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Abstract

Computing the market maker price of a security in a combinatorial predic-

tion market is #P-hard. We devise a fully polynomial randomized approximation

scheme (FPRAS) that computes the price of any security in disjunctive normal

form (DNF) within an ǫ multiplicative error factor in time polynomial in 1/ǫ and

the size of the input, with high probability and under reasonable assumptions. Our

algorithm is a Monte-Carlo technique based on importance sampling. The algo-

rithm can also approximately price securities represented in conjunctive normal

form (CNF) with additive error bounds. To illustrate the applicability of our algo-

rithm, we show that many securities in Yahoo!’s popular combinatorial prediction

market game called Predictalot can be represented by DNF formulas of polyno-

mial size.

1 Introduction

A prediction market turns a random variable into a tradable financial security of the

form “$1 if event E happens”. If E does happen, then agents get $1 for every share

of the security they own; if E doesn’t happen, they get nothing. The price of the

security reflects the aggregation of agents’ beliefs about the random event. The main

goal of a prediction market is to extract an informative price for the security and thus

an informative probability for the event. The Iowa Electronic Market and Intrade are

two examples of real prediction markets with a long history of tested results [1, 2].

Chen and Pennock [7] discuss objectives for designing good prediction mechanisms

and survey a number of proposed and fielded mechanisms.

In this paper, we focus on prediction markets with a central market maker that

determines prices algorithmically based on a cost function [6]. At any time, the market

maker will quote a price for any security; agents can decide to buy or sell shares at

that price, or do nothing (“take it or leave it”). After each (infinitessimal) trade, the

∗Part of this work was conducted at Yahoo! Research.
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market maker updates the prices. For example, suppose there is a prediction market on

a Duke basketball game, and the current price for the security “Duke wins” is $ 0.8. If

a risk-neutral agent believes that Duke will win with probability 0.9, then she has an

incentive to buy some shares of the security, because her expected profit per share is

0.9 − 0.8 = 0.1. If she buys some shares of the security, then its price will go up; if

she sells some shares (equivalent to buying shares in Duke’s opponent), then its price

will go down. See Section 2 for more details.

A common cost function is Hanson’s logarithmic market scoring rule (LMSR),

studied extensively in the literature [4, 5, 8, 13, 14], and used in many practical deploy-

ments including at Microsoft, Yahoo!, InklingMarkets, and Consensus Point. Pricing

securities in LMSR-based prediction markets takes time that is polynomial in the num-

ber of outcomes. Therefore, it works well if the number of outcomes is not too large.

However, in many situations the number of outcomes is exponentially large and has a

combinatorial structure [4, 5, 10, 13, 14]. For example, in the NCAA men’s basketball

tournament, there are 64 teams and therefore 63 matches in total to predict. Each match

can be seen as a binary variable. Hence, the prediction market for this tournament has

263 ≈ 9.2× 1018 outcomes so computing the prices by directly using the cost function

is infeasible. Pricing LMSR-based combinatorial prediction markets is #P-hard [4].

Chen et al. [5] show that using a Bayesian network to represent prices in a compact

way, they can compute and update the prices for a restricted class of securities like

“team A advances to round k”.

Our contribution. In this paper, we take a Monte-Carlo approach to pricing

LMSR-based combinatorial prediction markets for tournaments. Suppose a security

is represented by a DNF formula F . Our main contribution is a Monte-Carlo algorithm

(Algorithm 1) that is a fully polynomial randomized approximation scheme (FPRAS)

for pricing F , under a reasonable assumption. Given any error rate ǫ > 0, our al-

gorithm outputs an estimation Î of the market price I(F ) of F with the following

guarantees: (1) (1 − ǫ)I(F ) ≤ Î ≤ (1 + ǫ)I(F ) with at least 3/4 probability; (2) the

runtime of the algorithm is polynomial in 1/ǫ and the size of F . Our algorithm is based

on importance sampling, a well-known variance-reduction technique for Monte-Carlo

methods [19]. As far as we know, our algorithm is the first Monte-Carlo algorithm for

pricing prediction markets with a good theoretical guarantee.

Compared to Chen et al.’s [5] approach, ours works for a much larger class of se-

curities, as we will show in Section 7. The tradeoff is the following two constraints.

First, our algorithm returns an approximation of the price, and its runtime is deter-

mined by the error rate of the outcome and the size of the input. Second, the algorithm

is an FPRAS only if we have a distribution that is a not-too-bad estimation for the true

prices, and under this distribution it is easy to generate true valuations of the variables.

Fortunately, for LMSR-based prediction markets for tournaments we can use the pair-

wise win rates between the teams to provide a reasonable estimation, as discussed in

Section 4.

Other related work in AI. Pricing LMSR-based combinatorial prediction markets

(see Section 2.2 for definitions) is a special case of a general version of the weighted

model counting problem. In such a problem, we are given a logical formula F (not

necessarily in DNF) and a weight w(~x) for each valuation ~x. We are asked to compute
∑

~x:F (~x)=1 w(~x). However, in most weighted model counting problems, it is assumed
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that the weight function can be represented by the product of the individual weight

functions, one for each variable [3, 17]. This is not the case in LMSR-based combina-

torial prediction markets.

Another related problem is the solution sampling problem [9, 11, 12, 20], where

the objective is to generate a valuation uniformly or nearly-uniformly from satisfying

valuations. Our algorithm, on the other hand, generates a valuation according to a

(not necessarily uniform or nearly-uniform) distribution. More importantly, we are not

aware of any previous work in weighted model counting or solution sampling that is an

FPRAS.

2 Preliminaries

2.1 LMSR-based Prediction Market

Let {1, . . . , N} denote the set of outcomes of a random variable X . A security “X
will be i” means that holding each share of the security, the agent will receive $1 from

the market maker, if X turns out to be i. In this paper, we use a vector ~q ∈ R
N to

represent how many shares the market maker has sold for each security. That is, for

every i ≤ N , the market maker has sold ~q(i) shares of “X will be i”. A cost function

based prediction market is characterized by a cost function C : R
N → R and an initial

quantity ~q0. The price for ǫ share of “X will be i” is the marginal cost of incrementing

~q by ǫ~ei in C, where ~ei is the N -dimensional vector whose ith component is 1 and the

other components are 0. That is, if the agent wants to buy ǫ share of “X will be i”, she

must pay C(~q + ǫ~ei)−C(~q) to the market maker. The instantaneous price as ǫ→ 0 is

therefore ∂C(~q)/∂~q(i).
In this paper, we study pricing prediction market with the cost function C(~q) =

b log
∑N

i=1 e~q(i)/b, where the parameter b is called the liquidity of the market. This

particular cost function corresponds to the logarithm market scoring rule, and we call

this type of prediction markets LMSR-based prediction markets. The next equation

computes the instantaneous price I~q(i) for the security “X will be i”.

I~q(i) =
∂C(~q)

∂qi
=

e~q(i)/b

∑N
j=1 e~q(j)/b

(1)

2.2 Combinatorial Prediction Markets for Tournaments

A tournament of 2m teams is represented by a binary tree of 2m leaves, defined as

follows. We note that in this paper the leaves are on the top of the tree (see Figure 1.)

Definition 1 The tournament of 2m teams is modeled by a binary tree composed of

2m − 1 binary variables as follows. For any 1 ≤ j ≤ m, let Rj = {xj
1, . . . ,x

j
2m−j}

represent matches in round j. A variable x
1
i in R1 represents the match between team

T2i−1 and T2i. For any i, j, the parents of x
j
i are x

j−1
2i−1 and x

j−1
2i . x

j
i takes 0 (respec-

tively, 1) means that the x
j−1
2i−1 (respectively, x

j−1
2i ) branch winner wins the match x

j
i .
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The set of all variables is Xm = R1 ∪ . . .∪Rm. An outcome is uniquely characterized

by a valuation of Xm.1

In this paper, a security is represented by a logic formula F over Xm in disjunctive

normal form (DNF). That is, F = C1∨· · ·∨Ck, where for any j ≤ k, Cj = lj1∧· · · l
j
sj

,

and lji is either x or¬x for some variable x ∈ XM . Cj is called a clause and lji is called

a literal. If F is satisfied under the outcome of the tournament (i.e., a valuation over

Xm), then the market maker should pay the agent $1 for each share of F the agent

owns; otherwise the agent receives nothing.

Example 1 Figure 1 illustrates a tournament of four teams. x
1
1 = 0 if T1 beats T2 in

the first round; x2
1 = 1 if the winner of the match x

1
2 beats the winner of the match x

1
1.

The security “T2 is the champion” can be represented by the DNF formula (x1
1∧¬x

2
1).

The valuation (01
1, 1

1
2, 0

2
1) corresponds to the outcome where x

1
1 = 0, x

1
2 = 1, and

x
2
1 = 0, where T1 is the champion. �

x2
1

x1
1 x1

2

T1 T2 T3 T4 The 4 teams

R1: The round 1 matches

R2: The round 2 match

Figure 1: A tournament of four teams.

By definition, the price of F is the sum of the prices of the securities that correspond

to the valuations under which F is satisfied. That is, I~q(F ) =
∑

~v:F (~v)=1 I~q(~v) =

(
∑

~v:F (~v)=1 e~q(~v)/b)/(
∑

~y e~q(~y)/b). Let N~q(F ) =
∑

~v:F (~v)=1 e~q(~v)/b and D~q(F ) =
∑

~y e~q(~y)/b. That is, I~q(F ) = N~q(F )/D~q(F ).

2.3 Importance Sampling

Importance sampling is a general variance-reduction technique for Monte-Carlo meth-

ods. Suppose we want to evaluate the expectation of a function f : {1, . . . , N} → R

when the variable is chosen from a probability distribution π over {1, . . . , N}. That is,

we want to evaluate the expectation of f w.r.t. π, denoted by E[f ; π]. The most straight-

forward Monte-Carlo method is to generate Z samples X1, . . . , XZ i.i.d. according to

π, and use 1
Z

∑Z
i=1 f(Xi) as an unbiased estimator for E[f ; π]. The convergence rate

is guaranteed by the following lemma, which follows directly from Chebyshev’s in-

equality.

1We note that there are 2m
− 1 variables, so that the input size is polynomial in 2m.
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Lemma 1 (Follows from Chebyshev’s inequality) Let H1, . . . , HZ be i.i.d. random

variables with µ = E[Hi] and variance σ2. If Z ≥ 4σ2/(ǫ2µ2), then,

Pr(| 1Z
∑Z

i=1 Hi − µ| < ǫµ) ≥ 3/4

Importance sampling reduces the variance by generating the outcomes that have

higher f values more often. Suppose we have another distribution π such that for every

outcome i, π(i) = 0 =⇒ f(i)π(i) = 0. We can then use π to provide an unbiased

estimator for E[f ; π] as follows. Let H denote the random variable that takes
f(i)π(i)

π(i)

with probability π(i). We generate Z i.i.d. samples of H , denoted by H1, . . . , HZ , and

use 1
Z

∑Z
i=1 Hi as an estimator for E[f ; π]. It is easy to check that this estimator is also

unbiased, and Var(H)/E[H ]2 might be significantly smaller than Var(f)/E[f ; π]2.

A good π can greatly reduce the variance, therefore in turn boost the Monte-Carlo

method. The best scenario is that for any outcome i, π(i) is proportional to f(i)π(i).
Then, the variance becomes 0 and we only need 1 sample. For any pair of functions f
and g defined over the same domain D, let f · g denote the function such that for any

value x ∈ D, (f · g)(x) = f(x)× g(x).

Definition 2 For any c > 0, we say that a probability distribution π is a c-approximation

to f · π, if there exists a constant d such that for any outcome i, d1
cf(i)π(i) ≤ π(i) ≤

dcf(i)π(i).

That is, π is a c-approximation to f · π if for every i ≤ N , π(i) is approximately

proportional to f(i)π(i), up to a multiplicative factor c. In this case it is easy to check

that Var(H)/(E[H ])2 ≤ c4, where H is the random variable that takes
f(i)π(i)

π(i) with

probability π(i). Hence, we have the following lemma, which follows directly from

Lemma 1.

Lemma 2 Suppose π is a c-approximation to f · π. Let HZ denote the estimator

calculated by applying importance sampling to f · π using π for Z iterations. If Z ≥
4c4/ǫ2, then,

Pr(|HZ − µ| < ǫµ) ≥ 3/4

2.4 An FPRAS for # DNF

An algorithm A is an FPRAS for a function f , if for any input x and any error rate ǫ,

(1) the output of the algorithm A is in [(1 − ǫ)f(x), (1 + ǫ)f(x)] with probability at

least 3/4,2 (2) the runtime of A is polynomial in 1/ǫ and the size of x.

To motivate our algorithm, we recall an FPRAS for the #DNF problem by Karp,

Luby, and Madras [15] (KLM for short). The #DNF problem has been proven to be

#P-complete [18]. In a #DNF instance, we are given a DNF formula F = C1∨· · ·∨Ck

over {x1, . . . ,xt}, and we are asked to compute the number of valuations under which

F = 1. Let πu denote the uniform distribution over all valuations. The #DNF problem

is equivalent to computing 2t ·E[F ; πu].

2By using the median of means method, for any δ < 1, the successful rate of an FPRAS can be increased

to 1−δ, at the cost of increasing the runtime by a multiplicative factor of ln(δ−1) (cf. Exercise 28.1 in [19]).
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Let us first explain why a naı̈ve Monte-Carlo method does not work. The naı̈ve

Monte-Carlo method generates Z valuations i.i.d. uniformly at random, and counts

how many times F is satisfied, denoted by XZ . Clearly 2t · XZ/Z is an unbiased

estimator for the solution to the #DNF instance. However, when the solution is small,

Var(XZ/Z)/E[XZ/Z]2 can be exponentially large. Consequently, it might take a long

time for the naı̈ve Monte-Carlo method to converge (Lemma 1). For example, if there is

only one valuation that satisfies F , then the variance of XZ/Z is approximately 1/2t,

and the expectation of XZ/Z is 1/2t, which means that Var(XZ/Z)/E[XZ/Z]2 is

approximately 2t.

In the KLM algorithm, only the valuations under which F = 1 are generated. We

next show a slight variant of the KLM algorithm using the uniform distribution πu, in

order to better explain its importance sampling nature under the c-approximation argu-

ment, as well as to show its connection with our algorithm. For any clause Cj , let Sj

denote the set of valuations that satisfy Cj . The algorithm has three steps in each itera-

tion. (1) Choose a clause Cj with probability πu(Sj)/(
∑

j′ πu(Sj′)); (2) then choose

a valuation ~v from Sj with probability πu(~v|Sj); (3) finally, compute the number of

clauses ~v satisfies, denoted by n(~v), then add (F (~v)
∑

j πu(Sj))/(2tπu(~v)n(~v)) to a

counter K . Given a error rate ǫ > 0, let Z = 4k4/ǫ2. After Z iterations, the algorithm

outputs 2tK/Z . Let π′ denote the distribution induced by this sampling process. That

is, for any valuation ~v with F (~v) = 1, π′(~v) = n(~v)/(
∑

j′ |Sj′ |). We note that for any

~v with F (~v) = 1, 1/k ≤ 1/n(~v) ≤ 1. Therefore, π′ is a k-approximation to F · πu.

By Lemma 2, this algorithm is an FPRAS for the #DNF problem.

3 Overview of Our Algorithm

In this section, we explain the main ideas behind our algorithm (Algorithm 1). Details

of the sub-procedures (steps 1,4, and 7) will be discussed in later sections.

Let F denote a DNF formula over Xm. For the same reason as in the #DNF prob-

lems, the naı̈ve sampling approach (that generates valuations i.i.d. uniformly at ran-

dom) might not work well for either N~q(F ) or D~q(F ). Therefore, we employ Monte-

Carlo techniques for D~q(F ) and N~q(F ) respectively. For now, suppose we have a dis-

tribution π (which will be specified in Section 4) such that (1) π is a c-approximation

to f~q · πu, where c is a constant,3 and (2) there is a polynomial-time algorithm that

samples a valuation according to π.

Our Monte-Carlo technique for D~q(F ) is straightforward. Given ~q, let f~q be such

that for any valuation ~v, f~q(~v) = e~q(~v)/b. Then, D~q(F ) = 22m

· E[f~q; πu] (we re-

call that πu is the uniform distribution). We adopt the standard importance sampling

technique to estimate E[f~q; π] using π.

Our Monte-Carlo technique for N~q(F ) is more complicated. We note that N~q(F ) =
22m

E[F · f~q; πu]. Therefore, π might not be a c-approximation for F · f~q · πu. Our al-

gorithm adopts the idea of the KLM algorithm by substituting the uniform distribution

πu for π, and substituting F (~v) for F (~v)f~q(~v) in the description for KLM. Again, let

Sj denote the set of all valuations that satisfy Cj . Our algorithm also has three steps

3Equivalently, π is a c-approximation to f~q or I~q .
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in each iteration: (1) Choose a clause Cj with probability π(Sj)/
∑

j′ π(Sj′ ); (2) then

choose a valuation ~v from Sj with probability π(~v|Sj); (3) finally, compute the number

of clauses that ~v satisfies, denoted by n(~v), then add F (~v)f~q(~v)
∑

j′ π(Sj′)/(22m

π(~v)n(~v))

to a counter N . Given a error rate ǫ > 0, let Z = 4c4k4/ǫ2. After Z iterations, the

algorithm returns an estimator N̂ = 22m

N/Z .

We note that so far many technical difficulties remain unsolved. For example, we

have not specified how to compute π(Sj) efficiently (in contrast, in KLM computing

πu(Sj) is easy—it is exactly |Sj |/2t.) We will address all the technical difficulties in

later sections.4 The framework of the algorithm is illustrated in Algorithm 1, which

computes an estimation N̂ for N~q(F ) and an estimation D̂ for D~q(F ).

Algorithm 1: ApproximatePricing

Input: π, ~q, ǫ, a DNF formula F = C1 ∨ · · · ∨ Ck.

Output: Estimations for N~q(F ) and D~q(F ).
For each j ≤ k, let Sj = {~v : Cj(~v) = 1}. Compute G =

∑

j′ π(Sj′ ). (Details1

in Algorithm 3 in Section 5.)

for i = 1 to Z = 4c4k4/ǫ2 do2

Choose an index j with probability pj =
π(Sj)

G
.

3

Choose an assignment ~v from Sj with probability π(~v|Sj). (Details in4

Algorithm 4 in Section 6.)

Compute n(~v) = |{j′ : Cj′(~v) = 1}|.5

Let N ← N +
eq(~v)/bG

22mπ(~v)n(~v)
.

6

Choose an assignment ~w with probability π(~w). (Details in Algorithm 2 in7

Section 4.)

Let D ← D +
eq(~w)/bG

22mπ(~w)
.

8

end9

return N̂ = 22m

N/Z and D̂ = 22m

D/Z .10

Theorem 1 If π is a c-approximation to I~q for some constant c, and step 1, 4 and 7

in Algorithm 1 take polynomial time, then Algorithm 1 is an unbiased FPRAS for both

N~q(F ) and D~q(F ); and if we let the output of Algorithm 1 be N/D, then, Algorithm 1

is an FPRAS for I~q(F ).

All proofs are delegated to the appendix.

For any security F ′ represented by a CNF formula, we can first use De Mongan’s

Law to compute its negation F , which is in DNF. Then, we apply Algorithm 1 to

compute an approximation p̂ for I~q(F ). Because I~q(F
′) + I~q(F ) = 1 and with a

high probability |p̂ − I~q(F )| ≤ ǫI~q(F ) ≤ ǫ, we have that with a high probability

4One of the anonymous reviewers insightfully pointed out that, under the framework studied by Chen et

al. [5], there are close connections between our Algorithm 3 and the well-known belief propagation algo-

rithm [16], and between our Algorithm 4 and the back-propagation phase of the belief propagation algorithm.
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|1 − p̂− I~q(F
′)| < ǫ. This shows that Algorithm 1 can be used to compute the prices

of securities represented by CNF formulas with additive error bounds.

4 The Distribution Based on Pairwise Win Rates be-

tween Teams

We now specify the distribution π used in Algorithm 1. For any pair of teams Ti and Tj ,

we let h(Ti, Tj) denote the win rate of Ti against Tj in the history, that is, the number

of matches where Ti beats Tj over the total number of matches between them.5 By

definition, h(Ti, Tj) + h(Tj , Ti) = 1. h(·, ·) is called a pairwise win rate function.

Algorithm 2 randomly generates a valuation ~v by using h(·, ·). Therefore, it defines

a distribution πh over all valuations, which is used as the input π in Algorithm 1. Algo-

rithm 2 is also used in step 7 in Algorithm 1 to generate a random valuation according

to πh. The idea behind Algorithm 2 is to keep track of the remaining teams and simu-

late each match in the tournament using h(·, ·). This is done in a up-down flavor (see

Figure 1).

Algorithm 2: ValuationSampling

Input: h(·, ·).
Output: A randomly generated valuation ~v.

For each i ≤ 2m, associate x
0
i with Ti.1

for j = 1 to m do2

for i = 1 to 2m−j do3

Let l (respectively, r) denote the team number associated with x
j−1
2i−14

(respectively, x
j−1
2i ).

With probability h(Tl, Tr) let x
j
i = 0 and associate x

j
i with Tl; with5

probability h(Tr, Tl) let x
j
i = 1 and associate x

j
i with Tr.

end6

end7

return the values of (x1
1,x

1
2, . . . ,x

m
1 ).8

Since h(·, ·) is calculated from historical data, it is common knowledge to every

agent. Therefore, it makes sense to assume that h(Ti, Tj) is a reasonable approxima-

tion to the agents’ belief about the probability that Ti beats Tj if they meet in the current

tournament. Of course there are many other factors that might affect the agents’ belief.

For example, suppose in the previous round Ti beat a strong team and Tj beat a weak

team, then the agents’ belief about the probability that Ti beats Tj in the current tourna-

ment might be smaller than h(Ti, Tj). However, such bias is usually small. Therefore,

we assume that πh is a not-too-bad approximation (that is, a c-approximation for

some constant c) to I~q . More importantly, as we will show later, πh is computationally

tractable for steps 1 and 4 in Algorithm 1.

5In case of insufficient historical data, we can use relative strength of the teams to estimate h(·, ·).
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Example 2 Suppose there are four teams. Let h(·, ·) be defined as follows. h(T1, T2) =
h(T3, T4) = 0.5, h(T3, T1) = h(T4, T1) = 0.9, h(T3, T2) = h(T4, T2) = 0.3.

In Algorithm 2, we first sample the value of x
1
1. The probability that x

1
1 = 0 is

h(T1, T2) = 0.5. Suppose the outcome is x
1
1 = 0. We then sample the value of

x
1
2 using h(T3, T4), and suppose that x1

2 = 1. Finally, we sample the value of x
1
2 using

h(T1, T4) = 0.1, because T1 is the winner of x
1
1 and T4 is the winner of x

1
2. Suppose

the outcome is x
2
1 = 1. Then, Algorithm 2 will output (01

1, 1
1
2, 1

2
1). �

5 Computing Marginal Probabilities

Let Y denote a subset of variables and let ~vY denote a valuation of the variables in Y .

In this section we propose a polynomial-time algorithm (Algorithm 3) that computes

any marginal probability under πh. Algorithm 3 is used in step 1 of Algorithm 1 in

the following way. For any j ≤ k, let Y = {x : Cj contains x or ¬x}, and for any

x ∈ Y , if Cj contains x, then let ~vY (x) = 1, if Cj contains ¬x, then let ~vY (x) = 0
(we assume that Cj does not contain both x and ¬x). We have that πh(Sj) = πh(~vY ).

For any Y and ~vY , we say that the value of a variable x
j
i is consistent with ~vY , if

whenever x
j
i ∈ Y , x

j
i ’s value must be the same as in ~vY (if x

j
i 6∈ Y , then its value is

always consistent with ~vY ).

Algorithm 3 is based on dynamic programming. For each variable x
j
i , we compute

a table that records the probabilities for each team T that can reach x
j
i to actually win

x
j
i , when the values of all ancestors of x

j
i (including x

j
i ) are consistent with ~vY . Let

MP
j
i (T ) denote such a probability for T at x

j
i . Once we have MP

j−1
2i−1 and MP

j−1
2i ,

we can compute MP
j
i by using h(·, ·) and ~vY . In other words, MP

j
i ’s are computed in

a up-down flavor (see Figure 1). We note that for each variable we will not compute

a probability distribution conditioned on ~vY . That is,
∑

T MPj
i (T ) might be strictly

smaller than 1.

For any j such that 1 ≤ j ≤ m and any i ≤ 2m−j , let LG(xj
i ) (respectively,

RG(xj
i )) denote the set of teams in the left (respectively, right) branch of the parents

of x
j
i . For example, LG(x1

1) = {T1}, RG(x2
1) = {T3, T4}. For any i ≤ 2m, let

M0
i (Ti) = 1 and for any i′ 6= i, let M0

i (Ti′) = 0. MP
j
i will be updated according to

the following rule.

Rule 1 For any 1 ≤ j ≤ m, any i ≤ 2m−j , and any team T , define M j
i (T ) as follows.

(a) If T ∈ LG(xj
i ) and either x

j
i 6∈ Y , or ~vY (xj

i ) = 0, then let MP
j
i (T ) =

∑

T ′∈RG(xj

i )
h(T, T ′)MP

j−1
2i−1(T )MP

j−1
2i (T ′). That is, if it is not determined in ~vY that

the winner comes from the right branch x
j−1
2i , then we count in the situations where a

team T from the left branch x
j−1
2i−1 (which happens with probability MP

j−1
2i−1(T )) wins

the match x
j
i . For each T from the left branch, we enumerate all potential competitors

that come from the right branch.

(b) If T ∈ RG(xj
i ) and either x

j
i 6∈ Y , or ~vY (xj

i ) = 1, then let MP
j
i (T ) =

∑

T ′∈LG(xj

i
) h(T, T ′)MP

j−1
2i−1(T

′)MP
j−1
2i (T ).

(c) Otherwise let MP
j
i (T ) = 0.

9



Algorithm 3: CompMarginal

Input: h(·, ·), a valuation ~vY of a set of variables Y .

Output: πh(~vY ).
for j = 1 to m do1

for i = 1 to 2m−j do2

Compute MP
j
i according to Rule 1.3

end4

end5

return
∑

l MPm
1 (Tl).6

Proposition 1 Algorithm 3 computes the marginal probability πh(~vY ) in polynomial

time.

Example 3 Suppose there are four teams and h(·, ·) is defined the same as in Exam-

ple 2. Suppose Y = {x1
2,x

2
1} and ~vY = (11

2, 1
2
1). Algorithm 3 computes πh(~vY )

as follows. In the first round Rule 1(a) applies to MP1
1(T1), so that MP1

1(T1) =
h(T1, T2)MP0

1(T1)MP0
2(T2) = 0.5; Rule 1(b) applies to MP1

1(T2), so that MP1
1(T2) =

h(T2, T1)MP0
2(T2)MP0

1(T1) = 0.5. Because x
1
2 ∈ Y and ~vY (x1

2) = 1, Rule 1(c)

applies to MP1
2(T3) and Rule 1(b) applies to MP1

2(T4), so that MP1
2(T3) = 0 and

MP1
2(T4) = 0.5. We note that MP1

2(T3) + MP1
2(T4) = 0.5 < 1.

Now we compute MP2
1. Because x

2
1 ∈ Y and ~vY (x2

1) = 1, Rule 1(c) applies to

MP2
1(T1) and MP2

1(T2), and Rule 1(b) applies to MP2
1(T3) and MP2

1(T4). Therefore,

MP2
1(T1) = MP2

1(T2) = MP2
1(T3) = 0 and MP2

1(T4) = h(T4, T1)MP1
2(T4)MP1

1(T1)+
h(T4, T2)MP1

2(T4)MP1
1(T2) = 0.9× 0.5× 0.5+ 0.3× 0.5× 0.5 = 0.3. The output of

Algorithm 3 is 0 + 0 + 0 + 0.3 = 0.3.

On the other hand, πh(~vY ) can be computed directly. We have πh(x1
1 = 0,x1

2 =
1,x2

1 = 1) = 0.5× 0.5× 0.9 = 9/40 and πh(x1
1 = 1,x1

2 = 1,x2
1 = 1) = 0.5× 0.5×

0.3 = 3/40. Therefore, πh(~vY ) = 12/40 = 0.3, which is the same as the output of

Algorithm 3. �

6 Sampling a valuation from Sj

In this section we present an algorithm (Algorithm 4) that randomly draws a valuation

~v from Sj according to the conditional probability πh(~v|Sj). This algorithm will be

used in step 4 in Algorithm 1. One natural attempt is to simulate the whole tournament

using the pairwise win/lose ratio function h(·, ·), as we did in Section 4 for generating

a valuation according to its unconditioned probability under πh. In this method, to

ensure that the valuation is consistent with ~vY , for any x ∈ Y , when we reach the

match x, we enforce it takes ~vY (x) instead of randomly choosing its value according

to h(·, ·). However, this up-down sampling method does not work correctly, as the next

example shows.

Example 4 Suppose there are four teams, h(·, ·), Y , and ~vY are the same as in Exam-

ple 3. We have πh(x1
1 = 0|x1

2 = 1,x2
1 = 1) = 9/(9 + 3) = 0.75 > 0.5. If we use the

10



up-down sampling method, then we only need to sample the value of x1
1 using h(T1, T2)

(because x
1
2 and x

2
1 are already in Y ). However, with 50% probability x

1
1 = 0, which

is different from πh(x1
1 = 0|~vY ) = 0.75.

Our algorithm (Algorithm 4) samples the outcome in a bottom-up flavor. Instead of

sampling the result of each match one after another, our algorithm samples the winners

sequentially. In the first step, we pin down all variables in Y to be ~vY , and sample

the winning team T of the whole tournament (equivalently, for the last match x
m
1 )

proportional to the marginal probability MPm
1 (T ) computed in Algorithm 3 (we note

that MPm
1 (T )’s do not necessarily sum up to 1). Then, we pin down x

m
1 and any other

variables that are necessary to make sure that T wins the tournament. For example,

without loss of generality the winner is T1. We enforce that x
m
1 = x

m−1
1 = · · · =

x
1
1 = 0. Suppose x

m−1
2 6∈ Y . The second step is to sample the winner T of x

m−1
2 ,

with a probability that is proportional to h(T1, T )MPm−1
2 (T ). Generally, in each step

we find an undetermined variable x that is as close to the final round as possible, and

sample the winner T ′ for x, then pin down the value of all variables that are necessary

for T ′ to win at x. The algorithm terminates after all variables in Xm are determined.

Formally, the algorithm is as follows.

Algorithm 4: Sampling

Input: pairwise estimation function h(·, ·), a valuation ~vY of a set of variables

Y .

Output: A random valuation ~v with probability πh(~v|~vY ).
For any j ≤ m and any i ≤ 2m−j , use Algorithm 3 to compute MP

j
i .1

Assign ~vY to the variables in Y .2

Draw the winning team T for x
m
1 , with the probability proportional to MPm

1 .3

Assign values to x
m
1 and the smallest set of its ancestors that are necessary to4

make T win at xm
1 .

while ∃ an unassigned variable do5

Find an unassigned variable x
j
i with the largest j.6

Sample the winning team T of x
j
i , with the probability that is proportional7

to h(T ′, T )MP
j
i (T ), where T ′ is the winner at x

j+1
⌈i/2⌉.

Assign values to x
j
i and the smallest set of its ancestors that are necessary to8

make T win at x
j
i .

end9

return the valuation.10

Proposition 2 For any valuation ~v that is consistent with ~vY , Algorithm 4 returns ~v
with probability πh(~v|~vY ).

Example 5 Suppose there are four teams, h(·, ·), Y , and ~vY are the same as in Ex-

ample 3. We have already computed the MP
j
i functions in Example 3. The first step

is to enforce ~vY , that is, let x
2
1 = 1 and x

1
2 = 1. Then, we sample the winner of

the tournament according to MP2
1. Since MP2

1 only takes positive value on T4, T4
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is the winner for the tournament, and there is no more variables whose values we

need to enforce to make T4 win the tournament. Now, the only unassigned variable

is x
1
1. We will draw the winning team T of x

1
1 with probability that is proportional

to h(T4, T )MP1
1(T ), because T4 is the winner of x

1
2. We have h(T4, T1)MP1

1(T1) =
0.9× 0.5 and h(T4, T2)MP1

1(T1) = 0.3× 0.5. Therefore, with probability 0.9/(0.9 +
0.3) = 0.75 the winner at x

1
1 is T1, which corresponds to x

1
1 = 0. We recall that

πh(x1
1 = 0|~vY ) = 0.75 (Example 4). This shows the correctness of Algorithm 4 on the

input in this example.

7 Common Bidding Languages in DNF

Chen et al. have shown that their method can efficiently price some popular securities,

including “Team T wins game x” (Theorem 3.1 [5]), and “Team T wins game x and

Team T ′ wins game x
′, where there is an edge between x and x

′” (Theorem 3.2 [5]).

The next proposition provides a far-from-complete list of popular securities that can

be modeled by DNF formulas of polynomial size, including the two types of securities

considered by Chen et al.

Proposition 3 The following types of securities can be modeled by DNF formulas of

polynomial size.

• Team T wins game x.

• Team T wins game x and Team T ′ wins game x
′.

• Team T advances further than T ′.

• The champion is among {T, T ′, T ∗}.
• Team T will meet T ′ in the tournament.

Yahoo! operated a combinatorial prediction market game called Predictalot for

NCAA basketball (2010, 2011), the FIFA World Cup (2010), and (under the name Pre-

dictopus) the Cricket World Cup (2011). Many, but not all, of the predictions people

placed can be represented by polynomial-size DNF formulas. Some securities likely

cannot be represented compactly by DNF formulas, for example, “at least half of the

1st-round favorites will reach the 2nd round”.

8 Conclusion and future work

In this paper we propose an efficient Monte-Carlo algorithm for pricing combinatorial

prediction markets for tournaments. Our algorithm is based on importance sampling,

and works for any security represented by DNF formulas. We show that our algorithm

is an FPRAS if the probability distribution based on the pairwise win/lose ratio func-

tion is a c-approximation to the real price distribution for some constant c, which we

believe is a very natural and reasonable assumption. As far as we know, our algorithm

is the first sampling algorithm for pricing prediction markets with a good theoretical

guarantee. Our algorithm also induces another pricing algorithm for securities repre-

sented by CNF formulas. Finally, we show that many commonly used securities can

be represented by DNF formulas of polynomial size.

12



One of the most important future work is to implement our algorithm in a real-

world combinatorial prediction market for tournament and test how reasonable the

c-approximation assumption is. Of course there are also many other interesting di-

rections for future research. For example, we can ask the following questions. Is there

a better distributions π (compared to πh) that can be used in Algorithm 1? Can we ex-

tend our algorithm to other types of combinatorial prediction markets? Can we design

a Monte-Carlo algorithm for other types of securities? Is there any computationally

efficient way to update the prices as the results of the matches come out? More gener-

ally, pricing combinatorial prediction markets is a practical, important, and challenging

task. How to develop computationally tractable techniques to help building real-world

combinatorial prediction markets is of great academic and practical value.
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The Appendix: Proofs

Proof of Theorem 1: We first prove that Algorithm 1 is an unbiased FPRAS for

N~q(F ). Let Xi (for all 1 ≤ i ≤ Z) denote the random variable that corresponds to the

ith sample. Then, E(Xi) =
∑

~v

eq(~v)/bG

22mπ(~v)n(~v)
×

π(~v)n(~v)

G
=

∑

~v

eq(~v)/b

22m =
N~q(F )

22m .

Therefore, N̂ is an unbiased estimator for N~q(F ).
We note that π is a c-approximation for f~q · πu, and 1 ≤ n(~v) ≤ k. Therefore,

1
ckE(Xi) ≤ Xi ≤ ckE(Xi), which means that V ar(Xi)/(E(Xi)

2) ≤ (ck)4. We

also note that in each iteration, Algorithm 1 takes polynomial time. By Lemma 1,

Algorithm 1 is an unbiased FPRAS for N~q(F ).
Similarly, it is easy to check that Algorithm 1 is also an unbiased FPRAS for

D~q(F ) by Lemma 2. It follows that Algorithm 1 is a (possibly biased) FPRAS for

N~q(F )/D~q(F ), which is the price of F in the prediction market. �

Proof of Proposition 1:

Given a valuation ~v, we let W(xj
i , ~v) denote the winner of the match x

j
i . We also

let LW(xj
i , ~v) = W(xj−1

2i−1, ~v) and RW(xj
i , ~v) = W(xj−1

2i , ~v). That is, LW(xj
i , ~v)

(respectively, RW(xj
i , ~v)) represents the winner of the left (respectively, right) branch

the parents of x
j
i . For any i ≤ 2m, we denote W(x0

i , ~v) = Ti. We have

W(xj
i , ~v) =

{

LW(xj
i , ~v) if ~v(xj

i ) = 0

RW(xj
i , ~v) if ~v(xj

i ) = 1

For any variable x
j
i , let G(xj

i ) denote all teams that might reach this match; let

B(xj
i ) = {xj

i} ∪ Parent(xj
i ). That is, B(xj

i ) is composed of x
j
i and its parents. For

any variable x
j
i and any valuation ~v that assigns values to B(x), we define a value

P (xj
i , ~v) as follows.

• If j = 1, then P (x1
i , ~v) =

{

p(t2i−1, t2i) if ~v(x1
i ) = 0

p(t2i, t2i−1) if ~v(x1
i ) = 1

• If j > 1, then P (xj
i , ~v) =

{

p(LW(xj
i , ~v), RW(xj

i , ~v), ~v) if ~v(xj
i ) = 0

p(RW(xj
i , ~v), LW(xj

i , ~v), ~v) if ~v(xj
i ) = 1

That is, P (xj
i , ~v) is the probability that when the parents of x

j
i are assigned values

as in ~v, the probability that the result of the match x
j
i is the same as in ~v.

We prove the following claim by induction on j.

Claim 1 For any variable x
j
i , any subset of variables Y , any valuation ~vY over Y ,

and any team T , we have

MP
j
i (T ) =

∑

~v:W(xj

i
,~v)=T

∏

x∈B(xj

i
)

P (x, ~v)

Here ~v is taken over valuations over B(x) and ~v is compatible with ~vY ∩({xj

i
}∪Parent(xj

i
)).

15



Proof of Claim 1: When j = 1, the claim obviously holds. Suppose the claim holds

for any j ≤ j′ − 1. When j = j′, ~vY (xj′

i ) = 0, and t ∈ LG(xj
i ), we have the

following calculation for MP
j′

i (T ). In what follows, ~v is a valuation over G(xj′

i ), ~vL

is a valuation over LG(xj′

i ), and ~vR is a valuation over RG(xj′

i ). ~v, ~vL, and ~vR are

always compatible with ~vY .

∑

~v:W(~v)=T

∏

x∈B(xj′

i
)

P (x, ~v)

=
∑

T ′∈RG(xj′

i
),~v:LW(xj′

i
,~v)=T,RW(xj′

i
,~v)=T ′

∏

x∈B(xj′

i
)

P (x, ~v)

=
∑

T ′∈RG(xj′

i
),~v:LW(xj′

i
,~v)=T,RW(xj′

i
,~v)=T ′

p(T, T ′)
∏

x∈LG(xj′

i
)

P (x, ~v)
∏

x∈RG(xj′

i
)

P (x, ~v)

=
∑

T ′∈RG(xj′

i
)

p(T, T ′)
(

∑

~vL:W(xj′

2i−1
,~vL)=T

∏

x∈B(xj′

2i−1
)

P (x, ~vL)
)(

∑

~vR:W(xj′

2i−1
,~vR)=T ′

∏

x∈B(xj′

2i
)

P (x, ~vR)
)

=
∑

T ′∈RG(xj′

i
)

p(T, T ′)M j′−1
2i−1 (t)M j′−1

2i−1 (T ′)

=M j′

i (T )

Therefore, the claim holds for j = j′, when ~vY (xj′

i ) = 0. Similarly we can prove that

the claim holds for j = j′, when ~vY (xj′

i ) = 1, or ~vY (xj′

i ) is not assigned.

It follows that the claim holds for all j ≤ m. �

Let j = m in Claim 1, we immediately obtain that for any team T , MPm
1 (T ) is

the probability that the winner is t who won the championship, and the results of the

matches are compatible with ~vY . Therefore,
∑

T MPm
1 (T ) is the marginal probability

πp(~vY ). �

Proof of Proposition 2: It follows from the definition that when we draw a team

T proportional to MPm
1 (T ), then we are essentially drawing T from πh(W(xm

1 ) =
T |~vY ). Without loss of generality W(xm

1 ) = T1. That is, xm
1 = 0,xm−1

1 = 0, . . . ,x1
1 =

0. We show that when we draw the winner of x
m−1
2 (denoted by T 2) proportional to

h(T1, T
2)MPm−2

2 (T 2), essentially we are drawing T 2 from the conditional probability

πh(W(xm−1
2 ) = T 2|W(xm

1 ) = T1, ~vY ).
For any vector of teams (T 2, . . . , T m−1) such that for any l with 2 ≤ l ≤ m − 1

and any T l ∈ RG(xm−l+1
1 ), we have the following calculation.

πh(W(xm
1 ) = T1, RW(xm

1 ) = T ′, RW(xm−1
1 ) = T 2, . . . , RW(x2

1) = T m−1, ~vY )

=πh(W(xm
1 ) = T1, RW(xm−1

1 ) = T 2, . . . , RW(x2
1) = T m−1, ~vY )h(T, T ′)MPm−1

2 (T ′)

Similarly, we obtain a formula where RW(xm
1 ) = T ∗. Therefore, given any (T 2, . . . , T m−1),
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we have the following.

πh(W(xm−1
2 ) = T ′|W(xm

1 ) = T1, ~vY )

πh(W(xm−1
2 ) = T ∗|W(xm

1 ) = T1, ~vY )

=
πh(W(xm

1 ) = T1, RW(xm
1 ) = T ′, ~vY )

πh(W(xm
1 ) = T1, RW(xm

1 ) = T ∗, ~vY )

=

∑

(T 2,...,T m−1)

πh(W(xm
1 ) = T1, RW(xm

1 ) = T ′, RW(xm−1
1 ) = T 2, . . . , RW(x2

1) = T m−1, ~vY )

∑

(T 2,...,T m−1)

πh(W(xm
1 ) = T1, RW(xm

1 ) = T ∗, RW(xm−1
1 ) = T 2, . . . , RW(x2

1) = T m−1, ~vY )

=

∑

(T 2,...,T m−1)

πh(W(xm
1 ) = T1, RW(xm−1

1 ) = T 2, . . . , RW(x2
1) = T m−1, ~vY )h(T, T ′)MPm−1

2 (T ′)

∑

(T 2,...,T m−1)

πh(W(xm
1 ) = T1, RW(xm−1

1 ) = T 2, . . . , RW(x2
1) = T m−1, ~vY )h(T, T ∗)MPm−1

2 (T ∗)

=
h(T, T ′)MPm−1

2 (T ′)

h(T, T ∗)MPm−1
2 (T ∗)

It follows that when we draw the winner of xm−1
2 proportional to h(T1, T

2)MPm−2
2 (T 2),

essentially we are drawing T 2 from the conditional probability πh(W(xm−1
2 ) = T 2|W(xm

1 ) =
T1, ~vY ). Similarly, in any step in the “while” loop of Algorithm 4, after T 1, . . . , T l is

drawn, we are essentially drawing T l+1 according to πh(x = T l+1|T1, T
2, . . . , T l, ~vY ).

Therefore, following the chain rule, we draw a valuation from the conditional proba-

bility πh(·|~vY ). �
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