aq}, B = {b1, . . . , bq}, X = {x1, . . . , xq}, T ⊆
A×B×X, T = {S1, . . . , St} and ∆(I) ≤ 3. We next show how

to build an instance I ′ = (T ′, A′×B′×X ′) of 3DM in polynomial

time, with |A′| = |B′| = |X ′| = q′, T ′ ⊆ A′ × B′ × X ′ and

|T ′| = t′ such that q′ is even, t′ = 3q′/2, and ∆(I ′) ≤ 6.

• If q is odd, then we add to the instance 3 new elements {a′
1, b

′
1, x

′
1}

with A′ = A ∪ {a′
1}, B′ = B ∪ {b′1}, X ′ = X ∪ {x′

1} and one

new triplet (a′
1, b

′
1, x

′
1).

• Suppose that q is even. If t > 3q/2, then we add 6(t − 3q/2)
new elements {a′

1, . . . , a
′
2(t−3q/2)} to A, {b′1, . . . , b

′
2(t−3q/2)} to

B, {x′
1, . . . , x

′
2(t−3q/2)} to X and 2(t − 3q/2) new triples

{S′
1, . . . , S

′
2(t−3q/2)}, where for any i ≤ 2(t − 3q/2), S′

i =

(a′
i, b

′
i, x

′
i). If t < 3q/2, then we add 3q/2 − t dummy triples

to T by duplicating 3q/2 − t triples of T once each. We note that

t ≥ q implies that t ≥ 3q/2 − t.

2Generally, 3DM is not a special case of X3C.



It is easy to check that in I ′, q′ is even, t′ = 3q′/2, and ∆(I ′) ≤
6. The size of the input of the new instance is polynomial in the

size of the input of the old instance. Moreover, I is a yes-instance

if and only if I ′ is also a yes-instance. 2

3. POSSIBLE (CO)WINNERS WITH NEW

ALTERNATIVES
Let C denote the set of original alternatives, let Y denote the set

of new alternatives. For any linear order V over C, a linear order

V ′ over C∪Y extends V , if in V ′ the pairwise comparison between

any pair of alternatives in C is the same as in V . That is, for any

c, d ∈ C, c ≻V d if and only if c ≻V ′ d.

Given a voting rule r, an alternative c, and a profile P over C,

we are asked whether there exists a profile P ′ over C ∪Y such that

P ′ is an extension of P and c ∈ r(P ′). This problem is called the

possible co-winner with new alternatives (PcWNA) problem [6, 7].

Similarly, we let PWNA denote the problem in which we are

asked whether c is a possible (unique) winner, that is, r(P ′) = {c}.

Up to now, the PcWNA and PWNA problems are well-defined for

all voting rules studied in this paper (except the approval rule). For

the approval rule, we will introduce three types of extension, and

discuss the computational complexity of the PcWNA and PWNA

problems under these extensions.

We denote by PWNAr(P, k) (respectively PcWNAr(P, k)) the

set of possible winners (respectively co-winners) for voting rule r
and profile P with respect to the addition of k new alternatives.

It is straightforward to check that the PcWNA (respectively,

PWNA) problems for all voting rules studied in this paper are in

NP, because given an extension of a profile P , it takes polynomial

time to verify if the given alternative c is a co-winner (respectively,

the unique winner) for all rules studied in this paper. Therefore, in

this paper, we do not show that PcWNA and PWNA are in NP for

individual voting rules. (That is, we only show either polynomiality

or NP-hardness proofs.)

Chevaleyre et al. [6, 7] discuss the relationship between the

P(c)WNA problem and two related problems, namely control via

adding candidates and candidate cloning. It is argued that the main

difference between the three problems is that in the problem of con-

trol via adding candidates, the chair knows how the voters would

rank the new candidates that can possibly be added by her; in the

problem of candidate cloning, the chair only knows that every voter

will order all the clones of a candidate contiguously in her vote,

that is, every voter’s preferences between a clone of c and another

candidate d must be the same as her preferences between c and

d; whereas in the P(c)WNA problem, the chair does not have any

information about how the voters would rank the new candidates.

Even though it has been defined primarily as a problem deal-

ing with voting with incomplete knowledge, the possible co-winner

problem with new alternatives can also be seen as a constructive

control problem, for the class of situations where the chair can add

a number of new candidates without knowing how the voters will

rank them: if the chair’s preferred candidate x is not a co-winner

for the current profile P , the chair has an incentive to add a num-

ber of new candidates for which x becomes a possible co-winner

of the profile before the new alternatives are added. Of course the

chair cannot guarantee that x must be a co-winner after the new

alternatives are added3 , but at least x has some hope to win. The

chair could find, even further, the number of new candidates k such

that not only x becomes a possible co-winner, but also such that the

number of possible co-winners is as low as possible.

3This actually corresponds to the necessary co-winner problem, to
which the answer is trivial in the setting of this paper.

4. APPROVAL
Since the input of the approval rule is different from the in-

put of other voting rules studied in this paper, we have to define

the set of possible extensions of an approval profile over C. Let

PC = (V1, . . . , Vn) be an approval profile over C, where each Vi

is a subset of C. An extension of PC over C ∪ Y is a collection

(V ′
1 , . . . , V ′

n) where V ′
i ⊆ C ∪ Y is an extension of Vi. Now, we

define what it means to say that V ′ ⊆ C ∪ Y is an extension of

V ⊆ C. We can think of three natural definitions as follows.

Definition 1 (extension of an approval vote, definition 1) V ′ ⊆
C ∪ Y is an extension of V ⊆ C if V ′ ∩ C = V .

In other words, under this definition, V ′ is an extension of V if

V ′ = V ∪ Y ′, where Y ′ ⊆ Y . This definition coincides with the

definition used in [19] (Definition 4.3) for the control of approval

voting by adding candidates. The problem with Definition 1 is that

it assumes that any alternative approved in V is still approved in V ′.

However, in some contexts, extending the choice with alternatives

of Y may change the “approval threshold”. Moreover, since we

have more alternatives, this threshold should either stay the same or

move upward: some alternatives that were approved initially may

become disapproved. This leads to the following definition of ex-

tension.

Definition 2 (extension of an approval vote, definition 2) V ′ ⊆
C ∪ Y is an extension of V ⊆ X if one of the following condi-

tions holds: (1) V = V ′; (2) V ′ ∩ Y 6= ∅ and V ′ ∩ C ⊆ V .

Lastly, we may also allow the acceptance threshold to move

downward, even though the set of alternatives grows, especially in

the case where the new alternatives are particularly bad, thus ren-

dering some alternatives in C acceptable after all. This leads to the

third definition of extension.

Definition 3 (extension of an approval vote, definition 3) V ′ ⊆
C ∪ Y is an extension of V ⊆ C if one of the following condi-

tions holds: (1) V ′ ∩ C ⊂ V and V ′ ∩ Y 6= ∅; (2) V ⊂ V ′ ∩ C,

and Y \ V ′ 6= ∅; (3) V ′ ∩ C = V .

Under Definition 3, either the threshold moves upward, in which

case all alternatives which were disapproved in V are still disap-

proved in V ′, and obviously, at least one alternative in Y should

be approved; or the threshold moves downward, in which case all

alternatives that were approved in V are still approved in V ′, and

obviously not all alternatives in Y should be approved. Note that

in the case where V ′ ∩ C = V , the threshold can move upward, or

downward, or remain the same4.

Let us give a brief summary of the three definitions of extension.

Definition 1 assumes that the threshold cannot move; Definition 2

assumes that the threshold can stay the same or move upward (be-

cause the set of alternatives grows); and Definition 3 assumes that

the threshold can stay the same, move upward, or move downward.

Next, we show an example that illustrates these definitions. Let

C = {a, b, c, d}, Y = {y1, y2}, and V = {a, b}.

4The rationale behind Definition 3 is that the threshold may de-
pend on the average quality of the alternatives, and therefore may
go down after some bad new alternatives have been added. For
instance, suppose a voter hates red meat, and has the preference
relation tofu ≻ fish ≻ chicken ≻ beef ≻ mutton; if the
initial set of alternatives is {tofu, fish, chicken}, it is per-
fectly reasonable that he should approve {tofu, fish }, while
he would approve {tofu, fish, chicken} after beef and
mutton have been added to the set of alternatives. This is per-
fectly in agreement with the notion of sincere ballot in approval
voting (see, e.g., [5, 10, 11] and references therein).



• V ′
1 = {a, b} and V ′

2 = {a, b, y1} are extensions of V under

all three definitions;

• V ′ = {a, y1} is an extension of V under definitions 2 and 3

but not under definition 1 (the threshold has moved upward, since

b was approved in V and is no longer approved in V ′);

• V ′ = {a, b, c, y1} is an extension of V under definition 3 but

neither under definitions 1 nor 2 (the threshold has moved down-

ward, since c was not approved in V and becomes approved in

V ′—note that, intuitively, y2 must be a very unfavorable alterna-

tive for this to happen);

• V ′ = {a, b, c} is an extension of V under definitions 3 but

neither under definitions 1 nor 2, for the same reason as above;

• V ′ = {a} is not an extension of V under any of the definitions:

to have b disapproved in V ′ and approved in V , the threshold has

to move upward, which cannot be the case if no alternative of Y is

approved;

• V ′ = {a, b, c, y1, y2} is not an extension of V under any of

the definitions: to have c disapproved in V and approved in V ′, the

threshold has to move downward, which cannot be the case where

all alternatives in Y are disapproved;

• V ′ = {a, c, y1} is not an extension of V under any of the

definitions: the threshold cannot simultaneously move upward and

downward.

It is straightforward to check that the PcWNA and PWNA prob-

lems are in P for approval under definition 1: an alternative c ∈ C
is a possible (co-)winner in P if and only if it is a (co-)winner for

approval in P (this is because for any V ∈ P , the scores of alter-

natives in C will not change from V to its extension V ′). However,

when we adopt definition 2 of extension, the problems become NP-

complete.

Theorem 1 Under Definition 2, the PcWNA and PWNA problems

are NP-complete for the approval rule.
PROOF. We first prove the hardness of the PcWNA problem by

a reduction from X3C. For any X3C instance I = (S ,V), we

construct the following PcWNA instance.

Alternatives: V ∪ {c} ∪ Y , where Y = {y1, . . . , yt−q}.

Votes: for any i ≤ t, we have a vote Vi = Si; and we have an

additional vote Vt+1 = {c}. That is, P = (V1, . . . , Vt, Vt+1).

Suppose the X3C instance has a solution, denoted by {Si1 , . . . ,
Siq}. Then, take the following extension P ′ of P : for any j ≤ q,

let V ′
ij

= Vij
. For any i ≤ t such that i 6= ij for all j ≤ q, we

let V ′
i be a singleton containing exactly one of the new alternatives.

Let V ′
t+1 = {c}. For any v ∈ V , because v appears exactly in

one Sij
, v is approved by exactly one voter. So is c. Now, there

are exactly t − q votes Vi where i is not equal to one of the ij’s.

Therefore, the total approval score of the new alternatives is t −
q, and it suffices to approve every new alternative exactly once.

Therefore c is a co-winner in P ′, and thus a possible co-winner in

P .

Conversely, suppose c is a possible co-winner for P and let P ′

be an extension of P for which c is a co-winner. We note that c is

approved at most once in P ′. Therefore, every alternative in V ∪Y
must be approved at most once. Without loss of generality, assume

that every vote V ′
i in P ′ is either of the form Vi or of the form {yj}

(if not, remove every alternative (except one yj ) from V ′
i ; c will

still be a co-winner in the resulting profile). Since we have t − q
new alternatives, each being approved at most once in P ′, we have

at least q votes V ′
i in P ′ such that V ′

i = Vi. If we had more than

q votes V ′
i such that V ′

i = Vi, then more than 3q points would

be distributed to 3q alternatives and one of them would get at least

2, which means that c would not be a co-winner in P ′. Therefore

we have exactly q votes V ′
i such that V ′

i = Vi, and 3q points dis-

tributed to 3q alternatives; since none of them gets more than one

point, they get one point each, which implies that the collection of

all Si such that Vi = V ′
i forms an exact cover of C.

For the PWNA problem, we add one more vote Vt+2 = {c} to

the profile P . 2

Now, let us consider Definition 3. Notice that the profile P ′

where every voter adds c to her vote (if she was not already vot-

ing for c) is an extension of P , and obviously c is a co-winner in

P ′. Therefore, every alternative in C is a possible co-winner for P ,

which trivialize the problem.

5. BUCKLIN

Theorem 2 The PWNA and PcWNA problems are NP-complete

for Bucklin, even when there are three new alternatives.

PROOF. We prove the NP-hardness of both PcWNA and PWNA

by the same reduction from the special case of 3DM mentioned

in Proposition 1. Given any 3DM instance where |A| = |B| =
|X| = q, q is even, t = 3q/2, and no element in A ∪ B ∪ X
appears in more than 6 elements in T , we construct a PcWNA

(PWNA) instance as follows. Without loss of generality, assume

q ≥ 5; otherwise the instance 3DM can be solved directly.

Alternatives: A∪B ∪X ∪Y ∪D∪{c}, where Y = {y1, y2, y3}
is the set of new alternatives, and D = {d1, . . . , d9q2} is the set of

auxiliary alternatives.

Votes: For any i ≤ 2q + 1, we define a vote Vi. Let P =
(V1, . . . , V2q+1). Instead of defining these votes explicitly, below

we give the properties that P satisfies. The votes can be constructed

in polynomial time.

(i) For any i ≤ q, c is ranked in the first position. Suppose Si =
(a, b, x). Then, let a, b, x be ranked in the (3q + 1)th, (3q + 2)th,

and (3q + 3)th positions in Vi, respectively.

(ii) For any i such that q < i ≤ 3q/2 = t, c is ranked in the

(3q + 4)th position. Suppose Si = (a, b, x). Then, let a, b, x be

ranked in the (3q + 1)th ,(3q + 2)th, and (3q + 3)th positions in

Vi, respectively.

(iii) For any i such that 3q/2 < i ≤ 2q + 1, let c be ranked in

the (3q + 4)th position, and no alternative in A∪ B ∪ X is ranked

in the (3q + 1)th, (3q + 2)th, or (3q + 3)th position in Vi.

(iv) For any c′ ∈ A ∪ B ∪ X, c′ is ranked within top 3q + 3
positions for exactly q + 1 times in P ; and c′ is never ranked in the

(3q + 4)th position.

(v) For any d ∈ D, d is ranked within top 3q + 4 positions at

most once.

The existence of a profile P that satisfies (iv) is guaranteed by the

assumption that in the 3DM instance, q ≥ 5, no element is covered

more than 6 times, and there are enough positions within top 3q+3
positions in all votes to ensure that each alternatives in C appears

exactly q + 1 times. We note that there are in total 9q2 auxiliary

alternatives, and the total number of top 3q + 4 positions in all

votes is (3q + 4)(2q + 1) < 9q2. Therefore, (v) can be satisfied. It

follows that there exists a profile P that satisfies (i), (ii), (iii), (iv),

and (v), and such a profile can be constructed in polynomial time

(by first putting the alternatives to their positions defined in (i), (ii),

and (iii), then filling out the positions using remaining alternatives

to meet conditions (iv) and (v)). The Bucklin score of c is 3q +4 in

P . For any j ≤ q, the Bucklin score of aj (resp., bj , xj) is at most

3q+3 in P , and for any j ≤ 9q2, the Bucklin score of dj ∈ D is at

least 3q +4 in P . Observe that the Bucklin score of any alternative

cannot be decreased in any extension of P .

Suppose that the 3DM instance has a solution, denoted by {Sj :
j ∈ J}, where J ⊆ {1, . . . , t}. For any j ∈ J , we let V ′

j be

the extension of Vj in which y1, y2, y3 are ranked in the (3q +
1)th, (3q + 2)th, and (3q + 3)th positions, respectively. For any



j ∈ {1, . . . , 2q + 1} \ J , we let V ′
j be the extension of Vj where

{y1, y2, y3} are ranked in the bottom positions. Let P ′ = (V ′
1 ,

. . . , V ′
2q+1). It follows that in P ′, the Bucklin score of c is 3q + 4

and c is ranked within top 3q +4 for 3q/2 times; the Bucklin score

of any other alternative is at least 3q + 4, and none of them is

ranked within top 3q + 4 for more than q + 1 times. Therefore, c
is the unique winner for Bucklin for P ′, which means that there is

a solution to the PcWNA (PWNA) instance.

Conversely, suppose that there is a solution to the PcWNA (PWNA)

instance, denoted by P ′ = (V ′
1 , . . . , V ′

2q+1). We recall that in or-

der for c to be a co-winner, the Bucklin score of any alternative in

A ∪ B ∪ X must be at least 3q + 4 (since the Bucklin score of c
cannot decrease in P ′). Therefore, for every a ∈ A, there exists

i ≤ t such that a is ranked within top 3q + 3 positions in Vi, and

is ranked lower than the (3q + 3)th position in V ′
i . Consequently,

in each of such V ′
i , the new alternatives must be ranked within top

3q + 3 positions. Because |A| = q, each new alternative must

be ranked within top 3q + 3 positions in V1, . . . , Vt for q times.

Because c is a co-winner, no alternative in Y is ranked within top

3q + 3 positions in P ′ for more than q times. Therefore, in exactly

q votes in P ′, the alternatives in Y are ranked within top 3q + 3
positions. Let {V ′

i1 , . . . , V ′
iq
} denote these votes.

We claim that {Si1 , . . . , Siq} is a solution to the 3DM instance.

If not, then there exists e ∈ B ∪X that does not appear in any Sij
.

However, it follows that e is ranked within top 3q + 3 positions for

exactly q times, which means that the Bucklin score of e is at most

3q + 3. Therefore, the Bucklin score of e is lower than the Bucklin

score of c. This contradicts the assumption that c is a co-winner

for P ′. Therefore, the PcWNA (PWNA) problem is NP-hard for

Bucklin. 2

6. COPELAND0

For any profile P , the Copeland score of an alternative c ∈ C in

profile P is denoted by CSP (c) = |{c′ ∈ C : NP (c, c′) > n/2}|
(recall that we focus on Copeland0, which means that the tie in a

pairwise election gives 0 point to both participating alternatives).

We have the following straightforward observation.

Property 1 For any profile P ′ over C ∪ {y} that is an extension of

profile P , the following inequalities hold:

∀c ∈ C, CSP (c) ≤ CSP ′(c) ≤ CSP (c) + 1 (1)

We prove that a useful restriction of X3C remains NP-complete.

Proposition 2 X3C is NP-complete, even if t = 2q−2 and ∆(I) ≤
6.

PROOF. The proof is similar to the proof for Proposition 1. Let

I = (S ,V) be an instance of X3C, where V = {v1, . . . , v3q}
and S = {S1, . . . , St}. We next show how to build an instance

I ′ = (S ′,V ′) of X3C in polynomial time, with |V ′| = 3q′ and

|S ′| ≤ 6 such that t′ = 2q′ − 2 and ∆(I ′) ≤ 6.

• If t < 2q − 2, then we add 2q − 2 − t dummy 3-sets to S by

duplicating 2q − 2 − t sets of S once each. It follows from t ≥ q
that 2q − 2 − t ≤ q − 2 < t.

• If t > 2q − 2, then we add 3(t − 2q + 2) new elements

v′
1, . . . , v

′
3(t−2q+2) and t − 2q + 2 3-sets {v′

1, v
′
2, v

′
3}, . . .,

{v′
3(t−2q+2)−2, v

′
3(t−2q+2)−1, v

′
3(t−2q+2)}.

The size of the input of the new instance is polynomial in the size

of the input of the old instance. Moreover, I is a yes-instance if and

only if I ′ is also a yes-instance. Finally, in the new instance I ′, we

have: |V ′| = |V| = 3q and t′ = |S ′| = t+(2q−2−t) = 2q−2 =
2q′ − 2 in the first case, while 3q′ = |X ′| = 3q + 3(t− 2q + 2) =
3(t − q + 2) and t′ = |S ′| = t + (t − 2q + 2) = 2(t − q + 1) =

2(q′ − 1) in the second case. Moreover, dI′(v) ≤ 2dI(v) ≤ 6 if

v ∈ V , and dI′(v) = 1 if v ∈ V ′ \ V . 2

Theorem 3 The PcWNA problem is NP-complete for Copeland0,

even when there is one new alternative.

PROOF. The proof is by a reduction from X3C. Let I = (S ,V),

where t = 2q−2 and ∆(I) ≤ 6 be an instance of X3C as described

in Proposition 2. As previously, we can assume q ≥ 8; hence

∆(I) ≤ q − 2. For any X3C instance, we construct the following

PcWNA instance for Copeland0.

Alternatives: V ∪ D ∪ Y ∪ {c}, where D = {d1, . . . , dt} and

Y = {y} is the set of the new alternative.

Votes: For any i ≤ t, we define the following 2t votes.

Vi = [di ≻ (D \ {di}) ≻ (V \ Si) ≻ c ≻ Si]

V ′
i = [rev(Si) ≻ rev(V \ Si) ≻ rev(D \ {di}) ≻ c ≻ di]

Here the elements in a set are ranked according to the order of their

subscripts, i.e., if Si = {v2, v5, v7}, then the elements are ranked

as v2 ≻ v5 ≻ v7. For any set X such that X ⊂ V or X ⊂ D, let

rev(X) denote the linear order where the elements in X are ranked

according to the reversed order of their subscripts. For example,

rev({v2, v5, v7}) = v7 ≻ v5 ≻ v2.

We also define the following t = 2q − 2 votes.

W1 = . . . = Wq−1 = [V ≻ D ≻ c]

W ′
1 = . . . = W ′

q−1 = [rev(D) ≻ rev(V) ≻ c]

Let P = (V1, V
′
1 , . . . , Vt, V

′
t , W1, W

′
1, . . . , Wq−1, W

′
q−1).

We note that there are 3t votes in the instance. We recall that by

assumption, 3t/2 = 3q − 3. We make the following observations

on the function NP .

• For any d ∈ D, d beats c: this holds because NP (c, d) = 1.

• For any v ∈ V , v beats c: this holds because NP (c, v) =
dI(v) ≤ q − 2 < 3q − 3.

• For any d ∈ D and v ∈ V , d and v are tied: this holds because

NP (v, d) = t + q − 1 = 3q − 3.

• For any v, v′ ∈ V (v′ 6= v), v and v′ are tied.

• For any d, d′ ∈ D (d′ 6= d), d and d′ are tied.

From these observations we have the following calculation on

the Copeland scores:

• CSP (c) = 0.

• For any v ∈ V , CSP (v) = 1.

• For any d ∈ D, CSP (d) = 1.

Now, assume that I = (S ,V) is a yes-instance of X3C; hence,

there exists J ⊂ {1, . . . , t} with |J | = q and
S

j∈J Sj = V .

Next, we show how to make c a co-winner by introducing one new

alternative y.

• For any j ∈ J , we let eVj = [dj ≻ D \ {dj} ≻ V \ Sj ≻ c ≻
y ≻ Sj ] be the completion of Vj .

• For any i ≤ t, we let eV ′
i = [rev(Si) ≻ rev(V \Si) ≻ rev(D \

{di}) ≻ c ≻ y ≻ di] be the completion of V ′
i .

• For any vote not mentioned above, we put y in the top position.

• Finally, let P ′ denote the profile obtained in the above way.

It follows that y loses to c in their pairwise election, and for any

other alternative c′ ∈ C (c′ 6= y and c′ 6= c), c′ and y are tied in

their pairwise election. Therefore, the Copeland score is 1 for c,

any alternative in V , and any alternative in D; the Copeland score

of y is 0. It follows that c is a co-winner.

Next, we show how to convert a solution to the PcWNA instance

to a solution to the X3C instance. Let P ′ = (eV1, . . . , eVt, eV ′
1 , . . . , eV ′

t ,
fW1, fW ′

1, . . . , fWq−1, fW ′
q−1) be a profile with the new alternative,

such that c becomes a co-winner according to the Copeland0 rule.



We denote P ′
1 = (eV1, . . . , eVt), P ′

2 = (eV ′
1 , . . . , eV ′

t ) and P ′
3 =

(fW1, fW ′
1, . . . , fWq−1, fW ′

q−1). It follows from the above observa-

tions on Copeland scores of alternatives in profile P and inequali-

ties (1) of Property 1, that CSP ′(c) = 1, ∀c′ ∈ D∪V , CSP ′(c) = 1
and CSP ′(y) ≤ 1.

We now claim the following.

(a) ∀v ∈ V , NP ′(v, y) ≤ 3q − 3, NP ′(y, c) = 3q − 2 and

∀d ∈ D, NP ′(d, y) = 3q−3. NP ′

2
(c, y) = t = 2q−2. Moreover,

for any i ≤ t, c ≻ y ≻ di in eV ′
i .

(b) ∀v ∈ V , NP ′

2
∪P ′

3
(v, y) ≥ NP ′

2
∪P ′

3
(c, y).

For (a). Since c is a co-winner for P ′, c must beat y in their

pairwise election. Meanwhile, any c′ ∈ V∪D cannot beat y in their

pairwise elections. Therefore, we must have that NP ′(c, y) ≥ 3q−
2, and for any c′ ∈ V ∪ D, NP ′(c′, y) ≤ 3q − 3. For any di ∈ D,

in profile P ′, we have that di ≻ c except in eV ′
i , which means that

NP ′(di, y) ≥ NP ′(c, y) − 1 by transitivity in each vote. Hence,

3q − 3 ≥ NP ′(di, y) ≥ NP ′(c, y) − 1 ≥ 3q − 3, which means

that NP ′(di, y) = 3q − 3 and NP ′(c, y) = 3q − 2. From these

equalities, we deduce that ∀d ∈ D, NP ′(d, y) = NP ′(c, y) − 1

and then, for any i ≤ t, we have that c ≻ y ≻ di in eV ′
i . It follows

that NP ′

2
(c, y) = t = 2q − 2.

For (b). For any v ∈ V , because in any vote in P ′
2 ∪ P ′

3 v ≻ c,

by transitivity we have NP ′

2
∪P ′

3
(v, y) ≥ NP ′

2
∪P ′

3
(c, y).

Let J = {j ≤ t : c ≻ y in eVj}. We will prove that |J | = q and

∪j∈JSj = V . First, note that |J | ≤ q because |J | = NP ′

1
(c, y) ≤

NP ′(c, y) − NP ′

2
(c, y) = q from item (a).

Now, for any v ∈ V let Jv = {j ≤ t : y ≻ v in eVj}. We

claim: ∀v ∈ V , J ∩ Jv 6= ∅. Otherwise, there exists v∗ ∈ V
with J ∩ Jv∗ = ∅. This means that c ≻ y implies v∗ ≻ y in

votes in P ′
1. Hence, NP ′

1
(v∗, y) ≥ NP ′

1
(c, y). By adding this

inequality with the inequality in item (b) (let v = v∗), we obtain

that NP ′(v∗, y) ≥ NP ′(c, y). Now, combining the inequalities in

item (a), we have that 3q−3 ≥ NP ′(v∗, y) ≥ NP ′(c, y) = 3q−2,

which is a contradiction. Therefore, for all v ∈ V , J ∩ Jv 6= ∅.

Finally, since |V| = 3q, |Si| = 3 and |J | ≤ q, we deduce that

|J | = q and J = {j ≤ t : c ≻ y ≻ Sj in eVj}. Also, because

for all v ∈ V , J ∩ Jv 6= ∅, we have
S

j∈J Sj = V . In conclusion,

I = (S ,V) is a yes-instance of X3C. This completes the NP-

hardness proof for the PcWNA problem for Copeland0. 2

7. MAXIMIN
To prove the NP-hardness of the PcWNA problem for Maximin,

we first make the following observation, whose proof is straightfor-

ward.

Property 2 Let P be a profile over C, P ′ be a profile over C ∪ {y}
such that P ′ is an extension P . The following (in)equalities hold:

(i) ∀c ∈ C, SimP ′(c) = min{SimP (c), NP ′(c, y)}.

(ii) ∀c ∈ C, SimP ′(c) ≤ SimP (c).

Theorem 4 PcWNA and PWNA problems are NP-complete for

maximin, even when there is one new alternative.

PROOF. We first prove the NP-hardness for the PcWNA problem

by a reduction from X3C. Let I = (S ,V) with t = 2q − 2 and

∆(I) ≤ 6 be an instance of X3C as described in Proposition 2.

Without loss of generality, assume q ≥ 8; in particular, we deduce

∆(I) ≤ q − 2. We define a PcWNA instance for maximin as

follows:

Alternatives: V ∪ {c, d} ∪ {y}, where y is the new alternative.

Votes: For any i ≤ t, we define the following vote. Vi = [(V \
Si) ≻ d ≻ c ≻ Si]. Let W1 = · · · = Wq−1 = [c ≻ rev(V) ≻ d]

and Wq = [rev(V) ≻ d ≻ c]. Let P1 = (V1, . . . , Vt), P2 =
(W1, . . . , Wq), and P = P1 ∪ P2.

We make the following observation on the maximin scores of the

alternatives before y is added.

• SimP (c) = q − 1. Indeed, NP (c, d) = q − 1 and ∀v ∈ V ,

NP (c, v) = q − 1 + dI(v) ≥ q.

• SimP (d) ≤ 6 ≤ q − 2. This is because for any v ∈ V , v is

covered by the 3-sets for no more than q − 2 times (the assumption

of the input X3C instance), which means that in P1, d ≻ v for at

most q − 2 times, i.e., NP (d, v) = dI(v) ≤ 6 ≤ q − 2.

• For any v ∈ V , SimP (v) ≥ q. Actually, NP (v, d) > NP (v, c) =
t−dI(v)+1 ≥ q. For any i < j ≤ 3q, NP (vi, vj) = NP1

(vi, vj) ≥
t − dI(v) ≥ 2q − 2 − (q − 2) = q and if i > j, NP (vi, vj) ≥
NP2

(vi, vj) = q.

Now, suppose the X3C instance has a solution J ⊂ {1, . . . , t}
with |J | = q and

S
j∈J Sj = V . We show how to make c a co-

winner by introducing one new alternative y.

• For any j ∈ J , we let V ′
j = [(V \ Sj) ≻ d ≻ c ≻ y ≻ Sj ].

• For any j ∈ {1, . . . , t} \J , we let V ′
j = [y ≻ (V \Sj) ≻ d ≻

c ≻ Sj ].
• For any j ≤ q − 1, we let W ′

j = [c ≻ y ≻ rev(V) ≻ d].
• Let W ′

q = [y ≻ rev(V) ≻ d ≻ c].
• Finally, let P ′ = (V ′

1 , . . . , V ′
t , W ′

1, . . . , W
′
q).

In P ′, the maximin score of y is q−1 (via c), because t = 2q−2,

which means that t − q + 1 = q − 1; the maximin score of c is

q − 1 (via d); the maximin score of d is no more than q − 1 (via

any of v ∈ V); and the maximin score of any v ∈ V is q − 1 (via

y). Therefore, c is a co-winner for the maximin rule.

Next, we show how to convert a solution P ′ to the above PcWNA

instance for the maximin rule to a solution to the X3C instance.

Let P ′ = (V ′
1 , . . . , V ′

t , W ′
1, . . . , W

′
q) be an extension of P with

one new alternative y, and c is the maximin winner for P ′. Let

P ′
1 = (V ′

1 , . . . , V ′
t ) and P ′

2 = (W ′
1, . . . , W

′
q).

We make the following observations.

(a) ∀v ∈ V , NP ′(v, y) ≤ q − 1,

(b) NP ′(y, c) ≤ q − 1 and NP ′(y, d) ≥ q,

(c) y ≻ c in W ′
q.

For item (a): Because c is a co-winner, for any v ∈ V , SimP ′(v) ≤
SimP ′(c). We recall that SimP (c) = q − 1 and SimP (v) ≥ q.

Thus, by Property 2 we have the following calculation.

min{NP ′(v, y), q} ≤ SimP ′(v) ≤ SimP ′(c) ≤ SimP (c) = q−1

For item (b): First from (a), we deduce that for any v ∈ V ,

NP ′(y, v) ≥ t + q − NP ′(v, y) > q. Thus, we obtain:

SimP ′(y) = min{NP ′(y, c), NP ′(y, d)}

≤ SimP ′(c) ≤ SimP (c) = q − 1
(2)

Now, assume NP ′(y, d) ≤ q − 1. Then, NP ′

2
(d, y) = q −

NP ′

2
(y, d) ≥ q − NP ′(y, d) ≥ 1. Hence, there exists i ≤ q such

that in W ′
i , we have that for any v ∈ V , v ≻ d ≻ y. Moreover,

NP ′

1
(d, y) = t − NP ′

1
(y, d) ≥ 2q − 2 − (q − 1) = q − 1. Let

J0 ⊆ {1, . . . , t} (with |J0| = q − 1) be the subscripts of arbitrary

q − 1 votes in P ′
1, where d ≻ y. Because |V| = 3q and |Sj | = 3,

there exists v∗ ∈ V \
S

j∈J0
Sj . We deduce that for all j ∈ J0,

v∗ ≻ y in V ′
j . In conclusion, NP ′(v∗, y) ≥ |J0| + 1 = q, which

contradicts item (a). Using inequality (2), item (b) follows.

For item (c): Otherwise, by the definition of Wq, we deduce:

∀v ∈ V, NP ′

2
(v, y) ≥ 1 (3)

On the other hand, using NP ′

1
(y, c) ≤ NP ′(y, c) and item (b),

we have NP ′

1
(c, y) = t − NP ′

1
(y, c) ≥ t − NP ′(y, c) ≥ t − (q −



1) = q − 1. Let J0 ⊆ {1, . . . , t} (with |J0| = q − 1) be the

subscripts of arbitrary q − 1 votes in P ′
1, where c ≻ y. We have

V \
S

j∈J0
Sj 6= ∅ since |V| = 3q and |Si| = 3. Hence, there

exists v∗ ∈ V \
S

j∈J0
Sj such that:

NP ′

1
(v∗, y) ≥ |J0| = q − 1 (4)

Summing up inequalities (3) (let v = v∗) and (4), we reach a

contradiction with item (a).

From items (b) and (c), we get

NP ′

1
(y, c) = NP ′(y, c) − NP ′

2
(y, c) ≤ q − 1 − 1 = q − 2

Thus, NP ′

1
(c, y) = t − NP ′

1
(y, c) ≥ t − (q − 2) = q. Let J

denote the subscripts of arbitrary q votes in P ′
1 where c ≻ y. We

claim
S

j∈J Sj = V . Otherwise, there exists v∗ ∈ V \
S

j∈J Sj . It

follows that for any j ∈ J , v∗ ∈ (V \
S

j∈J Sj) ⊆ V \ Sj , which

means that v∗ ≻ c ≻ y in Vj . Hence, NP ′(v∗, y) ≥ NP ′

1
(v∗, y) ≥

|J | = q, which contradicts item (a). In conclusion, I = (S ,V)
is a yes-instance of X3C. Therefore, PcWNA is NP-complete for

maximin.

For the PWNA problem, we make the following change. Let

Wq = [rev(V) ≻ c ≻ d]. Then, before the new alternative is

introduced, the maximin score of c is q. Then, similarly we can

prove the NP-hardness of the PWNA problem. 2

8. PLURALITY WITH RUNOFF
In this section, we adopt the parallel-universe tie-breaking. If a

tie occurs in the first round, then all possible compatible second

rounds are considered: for instance, if the plurality scores, ranked

in decreasing order, are x1 7→ 8, x2 7→ 6, x3 7→ 6, x4 7→ 5 . . .,
then the set of co-winners contains the majority winner between x1

and x2 and the majority winner between x1 and x3. We show a

necessary and sufficient condition for a given alternative c to be a

possible co-winner with new alternatives for plurality with runoff.

This condition can be easily converted to a polynomial-time algo-

rithm that computes PcWNA for plurality with runoff. For any

profile P and any alternative x ∈ C, we let SP (x) denote the

plurality score of x in P , that is, the number of times where x
is ranked in the first position in votes in P . We let X−

P (c) denote

the set of alternatives that lose to c in their pairwise elections, and

let X+
P (c) = C \ (X−

P (c) ∪ {c}).

Proposition 3 For any profile P and any alternative c, c is a pos-

sible co-winner with k new alternatives under P for plurality with

runoff, if and only if one of the two following conditions holds:

1. there exists an alternative d ∈ X−
P (c) such thatP

x∈C\{c,d} max(0, SP (x) − θ) ≤ kθ,

where θ = min
`
SP (d), SP (c)

´
.

2.
P

x∈C\{c} max(0, SP (x)−SP (c)) ≤ ⌊n/2⌋+(k−1)SP (c).

PROOF. Let P = (V1, . . . , Vn) be a profile over C and P ′ =
(V ′

1 , . . . , V ′
n) be a completion of P with k new alternatives. c is a

co-winner in P ′ if one of the following conditions hold:

1. c and d ∈ C \ {c} are possible second round competitors,

and c (weakly) beats d in their pairwise election under P ′.

2. c and y ∈ Y are possible second round competitors, and c
(weakly) beat y in their pairwise election under P ′.

Let �P
M denote a weak majority relations under P , defined as fol-

lows. For any pair of alternatives a, b, a �P
M b if at least half of

the voters in P prefers a to b. �P ′

M is defined similarly. Let us

first analyze the situations in which 1 occurs. First, in order to have

c �P ′

M d we must have c �P
M d (because the relative positions of c

and d are the same in Vi and V ′
i ). Thus, 1 occurs if and only there

exists an alternative d that loses to c in their pairwise elections and

such that c and d can compete in the second round. Fix such d. In

order for c and d to be possible second round competitors, we must

have min(SP ′

(c), SP ′

(d)) ≥ SP ′

(x) for every x ∈ C\{c, d}∪Y .

Without loss of generality, we can assume that the scores of c and d
are the same in P and P ′, and similarly for the scores of any x ∈ C
such that SP (C) ≤ min(SP (c), SP (d)), since these alternatives

do not need to lose any point to allow a possible second round be-

tween c and d. Let Ĉc,d be the set of all candidates x in C \ {c, d}

such that SP (x) > min(SP (c), SP (d)). Each candidate x ∈ Ĉc,d

has to lose at least SP (x) − min(SP (c), SP (d)) points, and for

this we need
P

x∈Ĉc,d
SP (x) − min(SP (c), SP (d)) points to be

given to the new candidates. Therefore, to have c and d (possi-

bly) in the second round, the number of points we must distribute

to new candidates is σ =
P

x∈C\{c,d} max(0, SP (x) − θ), where

θ = min(SP (c), SP (d)). Now, we also need the score of any new

alternative y to be at most θ, therefore we need σ ≤ kθ. This leads

to the condition 1 in the statement of the proposition.

Now, let us analyze the conditions allowing condition 2 to oc-

cur. In order to have c in the second round and none of the alter-

natives in C \ {c} enter the second round, we need to distribute

κ =
P

x∈C\{c} max(0, SP (x) − θ) points to the candidates in C.

Let y∗ be the new alternative that enters the second round together

with c. y∗ can take at most ⌊n/2⌋ points, otherwise y∗ will beat c
in their pairwise election. For any other new alternative y′ can take

at most SP (c) points. Therefore, we must have that

κ ≤ ⌊n/2⌋ + (k − 1)SP (c)
It is straightforward that if the above equation holds, then there

exists a way to extend P to P ′ with k new alternatives such that c
is the winner for plurality with runoff. This leads to condition 2 in

the statement of the proposition.

Therefore, c is a PcWNA if and only if one of the two conditions

in the statement of the proposition holds. 2

Example 1 Let P be the following 4-candidate, 18-voter profile:

4 votes of a ≻ b ≻ c ≻ d, 3 votes of b ≻ a ≻ c ≻ d, 7 votes

of d ≻ a ≻ c ≻ b, 2 votes of d ≻ c ≻ b ≻ a and 2 votes

of c ≻ a ≻ b ≻ d. We want to determine if c is a possible co-

winner with k new alternatives for plurality with runoff. Note that

X−
P (c) = {b, d}. For condition 1 to be satisfied, it suffices to

consider d as the competitor for c. Then, θ = 2 and condition 1

is satisfied if 3 ≤ 2k, i.e., k ≥ 2. For condition 2 to be satisfied,

we have
P

x∈C\{c} max(0, SP (x) − SP (c)) = 10, ⌊n/2⌋ = 9.

Therefore, condition 2 is satisfied if and only if k ≥ 2. It follows

that as soon as we have at least two new candidates, c is a possible

co-winner.

We also obtain a similar proposition for PWNA, whose proof is

similar to the proof of Proposition 3, therefore is omitted.

Proposition 4 For any profile P and any alternative c, c is a pos-

sible winner with k new alternatives under P for plurality with

runoff, if and only if one of the three following conditions holds:

1. there exists an alternative d ∈ X−
P (c) such that SP (d) ≥

SP (c) and
P

x∈C\{c,d} max(0, SP (x)−SP (c)+1) ≤ k(SP (c)−

1);

2. there exists an alternative d ∈ X−
P (c) such that SP (d) <

SP (c) and
P

x∈X−

P
(c)\{d}

max(0, SP (x) − SP (d))

+
P

x∈X+

P
(c)

max(0, SP (x) − SP (d) + 1) ≤ kSP (d);



3.
P

x∈C\{c} max(0, SP (x) − SP (c) + 1) ≤ ⌊(n + 1)/2⌋ +

(k − 1)(SP (c) − 1).

Corollary 1 Determining whether c ∈ C is a possible (co-)winner

for plurality with runoff is in P.

9. CONCLUSION
In this paper we have gone beyond existing results on the com-

plexity of the possible (co-)winner problem with new alternatives.

While [6, 7] focused on scoring rules, we have identified three

new rules for which the PcWNA problem is NP-complete (Buck-

lin, Copeland, and maximin). We also showed that the PcWNA

problem has a polynomial time algorithm for plurality with runoff,

and as far as approval voting is concerned, we examined three defi-

nitions of the extension of a profile to new alternatives and showed

that depending on which definition we chose, the problem can be

trivial or NP-complete. Our NP-completeness proofs and algo-

rithms for the PcWNA problems, except for Copeland0, can be

extended to the PWNA problems for approval, Bucklin, maximin,

and plurality with runoff. The results are summarized in the fol-

lowing table. These results can be compared with results for

Voting rule PcWNA PWNA

Borda P [7]

2-approval P [7]

l-approval, l ≥ 3 NP-complete 2 [7]

Approval

P (Def. 1)

NP-complete (Def. 2)

Trivial (Def. 3)

Bucklin NP-complete 2

Copeland0 NP-complete 3 ?

maximin NP-complete 3

Plurality with runoff P

Table 1: Complexity of PcWNA and PWNA problems for some

common voting rules.

control by adding candidates and cloning. Control by adding can-

didates is NP-complete for most of voting rules considered here,

namely Copeland [14], maximin [12], Borda, plurality with runoff

and l-approval for l ≥ 2 [9]; on the other hand, approval voting

is immune to control by adding candidates [17]. Manipulability

by cloning with positive probability (0-cloning) is polynomial for

Borda, maximin and plurality with runoff, and NP-complete for

Copeland and l-approval for l ≥ 2 [9]. This shows that P(c)WNA,

when viewed as a control problem, shows a resistance to strategic

behaviour globally stronger than cloning and weaker than control

by adding candidates.

An obvious and interesting direction for future research is study-

ing the computational complexity of the PcWNA (PWNA) prob-

lems for more common voting rules, including STV, Copelandα

(for some α 6= 0), ranked pairs, and voting trees. Even for Copeland0,

the complexity of the PWNA problem still remains open. More-

over, viewing P(c)WNA problem as a control problem where the

chair can add new candidates but do not know the preferences of

the voters over the new candidates, it is interesting to know which

voting rules are more resistant to this type of control from a non-

computational viewpoint.
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