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Abstract. In this paper, we characterize strategy-proof voting ruleswhen the set
of alternatives has a multi-issue structure, and the voters’ preferences are repre-
sented by acyclic CP-nets that follow a common order over issues. Our main re-
sult is a simple full characterization of strategy-proof voting rules satisfying non-
imposition for a very natural restriction on preferences inmulti-issue domains:
we show that if the preference domain is lexicographic, thena voting rule satis-
fying non-imposition is strategy-proof if and only if it canbe decomposed into
multiple strategy-proof local rules, one for each issue andeach setting of the is-
sues preceding it. We also obtain the following variant of Gibbard-Satterthwaite:
when there are at least two issues and each of the issues can take at least two
values, then there is no non-dictatorial strategy-proof voting rule that satisfies
non-imposition, even when the domain of voters’ preferences is restricted to lin-
ear orders that are consistent with acyclic CP-nets following a common order
over issues. This impossibility result follows from eitherone of two more general
new impossibility results we obtained.

Keywords: Voting, multi-issue domains, strategy-proofness, lexicographic do-
mains

1 Introduction

When agents have conflicting preferences over a set of alternatives, and they want to
make a joint decision, a natural way to do so is byvoting. Each agent (voter) is asked to
report his or her preferences. Then, avoting ruleis applied to the vector of submitted
preferences to select a winning alternative. However, in some cases, a voter has an
incentive to submit false preferences in order to change thewinner to a more preferable
alternative (to her). An instance of such misreporting is called amanipulation, and the
perpetrating voter is called amanipulator. If there is no manipulation under a voting
rule, then, the rule isstrategy-proof.

Unfortunately, there are some very natural properties thatare satisfied by no strategy-
proof voting rule, according to the Gibbard-Satterthwaitetheorem [16, 27]. The theorem
states that when there are three or more alternatives, and any voter can chooseany lin-
ear order over alternatives to represent her preferences, then, no non-dictatorial voting
rule that satisfies non-imposition is strategy-proof. A voting rule is dictatorial if the
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same voter’s most-preferred alternative is always chosen;it satisfies non-imposition if
for every alternative, there existsomereported preferences that make that alternative
win.

There are several approaches to circumventing this impossibility result. One that
has received significant attention from computer scientists in recent years is to consider
whether finding a manipulation is computationally hard under some rules. If so, then
even though a manipulation is guaranteed to exist, it will perhaps not occur because
the manipulator(s) cannot find it. Indeed, it has been shown that finding a manipula-
tion is computationally hard (more precisely, NP-hard) forvarious rules, for various
definitions of the manipulation problem (e.g., [6, 5, 13, 17, 14, 34]). On the other hand,
NP-hardness is aworst-casenotion of hardness, so that it may very well be the case that
mostmanipulations are easy to find. Various recent results suggest that this is indeed
the case [25, 12, 24, 15, 35, 30, 29, 28, 32, 18]. This paper does not fall under this line of
research.

Instead, this paper falls under another, older, line of research on circumventing the
Gibbard-Satterthwaite result. This line, which has been pursued mainly by economists,
is to restrict the domain of preferences. That is, we assume that voters’ preferences al-
ways lie in a restricted class. An example of such a class is that ofsingle-peakedprefer-
ences [7]. Here, it is assumed that each alternative is associated with a position in some
space (for example, the alternative’s position on a left-to-right political spectrum), and
that voters always prefer alternatives that are closer to their most preferred alternative.
That is, if a is voter i’s most-preferred alternative, and we have thata is in the left-
most position,b is in the middle position, andc is in the rightmost position, then voter
i must preferb to c. For single-peaked preferences, desirable strategy-proof rules exist,
such as themedianrule, which, if we assume for simplicity that the number of voters
is odd, chooses the median of the voters’ peaks (which is alsothe Condorcet winner).
Other strategy-proof rules are also possible in this preference domain: for example, it
is possible to add some artificial (phantom) votes before running the median rule. In
fact, this characterizes all strategy-proof rules for single-peaked preferences [22]. On
the other hand, preferences have to be significantly restricted to obtain such positive
results: Aswalet al. [1] extend the Gibbard-Satterthwaite theorem, showing that if the
preference domain islinked, then with three or more alternatives the only strategy-proof
voting rule that satisfies non-imposition is a dictatorship.

In real life, the set of alternatives often has a multi-issuestructure. That is, there
are multipleissues(or attributes), each taking values in its respective domain, and an
alternative is completely characterized by the values thatthe issues take. For example,
consider a situation where the inhabitants of a county vote to determine a government
plan. The plan is composed of multiple sub-plans for severalinterrelated issues, such
as the transportation, environment, and health [10]. Clearly, a voter’s preferences for
one issue in general depend on the decision taken on the otherissues: if a new highway
is constructed through a forest, a voter may prefer a nature reserve to be established;
but if the highway is not constructed, the voter may prefer that no nature reserve is es-
tablished. As another example, in each US presidential election year, the president as
well as members of the Senate and the House must be elected. Inprinciple, a voter’s
preferences for a senator can depend on who is elected as president, for example if the
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voter prefers a balance of power between the Democratic and Republican parties. A
straightforward way to aggregate preferences in multi-issue domains isissue-by-issue
(a.k.a.seat-by-seat) voting, which requires that the voters explicitly expresstheir pref-
erences over each issue separately, after which each issue is decided by applying issue-
wise voting rules independently. This makes sense if voters’ preferences areseparable,
that is, each voter’s preferences over a single issue are independent of her preferences
over other issues. However, if preferences are not separable, it is not clear how the voter
should vote in such an issue-by-issue election. Indeed, it is known that natural strategies
for voting in such a context can lead to very undesirable results [10, 20].

The problem of characterizing strategy-proof voting rulesin multi-issue domains
has received significant attention. Strategy-proof votingrules for high-dimensional single-
peaked preferences (where each dimension can be seen as an issue) have been charac-
terized [8, 2, 3, 23]. Barberaet al. [4] characterized strategy-proof voting rules when
the voters’ preferences are separable, and each issue is binary (that is, the domain for
each issue has two elements). Ju [19] studied multi-issue domains where each issue can
take three values: “good”, “bad”, and “null”, and characterized all strategy-proof voting
rules that satisfynull-independence, that is, if a voter votes “null” on an issuei, then
her preferences over other issues do not affect the value of issuei (because she voted
“null” for issue i).

The prior research that is closest to ours was performed by LeBreton and Sen [11].
They proved that if the voters’ preferences are separable, and the restricted preference
domain of the voters satisfies arichnesscondition, then, a voting rule is strategy-proof
if and only if it is an issue-by-issue voting rule, in which each issue-wise voting rule is
strategy-proof over its respective domain.

The work by Le Breton and Sen is limited by the restrictiveness of separable pref-
erences: as we have argued above, in general, a voter’s preferences on one issue depend
on the decision taken on other issues. On the other hand, one would not necessarily
expect the preferences for one issue to depend on every otherissue. CP-nets [9] were
developed in the artificial intelligence community as a natural representation language
for capturing limited dependence in preferences over multiple issues. Recent work has
started to investigate using CP-nets to represent preferences in voting contexts [26, 21,
33, 31]. If there is an order over issues such that every voter’s preferences for “later”
issues depend only on the decisions made on “earlier” issues, then the voters’ CP-nets
are acyclic, and a natural approach is to apply issue-wise voting rulessequentially[21].
While the assumption that such an order exists is still restrictive, it is much less re-
strictive than assuming that preferences are separable (for one, the resulting preference
domain is exponentially larger [21]). Recent extensions ofsequential voting rules in-
clude order-independent sequential voting [33], as well asframeworks for voting when
preferences are modeled by general (that is, not necessarily acyclic) CP-nets [31,?].
However, in this paper, we only study acyclic CP-nets that are consistent with a com-
mon order over the issues.
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Our results. In this paper, we focus on multi-issue domains that are composed
of at least two issues with at least two possible values each.1 We first show that over
lexicographicpreference domains (where earlier issues dominate later issues in terms
of importance to the voters), the class of strategy-proof voting rules that satisfy non-
imposition is exactly the class of voting rules that can be decomposed into multiple
strategy-proof local rules, one for each issue and each setting of the issues preceding it.
Technically, it is exactly the class of allconditional rule nets (CR-nets), defined later in
this paper but analogous to CP-nets, whose local (issue-wise) entries are strategy-proof
voting rules. CR-nets represent how the voting rule’s behavior on one issue depends on
the decisions made on all issues preceding it. Conceptually, this is similar to how acyclic
CP-nets represent how a voter’s preferences on one issue depend on the decisions made
on all issues preceding it.

Then, we prove an impossibility theorem, which is the following variant of Gibbard-
Satterthwaite. When there are at least two issues with at least two values each, the only
strategy-proof voting rule that satisfies non-imposition is a dictatorship. This result as-
sumes that each voter is free to choose any linear order that corresponds to an acyclic
CP-net that follows a common order over the issues. This impossibility result follows
from either one of two more general new impossibility results that we included in Ap-
pendix C.

We are not aware of any previous characterization or impossibility results of strategy-
proof voting rules when voters’ preferences display dependencies across issues (that is,
when they are modeled by CP-nets).

2 Preliminaries

In a voting setting (not necessarily one with multiple issues), letX be the set ofalter-
natives(or candidates). A linear orderV onX is a transitive, antisymmetric, and total
relation onX . The set of all linear orders onX is denoted byL(X ). An n-voter profile
P onX consists ofn linear orders onX . That is,P = (V1, . . . , Vn), where for every
1 ≤ j ≤ n, Vj ∈ L(X ). The set of all profiles onX is denoted byP (X ). In this paper,
we letn denote the number of voters. A(voting) ruler is a mapping from the set of
all profiles onX to X , that is,r : P (X ) → X . For example, theplurality rule (also
called themajority rule, when there are only two alternatives) chooses the alternative
that is ranked in the top position in the most votes (with a tie-breaking mechanism, for
example, ties are broken in alphabetical order. In this paper, it does not matter which
tie-breaking mechanism we use). A voting ruler satisfies

• unanimityif top(V ) = c for all V ∈ P impliesr(P ) = c.
• non-impositionif for any c ∈ X and anyn ∈ N, there exists an n-voter profileP

such thatr(P ) = c.
• (strong) monotonicityif for any pair of profilesP = (V1, . . . , Vn), P ′ = (V ′

1 , . . . , V ′
n)

such that for any alternativec and any1 ≤ j ≤ n, we havec �V ′

j
r(P ) ⇒ c �Vj

r(P ),
then,r(P ′) = r(P ).

1 This is the standard assumption for studying voting in multi-issue domains, because otherwise
the domain can be simplified (by removing issues that only take one value), or have no multi-
issue structure (when there is only one issue).
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• strategy-proofnessif there does not exist a pair(P, V ′
j ), whereP is a profile, and

V ′
j is a false vote of voterj, such thatr(P−j , V

′
j ) �Vj

r(P ). That is, in each profile, no
voter can misrepresent her preferences to make herself better off.

In this paper, the set of all alternativesX is amulti-issue domain. That is, letI =
{x1, . . . ,xp} be a set ofissues, where each issuexi takes values in alocal domain,
denoted byDi. An alternative is uniquely identified by its values on all issues, that is,
X = D1 × · · · × Dp.

Example 1 A group of people must make a joint decision on the menu for dinner (the
caterer can only serve a single menu to everyone). The menu iscomposed of two issues:
the main course (M ) and the wine (W). There are three choices for the main course:
beef (b), fish (f), or salad (s). The wine can be either red wine(r), white wine (w), or
pink wine (p). The set of alternatives is a multi-issue domain:X = {b, f, s}×{r, w, p}.

CP-nets [9] are a compact representation that captures dependencies across issues.
In this paper, we use them not for their representational compactness, but rather as
useful mathematical notation for describing preferences in multi-issue domains, where
preferences over one issue can depend on the values of earlier issues.

A CP-netN overX consists of two parts: (a) a directed graphG = (I, E) and (b)
a set of conditional linear preferences�i

d
overDi, for each settingd of the parents of

xi in G. Let CPT (xi) be the set of the conditional preferences of a voter onDi; this is
called aconditional preference table (CPT).

A CP-netN captures dependencies across issues in the following sense. N induces
a partial preorder�N over the alternativesX as follows: for anyai, bi ∈ Di, any
settingd of the set of parents ofxi (denoted byParG(xi)), and any settingz of I \
(ParG(xi) ∪ {xi}), (ai, d, z) �N (bi, d, z) if and only if ai �i

d
bi. In words, the

preferences over issuexi only depend on the setting of the parents ofxi (but not on any
other issues). For any1 ≤ i ≤ p, CPT(xi) specifies conditional preferences overxi.
Now, if we obtain an alternatived′ fromd by only changing the value of theith issue of
d, we can look up CPT(xi) to conclude whether the voter prefersd′ to d, or vice versa.
In general, however, from the CP-net, we will not always be able to conclude which of
two alternatives a voter prefers, if the alternatives differ on two or more issues. This is
whyN usually induces a partial preorder rather than a linear order.

We note that when the graph ofN is acyclic,�N is transitive and asymmetric, that
is, a strict partial order. LetO = x1 > · · · > xp. We say that a CP-netN is compatible
with (or, follows) O, if xi is a parent ofxj in the graph implies thati < j. That is,
preferences over issues only depend on the values of earlierissues inO. A CP-net is
separableif there are no edges in its graph, which means that there are no preferential
dependencies among issues.

Example 2 LetX be the multi-issue domain defined in Example 1. We define a CP-net
N as follows:M is the parent ofW, and the CPTs consist of the following conditional
preferences:CPT (M) = {b � f � s}, CPT (W) = {b : r � p � w, f : w � p �
r, s : p � w � r}, whereb : r � p � w is interpreted as follows: “whenM is b, then,
r is the most preferred value forW, p is the second most preferred value, andw is the
least preferred value.”N and its induced partial order�N are illustrated in Figure 1.
N is compatible withM > W. N is not separable.
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M W

CPT (M)
b � f � s

CPT (W)
b : r � p � w

f : w � p � r

s : p � w � r

br bp bw

f w f p f r

sp sw sr

(a) A CP-netN . (b) The partial order induced byN .

Fig. 1. A CP-netN and its induced partial order.

A linear orderV overX extendsa CP-netN , denoted byV ∼ N , if it extends
the partial order thatN induces. (This is merely saying thatV is consistent with the
preferences implied by the CP-netN .) V is separableif it extends a separable CP-net.
The set of all linear orders that extend CP-nets that are compatible withO is denoted by
Legal(O). Throughout the paper, we make the following assumption about multi-
issue domains and the voters’ preferences.

Assumption 1 In this paper, each multi-issue domain is composed of at least two issues
(p ≥ 2), and each issue can take at least two values. Moreover, all CP-nets are com-
patible withO = x1 > · · · > xp, and the voters’ preferences are always inLegal(O)
(that is, a voter’s preferences over an issue do not depend onthe values of later issues).

To present our results, we will frequently use notations that represent the projection
of a vote/CP-net/profile to an issuexi (that is, the voter’s local preferences overxi),
given the setting of all issues precedingxi. These notations are defined as follows. For
any issuexi, any settingd of ParG(xi), and any linear orderV that extendsN , we let
V |xi:d andN|xi:d denote the the projection ofV (or, equivalentlyN ) to xi, givend.
That is, each of these notations evaluates to the linear order �i

d
in the CPT associated

with xi. For example, letN be the CP-net defined in Example 2.N|W:b = r � p �
w. For anyO-legal profileP , P |xi:d is the profile overDi that is composed of the
projections of each vote inP onxi, givend. That is,P |xi:d = (V1|xi:d, . . . , Vn|xi:d) =
(N1|xi:d, . . . ,Nn|xi:d), whereP = (V1, . . . , Vn), and for any1 ≤ i ≤ p, Vi extends
Ni.

The lexicographic extensionof a CP-netN , denoted byLex(N ), is a linear order
V overX such that for any1 ≤ i ≤ p, anydi ∈ D1 × · · · × Di−1, anyai, bi ∈ Di,
and anyy, z ∈ Di+1 × · · · × Dp, if ai �N|xi:di

bi, then(di, ai, y) �V (di, bi, z).
Intuitively, in the lexicographic extension ofN , x1 is the most important issue,x2

is the next important issue, and so on; a desirable change to an earlier issue always
outweighs any changes to later issues. We note that the lexicographic extension of any
CP-net is unique w.r.t. the orderO. We say thatV ∈ L(X ) is lexicographicif it is the
lexicographic extension of a CP-netN . For example, letN be the CP-net defined in
Example 2. We haveLex(N ) = br � bp � bw � fw � fp � fr � sp � sw � sr.
A profile P is O-legal/separable/lexicographic, if each of its votes is inLegal(O)/ is
separable/ is lexicographic.

Given a vector oflocal rules(r1, . . . , rp) (that is, for any1 ≤ i ≤ p, ri is a voting
rule onDi), thesequential compositionof r1, . . . , rp w.r.t.O, denoted bySeq(r1, . . . , rp),
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is defined for allO-legal profiles as follows:Seq(r1, . . . , rp)(P ) = (d1, . . . , dp) ∈ X ,
so that for any1 ≤ i ≤ p, di = ri(P |xi:d1···di−1

). That is, the winner is selected inp
steps, one for each issue, in the following way: in stepi, di is selected by applying the
local ruleri to the preferences of voters overDi, conditioned on the valuesd1, . . . , di−1

that have already been determined for issues that precedexi. When the input profile is
separable,Seq(r1, . . . , rp) becomes anissue-by-issuevoting rule.

3 Conditional rule nets (CR-nets)

We now move on to the contributions of this paper. In a sequential voting rule, the local
voting rule that is used for an issue is always the same, that is, the local votingrule
does not depend on the decisions made on earlier issues (though, of course, the voters’
preferencesfor this issue do depend on those decisions).

However, in many cases, it makes sense to let the local votingrules depend on the
values of preceding issues. For example, let us consider again the setting in Example 1,
and let us suppose that the caterer is collecting the votes and making the decision based
on some rule. Suppose the order of voting isM > W. Suppose the main course is
determined to be beef. One would expect that, conditioning on beef being selected,
most voters prefer red wine (e.g., r � p � w). Still, it can happen that even conditioned
on beef being selected, surprisingly, slightly more than half the voters vote for white
wine (w � p � r), and slightly less than half vote for red (r � p � w). If the caterer
uses an unbiased rule, then presumably white wine will be selected. While this is in
the interest of slightly more than half the voters and may therefore appear to be a good
idea, consider now a setting where not everyone who will enjoy the meal is voting. For
example, some people may not have been available at the time of the vote; some people
may bring their spouses, who were not present for the voting;perhaps the caterer’s
(non-voting) crew will be able to eat some of the meal;etc. In this case, the caterer,
who knows that in the general population most people prefer red to white given a meal
of beef, may “overrule” the preference for white wine among the slight majority of the
voters, and select red wine anyway. While this may appear somewhat snobbish on the
part of the caterer, in fact she may be acting in the best interest of social welfare if we
take the non-voting agents (who are likely to prefer red given beef) into account.

Of course, if a large majority of the voters prefer white winegiven beef, then the
caterer should not overrule this. This effectively comes down to a local rule where (say)
at least 60% of voters need to prefer white wine for it to be selected given beef (equiva-
lently, the caterer may add some “phantom votes” for red winegiven beef, to represent
the non-voting diners’ likely preferences). Conversely, when fish is chosen, the caterer’s
rule for deciding the wine based on the votes may be slightly biased towards white wine.
Hence, in this situation, it makes good sense for the local rule for wine to depend on the
values of its parent (the main course), unlike in a typical sequential voting rule.

There are many other settings where we may wish to bias the rule for one issue
conditioned on the decision for an earlier issue. For example, we may consider letting
citizens vote for president first, and for vice-president second; but, given the choice of
the president, his or her running mate would need to receive less than 30% of the vote
to not be elected.
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In this section, we introduceconditional rule nets (CR-nets)to model voting rules
where the local rules depend on the values chosen for earlierissues. A CR-net is defined
similarly to a CP-net—the difference is that CPTs are replaced by conditional rule tables
(CRTs), which specify a local voting rule overDi for each issuexi and each setting of
the parents ofxi. 2

Definition 1 An (acyclic)conditional rule net (CR-net)M overX is composed of the
following two parts.

1. Adirected acyclic graphG over{x1, . . . ,xp}.
2. A set ofconditional rule tables(CRTs) in which, for any variablexi and any

settingd of ParG(xi), there is alocal conditional voting ruleM|x:d overDi.

A CR-net encodes a voting rule over allO-legal profiles (we recall that we fixO =
x1 > · · · > xp in this paper). For any1 ≤ i ≤ p, in the ith step, the valuedi

is determined by applyingM|xi:d1···di−1
(the local rule specified by the CR-net for

the ith issue given that the earlier issues take the valuesd1 · · · di−1) to P |xi:d1···di−1

(the profile of preferences over theith issue, given that the earlier issues take the
valuesd1 · · · di−1). Formally, for anyO-legal profileP , M(P ) = (d1, . . . , dp) is
defined as follows:d1 = M|x1

(P |x1
), d2 = M|x2:d1

(P |x2:d1
), etc. Finally,dp =

M|xp:d1···dp−1
(P |xp:d1···dp−1

).
A CR-netM is separableif there are no edges in the graph ofM. That is, the

local voting rule for any issue is independent of the value ofall other issues (which
corresponds to a sequential voting rule).

4 Restricting voters’ preferences

We now consider restrictions on preferences. A restrictionon preferences (for a single
voter) rules out some of the possible preferences inL(X ). Following the convention
of [11], a preference domainis a set of all admissible profiles, which represents the
restricted preferences of the voters. Usually a preferencedomain is the Cartesian prod-
uct of the sets of restricted preferences for individual voters. A natural way to restrict
preferences in a multi-issue domain is to restrict the preferences on individual issues.
For example, we may decide thatr � w � p is not a reasonable preference for wine
(regardless of the choice of main course), and therefore rule it out (assume it away).
More generally, which preferences are considered reasonable for one issue may depend
on the decisions for the other issues. Hence, in general, foreachi, for each settingdi of
the issues before issuexi, there is a set of “reasonable” (or: possible, admissible) prefer-
ences overxi, which we callS|xi:di

. Formally,admissible conditional preference sets,
which encode all possible conditional preferences of voters, are defined as follows.

Definition 2 An admissible conditional preference setS overX is composed of multi-
ple local conditional preference sets, denoted byS|xi:di

, such that for any1 ≤ i ≤ p

and anydi ∈ D1 × · · · × Di−1, S|xi:di
is a set of (not necessarily all) linear orders

overDi.

2 It is not clear how a cyclic CR-net could be useful, so we only define acyclic CR-nets.
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That is, for any1 ≤ i ≤ p and anydi ∈ D1 × · · · × Di−1, S|xi:di
encodes the voter’s

local language over issuei, given the preceding issues takingdi. In other words, if
S is the admissible conditional preference set for a voter, then we require the voter’s
preferences overxi be inS|xi:di

.
An admissible conditional preference set restricts the possible CP-nets, preferences,

and lexicographic preferences. We note that Le Breton and Sen [11] defined a similar
structure, which works specifically for separable votes.

Now we are ready to define the restricted preferences of a voter overX . Let S be
the admissible conditional preference set for the voter. A voter’s admissible vote can be
generated in the following two steps: first, a CP-netN is constructed such that for any
1 ≤ i ≤ p and anydi ∈ D1 × · · ·Di−1, the restriction ofN onxi givendi is chosen
from S|xi:di

; second, an extension ofN is chosen as the voter’s vote. By restricting
the freedom in either of the two steps (or both), we obtain a set of the voter’s restricted
preferences. Hence, we have the following definitions.
Definition 3 LetS be an admissible conditional preference set overX .

•CPnets(S) = {N : N is a CP-net overX , and∀i∀di ∈ D1×· · ·×Di−1,N|xi:di
∈

S|xi:di
}.

• Pref(S) = {V : V ∼ N ,N ∈ CPnets(S)}.
• LD(S) = {Lex(N ) : N ∈ CPnets(S)}.

That is, CPnets(S) is the set of all CP-nets overX corresponding to preferences
that are consistent with the admissible conditional preference setS. Pref(S) is the set
of all linear orders that are consistent with the admissibleconditional preference set
S. LD(S), which we call thelexicographic preference domain, is the subset of linear
orders in Pref(S) that are lexicographic. For anyL ⊆ Pref(S), we say thatL extends
S if for any CP-net in CPnets(S), there exists at least one linear order inL consis-
tent with that CP-net. It follows thatLD(S) extendsS; in this case, for any CP-netN
in CPnets(S), there exists exactly one linear order inLD(S) that extendsN . Lexico-
graphic preference domains are natural extensions of admissible conditional preference
sets, but they are also quite restrictive, since any CP-net only has one lexicographic
extension.

We now define a notion of richness for admissible conditionalpreference sets. This
notion says that for any issue, given any setting of the earlier issues, each value of the
current issue can be the most-preferred one.3

Definition 4 An admissible conditional preference setS is rich if for each1 ≤ i ≤ p,
each valuationdi of the preceding issues, and eachai ∈ Di, there existsV i ∈ S|xi:di

such thatai is ranked in the top position ofV i.

We remark that richness is a natural requirement, and it is also a very weak restric-
tion in the following sense. It only requires that when a voter is asked about her (local)
preferences overxi givendi, she should have the freedom to at least specify her most
preferred local alternative inDi at will. We note that|S|xi:di

| can be as small as|Di|
(by letting each alternative inDi be ranked in the top position exactly once), which is
in sharp contrast to|L(Di)| = |Di|! (when all local orders are allowed).

3 This isnot the same richness notion as the one proposed by Le Breton and Sen, which applies
to preferences over all alternatives rather than to admissible conditional preference sets.
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We now revisit our example and restrict the voters’ preferences in a reasonable
manner. We let the voters’ preferences over any issue be single-peaked.

Example 3 Let the multi-issue domainX be defined as in Example 1. LetS be the ad-
missible conditional preference set whose local conditional preference sets are single-
peaked, as illustrated in Figure 2. That is,S|M = {(b � s � f), (s � b � f), (s �
f � b), (f � s � b)} is the single-peaked preference domain in which the positions
of b, s, andf are listed from left to right in the order on a straight line, and the pref-
erences of a voter is specified by the distance from each alternative to the “peak” (the
voter’s most preferred point) along the line;S|W:b = S|W:f = S|W:s are the single-
peaked preference domains in which the positions ofr, p, andw are listed from the left
to the right in the order on a straight line (we note that in this example, these three
local conditional preference sets are the same, but they canbe different in general).S
is rich, because in single-peaked domains, each alternative is ranked in the top position
in at least one linear order. The CP-netN defined in Example 2 is not in CPnets(S),
because(b � f � s) 6∈ S|M. LetN ′ be a CP-net in whichN ′|M = b � s � f , and
all other conditional preferences are the same as inN . Then,N ′ ∈ CPnets(S), and
Lex(N ′) ∈ Pref(S).

beef salad fish

S |M

red pink white

S |W:b = S |W: f = S |W:s

Fig. 2. An admissible conditional preference setS in which all local domains are single-peaked.
Positions of the alternatives are shown in the figure.

Throughout the paper, we focus on the following preference domains: for each voter
j (with 1 ≤ j ≤ n), there is an admissible conditional preference setSj , and voter
j’s preferences are restricted to a set of linear ordersLj that extendsSj . We say all
votes inLj areadmissible. Let LΠ be the set of all profiles, in each of which voter
j’s preferences are chosen fromLj for any 1 ≤ j ≤ n, that is,LΠ =

∏n

j=1 Lj. A
CR-netM is locally strategy-proofif all its local conditional rules are strategy-proof
over respective local domains (we remember that the voters’local preferences must be
in the corresponding local conditional preference set). That is, for any1 ≤ i ≤ p, di ∈
D1 × · · · × Di−1, M|xi:di

is strategy-proof over
∏n

j=1 Sj |xi:di
.

We now propose a locally strategy-proof rule for our examplethat captures the idea
of the caterer biasing the choice of wine.

Example 4 Let the multi-issue domainX be defined as in Example 1, and letS be
defined as in Example 3. For any1 ≤ j ≤ n, letSj = S. For any0 ≤ t ≤ 1, letrt be the
voting rule over a single-peaked preference domain that selects the alternative that is
closest to the(bt(n−1)c+1)th leftmost value within the set of all voters’ favorite values
(peaks). For example,r0.5 selects the alternative that is closest to the median value.Let
M be a CR-net defined as follows:M|M = r0.5, M|W:b = r0.1, M|W:f = r0.9,
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M|W:s = r0.5. 4 M is locally strategy-proof given this restriction of preferences,
because the local rules are strategy-proof for single-peaked preferences [22].

5 Strategy-proof voting rules in lexicographic preferencedomains

In this section, we present our main theorem. We characterize strategy-proof voting
rules that satisfy non-imposition, when the voters’ preferences are restricted to lexico-
graphic preference domains.

We are now ready to present our main result, which states the following: if each
voter’s preferences are restricted to the lexicographic preference domain for a rich ad-
missible conditional preference set, then a voting rule that satisfies non-imposition is
strategy-proof if and only if it is a locally strategy-proofCR-net. We recall that in this
paper, there are at least two issues with at least two possible values each, and the lexi-
cographic preference domain for a rich admissible conditional preference setS is com-
posed of all lexicographic extensions of the CP-nets that are constructed fromS.

Theorem 1 For any1 ≤ j ≤ n, supposeSj is a rich admissible conditional preference
set, and voterj’s preferences are restricted to the lexicographic preference domain of
Sj . Then, a voting ruler that satisfies non-imposition is strategy-proof if and onlyif r

is a locally strategy-proof CR-net.

The proofs of all theorems are relegated to the appendices.
Theorem 1 has some interesting corollaries. First, we note that a CR-net is compu-

tationally easy to apply, as long as each local rule is easy toapply. This suggests that
strategy-proof voting rules that satisfy non-imposition over a lexicographic preference
domain tend to be easy to apply.

Second, it follows from Theorem 1 that any sequential votingrule that is composed
of locally strategy-proof voting rules is strategy-proof over lexicographic preference
domains, because a sequential voting rule is a separable CR-net. Specifically, when
the multi-issue domain is binary (that is, for any1 ≤ i ≤ p, |Di| = 2), the sequen-
tial composition of majority rules is strategy-proof when the profiles are lexicographic.
This displays an interesting contrast to previous works on the strategy-proofness of se-
quential composition of majority rules: Lacy and Niou [20] and Le Breton and Sen [11]
showed that the sequential composition of majority rules isstrategy-proof when the pro-
file is restricted to the set of all separable profiles; on the other hand, Lang and Xia [21]
showed that this rule is not strategy-proof when the profile is restricted to the set of all
O-legal profiles.

Of course, Theorem 1 allows for other strategy-proof votingrules besides sequences
of majority rules, when preferences are lexicographic. Forexample, with binary is-
sues, we can set different thresholds (instead of the 50% threshold of majority), and
the threshold for an issue can depend on the decisions on the previous issues. With non-
binary issues, if the preferences on each local domain are restricted to be single-peaked,
then a sequence of median-voter rules is also strategy-proof; we can also add phantom

4 This rule is strongly biased towards red wine if beef is chosen, and towards white wine if fish
is chosen, corresponding to a very snobby caterer.
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voters [22], and again, which phantom voters we add for an issue can depend on the
decisions on the previous issues.

Moreover, from Theorem 1 we immediately obtain the following impossibility the-
orem.

Corollary 1 Suppose that each local domain has at least three elements and any voter
is free to choose any lexicographic linear order. Any strategy-proof voting rule that
satisfies non-imposition must select the winner in a sequence ofp steps, as follows: in
stepi where1 ≤ i ≤ p, the value forxi is determined by applying a dictatorship on the
voters’ local preferences overxi. (The voters’ preferences as well as which dictatorship
is used can depend on the values of preceding issues.)

Conversely, any local-dictatorship CR-net of the form described in Corollary 1 in
fact is strategy-proof and satisfies non-imposition.

Of course, the restriction to lexicographic preferences isstill limiting. Next, we
investigate whether there is any other preference domain for the voters on which the
set of strategy-proof voting rules that satisfy non-imposition is equivalent to the set
of all locally strategy-proof CR-nets. The answer to this question is “No,” as shown
in the next proposition. More precisely, over any preference domain that extends an
admissible conditional preference set, the set of strategy-proof voting rules satisfying
non-imposition and the set of locally strategy-proof CR-nets satisfying non-imposition
are identicalif and only ifthe preference domain is lexicographic.

Theorem 2 For any1 ≤ j ≤ n, supposeSj is a rich admissible conditional preference
set,Lj ⊆ Pref(Sj), andLj extendsSj . If there exists1 ≤ j ≤ n such thatLj is not the
lexicographic preference domain ofSj , then there exists a locally strategy-proof CR-net
M that satisfies non-imposition and is not strategy-proof over

∏n

j=1 Lj .

6 An impossibility theorem

In this section, we present an impossibility theorem for strategy-proof voting rules when
voters’ preferences are restricted to beO-legal.

Theorem 3 When the set of alternatives is a multi-issue domain, if eachvoter can
choose any linear order inLegal(O) to represent her preferences, then there is no
strategy-proof voting rule that satisfies non-imposition,except a dictatorship.

This impossibility theorem is a variant of the Gibbard-Satterthwaite theorem. We em-
phasize that there are at least two issues with at least two possible values each, and
Legal(O) is much smaller than the set of all linear orders overX . Therefore, the theo-
rem doesnot follow directly from Gibbard-Satterthwaite. It follows directly from either
of the two stronger impossibility theorems proved in the appendices: one is for ex-
tensions of lexicographical domains (Theorem 6 in AppendixB), and the other is for
extensions of the “rich” domains defined by Le Breton and Sen [11] (Appendix C).
Due to the space constraint and heavy technicality and notation of the two impossibility
theorems, they are relegated to the appendix.
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We recall that Lang and Xia [21] showed that a specific sequential voting rule (the
sequential composition of majority rules) is not strategy-proof when each voter can
choose any linear order inLegal(O) to represent her preferences. Theorem 3 is much
stronger, in that it states that over such a preference domain, not only does the sequential
composition of majority rules fail to be strategy-proof, but in fact all non-dictatorial
voting rules that satisfy non-imposition fail to be strategy-proof; moreover, this holds
for non-binary multi-issue domains as well.

7 Conclusion

In settings where a group of agents needs to make a joint decision, the set of alternatives
often has a multi-issue structure. In this paper, we characterized strategy-proof voting
rules when the voters’ preferences are represented by acyclic CP-nets that follow a
common order over issues. We showed that if each voter’s preferences are restricted
to a lexicographic preference domain, then a voting rule satisfying non-imposition is
strategy-proof if and only if it is a locally strategy-proofCR-net. We then proved that if
the profile is allowed to be anyO-legal profile, then the only strategy-proof voting rules
satisfying non-imposition are dictatorships.

Our result for lexicographic preferences is quite positive; however, beyond that, our
results do not inspire much hope for desirable strategy-proof voting rules in multi-issue
domains. Of course, it is well known that it is difficult to obtain strategy-proofness in
voting settings in general, and this does not mean that we should abandon voting as a
general method. Similarly, difficulties in obtaining desirable strategy-proof voting rules
in multi-issue domains should not prevent us from studying voting rules for multi-issue
domains altogether. From a mechanism design perspective, strategy-proofness is a very
strong criterion, which corresponds to implementation in dominant strategies. It may
well be the case that rules that are not strategy-proof stillresult in good outcomes in
practice—or, more formally, in (say) Bayes-Nash equilibrium.
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A Proofs

The next two easy lemmas are part of the folklore of strategy-proof voting and will
be frequently used in the proofs of the main theorems (we include the proofs in the
appendix for the convenience of the reader). Lemma 1 states that any strategy-proof
ruler satisfies monotonicity, that is, for any profileP , if each voter changes her vote by
rankingr(P ) higher, then the winner is stillr(P ).

Lemma 1 (Known) Any strategy-proof voting rule satisfies monotonicity.

Proof of Lemma 1: Suppose for the sake of contradictionr is strategy-proof but does
not satisfy monotonicity. It follows that there exists a profile P , i, andV ′

i such thatV ′
i

is obtained fromVi by raisingr(P ), andr(P−i, V
′
i ) 6= r(P ). If r(P−i, V

′
i ) �V ′

i
r(P ),

then we must have thatr(P−i, V
′
i ) �Vi

r(P ), which means that voteri has incentive
to falsely report that her true preferences areV ′

i ; if r(P ) �V ′

i
r(P−i, V

′
i ), then when

voteri’s true preferences areV ′
i and the other voters’ profile isP−i, she has incentive to

falsely report that her preferences areVi. In either case there is a manipulation, which
contradicts the assumption thatr is strategy-proof. �

Lemma 2 states that any strategy-proof ruler satisfying non-imposition always sat-
isfies unanimity, that is, if all votes rank the same alternative first, that alternative wins.

Lemma 2 (Known) Any strategy-proof voting rule that satisfies non-imposition also
satisfies unanimity.

Proof of Lemma 2: Suppose for the sake of contradictionr is strategy-proof and
satisfies non-imposition, butr does not satisfy unanimity. There exist an alternative
c and a profileP = (V1, . . . , Vn) such thatc is ranked in the top position in each
of Vj , but r(P ) 6= c. Now, becauser satisfies non-imposition, there exists a pro-
file Q = (W1, . . . , Wn) such thatr(Q) = c. For any0 ≤ j ≤ n, we let Pj =
(W1, . . . , Wj , Vj+1, . . . , Vn). We note thatP0 = P andPn = Q. Therefore, there ex-
ists j∗ ≤ n such thatr(Pj∗−1) 6= c andr(Pj∗ ) = c. It follows that when the true
preferences of voterj∗ is Vj∗ , and the preferences of the other voters are as inPj∗ ,
voterj∗ has incentive to falsely report that her true preferences isWj∗ , which can im-
prove the outcome fromr(Pj∗−1) 6= c to c. This contradicts the assumption thatr is
strategy-proof. �

Proof of Theorem 1: In the proofs of this paper, for any1 ≤ i ≤ p, we letx−i denote
I\{xi}, and we letD−i denoteD1×· · ·×Di−1×Di+1×· · ·×Dp. For any1 ≤ j ≤ n,
any profileP of n votes, we letP−j denote the profile that consists of all votes inP

except the vote by voterj.
First, we prove the “only if ” part by induction onp. Whenp = 1, the theorem

is immediate. Now, suppose that the theorem holds whenp = k. Whenp = k + 1,
for any strategy-proof ruler that satisfies non-imposition, overXk+1 = D1 × · · · ×
Dk+1, we prove that this rule can be decomposed into two parts: first, it applies a
local voting ruler1 for x1, and subsequently, it applies a ruler|x−1:a1

for x−1, which
depends on the outcome ofr1. Thus, we have the property that for anyP ∈ LΠ , we
haver(P ) = (r1(P |x1

), r|x−1:r1(P |x1
)(P |x−1:r1(P |x1

))). Then, we will show that the
induction assumption can be applied to the second part.
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First, we claim that for any strategy-proof voting ruler satisfying non-imposition,
and anyP ∈ LΠ , the value of issuex1 for the winning alternative only depends on the
restriction of the profile tox1. That is, we show that for any pair of profilesP, Q ∈ LΠ ,
P = (V1, . . . , Vn), Q = (W1, . . . , Wn) andP |x1

= Q|x1
, we must haver(P )|x1

=
r(Q)|x1

. Suppose on the contrary thatr(P )|x1
6= r(Q)|x1

. For any0 ≤ j ≤ n, we
definePj = (W1, . . . , Wj , Vj+1, . . . , Vn). It follows thatP0 = P andPn = Q. We
claim that for any0 ≤ j ≤ n − 1, r(Pj)|x1

= r(Pj+1)|x1
. For the sake of contra-

diction, supposer(Pj)|x1
6= r(Pj+1)|x1

for somej ≤ n − 1. Let a1 = r(Pj)|x1
and

b1 = r(Pj+1)|x1
. If a1 �Vj+1|x1

b1, then, becauseVj+1|x1
= Wj+1|x1

, (Pj+1, Vj+1)
is a successful manipulation; on the other hand, ifb1 �Vj+1|x1

a1, then,(Pj , Wj+1)
is a successful manipulation. This contradicts the strategy-proofness ofr. Thus, we
have shown that the value of issuex1 for the winning alternative only depends on the
restriction of the profile tox1.

Therefore, we can define a voting ruler1 overD1 as follows. For anyP 1 ∈
∏n

j=1 Sj |x1
,

r1(P
1) = r(P )|x1

, whereP ∈ LΠ andP |x1
= P 1. Such aP exists becauseLD(Sj)

extendsSj for all j, and this is well-defined by the observation from the previous para-
graph.r1 satisfies non-imposition becauser satisfies non-imposition.

Next, we prove thatr1 is strategy-proof. If we assume for the sake of contradiction
thatr1 is not strategy-proof, then there exists a successful manipulation(P 1, V̂ 1

l ) over
D1, where voterl is the manipulator, andP 1 = (V 1

1 , . . . , V 1
n ). LetN1, . . . ,Nn, N̂l be

n + 1 CP-nets satisfying the following conditions.

• For any1 ≤ j ≤ n, Nj |x1
= V 1

j ; N̂l|x1
= V̂ 1

l .

• For any1 ≤ j ≤ n, Nj ∈ CPnets(Sj), N̂l ∈ CPnets(Sl).

For 1 ≤ j ≤ n, let Vj be the lexicographic extension ofNj . Let V̂l be the lexi-
cographic extension of̂Nl. Let P = (V1, . . . , Vn). We note that thex1 component of
r(P−l, V̂l) is r1(P

1
−l, V̂

1
l ) �V 1

l
r1(P

1), which is thex1 component ofr(P ). Because

Vl is the lexicographic extension ofNl, andNl|x1
= V 1

l , we have thatr(P−l, V̂l) �Vl

r(P ), which means that(P, V̂l) is a successful manipulation. This contradicts the strategy-
proofness ofr. So, we have shown thatr1 is strategy-proof.

We next show that the second part ofr can be written as
r|x−1:r1(P |x1

)(P |x−1:r1(P |x1
))—that is, the rule for the remaining issuesx−1 only de-

pends on the outcome forx1. For anyV ∈ Legal(O) and anya1 ∈ D1, we letV |x−1:a1

denote the linear preference overD−1 that is compatible with the restriction ofV to
the set of alternatives whosex1 component isa1, that is, for anya−1, b−1 ∈ D−1,
a−1 �V |x

−1:a1
b−1 if and only if (a1, a−1) �V (a1, b−1). For anyO-legal profileP ,

P |x−1:a1
is composed ofV |x−1:a1

for all V ∈ P . For any CP-netN , we letN|x−1:a1

denote the sub-CP-net ofN conditioned onx1 = a1. It follows that if V ∼ N , then,
V |x−1:a1

∼ N|x−1:a1
.

Now, we claim that for any pair of profilesP1, P2 ∈ LΠ , P1 = (V1, . . . , Vn) and
P2 = (W1, . . . , Wn), such thata1 = r1(P1) = r1(P2) andP1|x−1:a1

= P2|x−1:a1
, we

must haver(P1) = r(P2). To prove this, we construct a profileP such thatr(P1) =
r(P ) = r(P2). For any1 ≤ j ≤ n, we letV a1

j ∈ Sj |x1
be an arbitrary linear order

overD1 in whicha1 is in the top position. LetP = (Q1, . . . , Qn) ∈ LΠ be the profile
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in which for any1 ≤ j ≤ n, Qj is the lexicographic extension of the CP-netNj that
satisfies the following conditions.

• Nj |x1
= V a1

j .

• Nj |x−1:a1
= N̂j |x−1:a1

, whereN̂j is the CP-net thatVj extends.
Let a = (a1, a−1) = r(P1). For any1 ≤ j ≤ n and anyb ∈ X with b �Qj

a, we
have that thex1 component ofb must bea1, becauseQj is lexicographic, anda1 is in
the top position ofQj |x1

. We letb = (a1, b−1). It follows thatb−1 �Qj |x
−1:a1

a−1.
We note thatQj |x−1:a1

is the lexicographic extension ofNj |x−1:a1
, Vj |x−1:a1

is the
lexicographic extension of̂Nj |x−1:a1

, and
Nj |x−1:a1

= N̂j |x−1:a1
. Therefore,Qj |x−1:a1

= Vj |x−1:a1
, which means thatb−1 �Vj |x

−1:a1

a−1. Hence, we haveb �Vj
a. By Lemma 1, we haver(P ) = r(P1). By similar rea-

soning,r(P ) = r(P2), which means thatr(P1) = r(P ) = r(P2). It follows that for
anya1 ∈ D1, there exists a voting ruler|x−1:a1

overD2 × · · · × Dp such that for any
P ∈ LΠ ,
r(P ) = (r1(P |x1

), r|x−1:r1(P |x1
)(P |x−1:r1(P |x1

)))

At this point, we have shown thatr can be decomposed as desired. We next show
that for anya1 ∈ D1, r|x−1:a1

is strategy-proof over
∏n

j=1 LD(Sj |x−1:a1
). Suppose

for the sake of contradiction that there exists a successfulmanipulation(P−1, V̂ −1
l ),

where voterl is the manipulator, andP−1 = (V −1
1 , . . . , V −1

n ). LetN1, . . . ,Nn, N̂l be
n + 1 CP-nets satisfying the following conditions.

• For any1 ≤ j ≤ n, top(Nj |x1
) = a1. That is,a1 is ranked in the top position in

the restriction ofNj to x1. Also, top(N̂l|x1
) = a1.

• For any1 ≤ j ≤ n, Nj |x−1:a1
is the CP-net overD−1 that V −1

j extends;

N̂l|x−1:a1
is the CP-net overD−1 thatV̂ −1

l extends.

• For any1 ≤ j ≤ n, Nj ∈ CPnets(Sj); N̂l ∈ CPnets(Sl).
The existence of these CP-nets is guaranteed by the richnessof Sj for any 1 ≤

j ≤ n. For any1 ≤ j ≤ n, let Vj be the lexicographic extension ofNj . Let V̂l be the
lexicographic extension of̂Nl. Let P = (V1, . . . , Vn). We note that

r(P ) = (r1(P |x1
), r|x−1:r1(P |x1

)(P |x−1:r1(P |x1
)))

= (a1, r|x−1:a1
(P |x−1:a1

)) = (a1, r|x−1:a1
(P−1))

≺Vl
(a1, r|x−1:a1

(P−1
−l , V̂l)) = r(P−l, V̂l)

This contradicts the strategy-proofness ofr. Hence, we have shown that for anya1 ∈
D1, r|x−1:a1

is strategy-proof over
∏n

j=1 LD(Sj |x−1:a1
).

Moreover, becauser satisfies non-imposition, for anya1 ∈ D1, r|x−1:a1
satisfies

non-imposition. Hence, for anya1 ∈ D1, we can apply the induction assumption to
r|x−1:a1

and conclude that it is a locally strategy-proof CR-net overD−1. It follows
thatr is a locally strategy-proof CR-net overX , completing the first part of the proof.

We next prove the “if” part. If the proposition does not hold,then there exists a
locally strategy-proof CR-netM for which there is a successful manipulation(P, V̂l).
Let i ≤ p be the smallest natural number such thatM(P )|xi

6= M(P−l, V̂l)|xi
. Let di

be the firsti − 1 components ofM(P ) andM(P−l, V̂l). BecauseM|xi:di
is strategy-
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proof, we have the following calculation.

M(P )|xi
= M|xi:di

(P |xi:di
)

�Vl|xi:di
M|xi:di

(P−1, V̂l|xi:di
)

= M(P−l, V̂l)|xi

BecauseVl is lexicographic, for anyy, z ∈ Di+1 × · · · × Dp, we have

(di,M|xi:di
(P ), y) �Vl

(di,M|xi:di
(P−1, V̂l), z)

Therefore,M(P ) �Vl
M(P−1, V̂l), which contradicts the assumption that(P, V̂l) is

a successful manipulation. Hence, locally strategy-proofCR-nets are strategy-proof for
lexicographic preferences. �

Proof of Theorem 2: If, for somej ≤ n, there is aV ′
j ∈ LD(Sj) that is not inLj,

then there must also be aVj ∈ Lj that is not inLD(Sj), because some vote inLj

must extend the CP-net thatV ′
j extends. Hence, ifLΠ 6=

∏n

j=1 LD(Sj), there must
exist somej ≤ n, Vj ∈ Lj such thatVj is not inLD(Sj). For thisVj , there must exist
i ≤ p, ai−1 ∈ D1 × · · · × Di−1, ai, bi ∈ Di, ai+1, bi+1 ∈ Di+1 × · · · × Dp such
thatai �Vj |xi:ai−1

bi, and(ai−1, bi, bi+1) �Vj
(ai−1, ai, ai+1). Now, let us define a

CR-netM as follows.

– M|xi:ai−1
is the plurality rule that only counts voter1 and voterj’s votes; ties are

broken in the orderbi � ai � Di − {ai, bi}.
– Any other local conditional voting rule is a dictatorship byvoter1.

Now, letN1 ∈ CPnets(S1) be a CP-net such thattop(N1) = ai−1aiai+1, and for
any k ≥ i + 1, top(N1|xk:ai−1bibi+1···bk−1

) = bk. Let N ′
j ∈ CPnets(Sj) be a CP-

net such thattop(N ′
j) = ai−1bibi+1. Let V1 ∈ L1 be such thatV1 ∼ N1, and let

V ′
j ∈ Lj be such thatV ′

j ∼ N ′
j . SuchV1 andV ′

j must exist, becauseL1 extendsS1,
andLj extendsSj . For any profileP = (V1, . . . , Vj , . . . , Vn) ∈ LΠ (that is, for any
l 6= 1, j, Vl is chosen arbitrarily, becauseM(P ) does not depend on them), it follows
thatM(P ) = ai−1aiai+1, andM(P−j , V

′
j ) = ai−1bibi+1, which means that(P, V ′

j )
is a successful manipulation for voterj. So,M is not strategy-proof (and it satisfies
non-imposition). �

B Impossibility result for extensions of lexicographic preference
domains

Section 5 settles the case of lexicographic preferences, but preferences are not always
lexicographic, even for acyclic CP-nets. For example, in a simplified menu example
with beef, fish, red wine, and white wine, a red-wine fanatic may preferbr � fr �
bw � fw. This is consistent with the orderM > W (in fact, the voter’s preferences
are separable), but the preferences are not lexicographic with respect to this order. In
this section, we investigate the possibility of strategy-proof voting rules for supersets of
a lexicographic preference domain. For any linear orderV , we letTop(V ) denote the
alternative that is ranked in the top position inV .
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Definition 5 A CP-netN is tops-only-separableif for any 1 ≤ i ≤ p, ai, bi ∈ D1 ×
· · · × Di−1, top(N|xi:ai

) = top(N|xi:bi
).

That is, in a tops-only-separable CP-net, the most preferred value for any issue is
independent of the values of the other issues (though there may be dependencies in the
lower-ranked values).

We now give a condition on the preference domain that indicates that any issue can
be considered more important than the first issue in some vote.

Definition 6 (Condition I) LΠ satisfiesCondition I if for any 1 ≤ j ≤ n, any1 ≤
i ≤ p, anya = (a1, . . . , ap) ∈ X , anyV 1

j ∈ Sj |x1
with top(V 1

j ) = a1, anyV i
j ∈

Sj |xi:a1···ai−1
with top(V i

j ) = ai, anyb1 ∈ D1 (b1 6= a1), and anybi ∈ Di (bi 6= ai),
there exists a tops-only-separable CP-netNj ∈ CPnets(Sj) and a voteVj ∈ Lj that
extendsNj , such that

– top(Nj) = a.
– Nj |x1

= V 1
j , Nj |xi:a1···ai−1

= V i
j .

– (b1, a−1) �Vj
(a−i, bi).

Condition I may seem unnatural and hard to read at first glance, but we argue that it
is actually quite a natural approach to capturing the idea that “each issue can be more
important than the first issue in some vote.” In order for issue i to be more important
than issue1 for a voter, it should be the case that (roughly speaking), for any pair of
alternativesa∗ = (b1, a−1) andb∗ = (a−i, bi) (so that one differs froma on the first
issue, and one on theith issue), the following is true: If it is the case thatai is always
preferred tobi in the local preferences of the voter on issuei (regardless of the values
of the preceding issues), then the voter prefersa∗ to b∗—even if she prefersa1 to b1.

In our definition of Condition I, requiringN to be tops-only-separable implies that
ai is always preferred tobi in the local preferences of the voter on issuei; and because
this argument should hold for any local preferences overx1 andxi, we require that we
can chooseV 1

j andV i
j freely in Condition I.

A similar notion was adopted by Le Breton and Sen [11] (see Definition 7 B(i) in
this paper), but there they focus on separable profiles, which is significantly different
(and more restrictive) from the preference domain studied in this paper. We also argue
that Condition I is weaker than Condition B(i) in Definition 7in some sense; see the
discussion after Definition 7.

We also note that even ifLΠ satisfies Condition I, it must be significantly smaller
than the universal domain in which every voter is free to choose any linear order overX .
For example, the largest set that can satisfy Condition I isLegal(O), and it has already
been proved that the size ofLegal(O) is exponentially (by a power of|X | = 2p)
smaller than the number of all linear orders overX [31].

We now present the following impossibility result: if the preference domain satisfies
Condition I and extends an admissible conditional preference setS, then any locally
strategy-proof CR-net either does not satisfy non-imposition, or it is a dictatorship.

Theorem 4 For any1 ≤ j ≤ n, supposeSj is a rich admissible conditional preference
set,Lj ⊆ Pref(Sj), Lj extendsSj , andLΠ satisfies Condition I. Then, for any locally
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strategy-proof CR-netM satisfying non-imposition,M is strategy-proof overLΠ if
and only ifM is a dictatorship.

Proof of Theorem 4: The “if” part is obvious, so we only prove the “only if” part.
For any CR-netM, and anya1 ∈ D1, we say that voterj is ana1-dictator if for any
1 ≤ i ≤ p, anya2 ∈ D2 × · · · ×Di−1, we have thatM|xi:a1a2

is aj-dictatorship (that
is, the winner is always the alternative that is ranked in thetop position by voterj). We
first prove the following lemma.

Lemma 3 Under the conditions of the theorem, let
P 1 = (V 1

1 , . . . , V 1
n ) be a profile in

∏n

j=1 Sj |x1
, and letM be a non-dictatorial locally

strategy-proof CR-net satisfying non-imposition, withM|x1
(P 1) = a1. If there exist

j ≤ n andW 1
j ∈ Sj |x1

such thatM|x1
(P 1) 6= M|x1

(P 1
−j , W

1
j ), and voterj is not an

a1-dictator, then,M is not strategy-proof.

Proof of Lemma 3: Suppose on the contrary that there exists a non-dictatoriallocally
strategy-proof CR-netM that satisfies non-imposition and is strategy-proof overLΠ ,
and satisfies all conditions in the lemma. LetV a1

j ∈ Sj |x1
be such thattop(V a1

j ) = a1;
then, it follows from the strategy-proofnessofM|x1

and Lemma 1 thatM|x1
(P 1

−j , V
a1

j ) =
a1. Since voterj is not ana1-dictator, there existi∗ ≤ p, a2 = (a2, . . . , ai∗−1) ∈
D2×· · ·×Di∗−1, and a profileP i∗ ∈

∏n

j=1 Sj |xi∗ :a1a2
such thatM|xi∗ :a1a2

(P i∗) 6=

top(V i∗

j ).

Let ai∗ = M|xi∗ :a1a2
(P i∗). We arbitrarily choose

−−−→ai∗+1 = (ai∗+1, . . . , ap) ∈ Di∗+1 × · · · × Dp

Let b1 = M|x1
(P 1

−j , W
1
j ), bi∗ = top(V i∗

j ). Next, we construct a vector of CP-nets
N1, . . . ,Nn,N ′

j as follows.

– For anyl 6= j, Nl|x1
= V 1

l , Nl|xi∗ :a1a2
= V i∗

l ;
top(Nl|x−1:a1

) = a2top(V i∗

l )−−−→ai∗+1,
top(Nl|x−1:b1) = a2bi∗

−−−→ai∗+1.
– Nj |x1

= V a1

j , Nj |xi∗ :a1a2
= V i∗

j ,
top(Nj) = a1a2bi∗

−−−→ai∗+1. Let Nj be any tops-only-separable CP-net obtained by
Condition I (wherebi∗ corresponds toai in Condition I, andai∗ corresponds tobi

in Condition I).
– N ′

j |x1
= W 1

j , N ′
j is tops-only-separable, andtop(N ′

j) = top(W 1
j )a2bi∗

−−−→ai∗+1.
– N ′

j ∈ CPnets(Sj). For anyl ≤ n, Nl ∈ CPnets(Sl). All entries that are not defined
above are chosen arbitrarily.

BecauseS is rich, such CP-nets must exist. We letVj be the extension ofNj (which
satisfies Condition I). That is,Vj ∼ Nj and

b1a2bi∗
−−−→ai∗+1 �Vj

a1a2ai∗
−−−→ai∗+1

Let P = (V1, . . . , Vj−1, Vj , Vj+1, . . . , Vn) be such that for alll ≤ n, Vl ∈ Ll andVl ∼
Nl. Let Wj ∈ Lj, Wj ∼ N ′

j . We next show that(P, Wj) is a successful manipulation
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for voterj. We note thatP |x1
= P 1,M|x1

(P 1) = a1; for anyi < i∗, ai is ranked in the
top position in all votes ofP |xi:a1a2···ai−1

; P |xi∗ :a1a2
= P i∗ ,M|xi∗ :a1a2

(P i∗) = ai∗ ;
for any i > i∗, ai is ranked in the top position in all votes ofP |xi:a1a2ai∗ai∗+1···ai−1

.
Therefore,M(P ) = a1a2ai∗

−−−→ai∗+1. On the other hand,M|x1
(P 1

−j , W
1
j ) = b1; for

any i < i∗, ai is ranked in the top position in all votes ofP−j |xi:b1a2···ai−1
and

Wj |xi:b1a2···ai−1
; bi∗ is ranked at the top position in all votes ofP−j |xi∗ :b1a2

and
Wj |xi∗ :b1a2

; for anyi > i∗, ai is ranked in the top position in all votes of
P |xi:b1a2bi∗ai∗+1···ai−1

andWj |xi:b1a2bi∗ai∗+1···ai−1
. Therefore,

M(P−j , Wj) = b1a2bi∗
−−−→ai∗+1

�Vj
a1a2ai∗

−−−→ai∗+1

= M(P )

This contradicts the strategy-proofness ofM. (End of proof of Lemma 3.) �

We prove the theorem by contradiction. Suppose there existsa non-dictatorial lo-
cally strategy-proof CR-netM that satisfies non-imposition and is strategy-proof over
LΠ . For anya1 ∈ D1, we let P a1 = (V a1

1 , . . . , V a1
n ) be a profile in

∏n

j=1 Sj |x1

such that each voter ranksa1 in the top position. BecauseM|x1
is strategy-proof

and satisfies non-imposition,M|x1
satisfies unanimity by Lemma 2, which means that

M|x1
(P a1) = a1. For anyb1 6= a1, becauseM|x1

(P a1) 6= M|x1
(P b1), there exists a

minimumj ≤ n such that

M|x1
(V b1

1 , . . . , V b1
j−1, V

a1

j , V a1

j+1, . . . , V
a1

n ) = a1

M|x1
(V b1

1 , . . . , V b1
j−1, V

b1
j , V a1

j+1, . . . , V
a1

n ) 6= a1

That is, by replacing theV a1

l by V b1
l one after another forl = 1, . . . , n, before step

j − 1, the winner of the profile isa1, and in stepj the winner is nota1. By Lemma 3,
voterj must be ana1-dictator.

Therefore, for anya1 ∈ D1, there existsj ≤ n such that for anyi ≥ 2, any
a2 ∈ D2 × · · ·Di−1, M|xi:a1a2

is a j-dictatorship. We consider the following two
cases.

Case 1: there existsj ≤ n such that for alla1 ∈ D1, voterj is ana1-dictator.
BecauseM is non-dictatorial,M is not aj-dictatorship, which means thatM|x1

is not aj-dictatorship. Therefore, there exists a profileP 1 in
∏n

j=1 Sj |x1
such

that M|x1
(P 1) 6= top(V 1

j ). Without loss of generality we letj = 1. We let
a1 = M|x1

(P 1), b1 = top(V 1
j ). BecauseM|x1

is strategy-proof and satisfies

non-imposition,M|x1
(V 1

1 , V b1
2 , . . . , V b1

n ) = b1 (we recall thattop(V 1
1 ) = b1, and

for all 2 ≤ l ≤ n, top(V b1
l ) = b1). Therefore, there exits2 ≤ k ≤ n such that

M|x1
(V 1

1 , V b1
2 , . . . , V b1

k−1, V
1
k , V 1

k+1, . . . , V
1
n ) = a1

M|x1
(V 1

1 , V b1
2 , . . . , V b1

k−1, V
b1
k , V 1

k+1, . . . , V
1
n ) 6= a1

Because voter1 is ana1-dictator, voterk is not ana1-dictator. But this contradicts
Lemma 3.



Strategy-proof Voting Rules over Multi-issue Domains withRestricted Preferences 23

Case 2: there existsj1 6= j2 anda1 6= b1 such that voterj1 (j2) is ana1(b1)-
dictator. Without loss of generality, we letj1 = 1, j2 = 2. Let

P 1 = (V a1

1 , V b1
2 , V a1

3 , . . . , V a1

n )

Q1 = (V a1

1 , V b1
2 , V b1

3 , . . . , V b1
n )

If M|x1
(P 1) 6= a1, then, becauseM|x1

(V a1

1 , . . . , V a1
n ) = a1, Lemma 3 implies

that voter 2 is ana1-dictator, which is not possible because voter 1 is ana1-dictator.
Therefore,M|x1

(P 1) = a1. Similarly, M|x1
(Q1) = b1. Next, we consider the

following steps: we change voterj’s vote fromV a1

j to V b1
j , one after another, for

3 ≤ j ≤ n. It follows that there exists3 ≤ j ≤ n such that

M|x1
(V a1

1 , V b1
2 , . . . , V b1

j−1, V
a1

j , V a1

j+1 . . . , V a1

n ) = a1

M|x1
(V a1

1 , V b1
2 , . . . , V b1

j−1, V
b1
j , V a1

j+1 . . . , V a1

n ) 6= a1

Lemma 3 implies that voterj is ana1-dictator, which is not possible because voter
1 is ana1-dictator.

Hence, we have obtained the desired contradiction, and can conclude thatM is dicta-
torial. (End of proof of Theorem 4.) �

The following corollary is easily obtained from Theorem 4.

Corollary 2 For any1 ≤ j ≤ n, supposeSj is a rich admissible conditional preference
set,LD(Sj) ⊆ Lj ⊆ Pref(Sj), andLj satisfies Condition I. Then, a CR-netM that
satisfies non-imposition is strategy-proof overLΠ if and only ifM is a dictatorship.

Proof of Corollary 2: LetM be a strategy-proof CR-net overLΠ . BecauseLD(Sj) ⊆
Lj for every1 ≤ j ≤ n, M is strategy-proof over

∏n

j=1 LD(Sj), which implies that
M is locally strategy-proof by Theorem 1. We note thatLD(Sj) extendsSj for all j,
which means thatLj extendsSj for every1 ≤ j ≤ n. Hence, by Theorem 4,M is
dictatorial. �

The next theorem states that over any superset of the lexicographic preference
domain, the only strategy-proof voting rule that satisfies non-imposition is a locally
strategy-proof CR-net. We note that this result does not directly follows from Theo-
rem 1, because from Theorem 1 we only know that this rule must be a CR-net when
all votes are lexicographic, which does not mean that it is still a CR-net beyond the
lexicographic preference domain.

Theorem 5 For any1 ≤ j ≤ n, supposeSj is a rich admissible conditional preference
set, andLD(Sj) ⊆ Lj ⊆ Pref(Sj). If a voting ruler that satisfies non-imposition is
strategy-proof overLΠ , thenr is a locally strategy-proof CR-net.

Proof of Theorem 5: Becauser is strategy-proof overLΠ , the restriction ofr to∏n

j=1 LD(Sj), denoted byrLD(SΠ), is strategy-proof over
∏n

j=1 LD(Sj). It follows
from Theorem 1 thatrLD(SΠ) is a locally strategy-proof CR-net, denoted byM. Be-
cause for any1 ≤ j ≤ n, LD(Sj) extendsSj , M can be naturally extended toLΠ . All
that remains to show is thatr andM are the same rule.
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Lemma 4 For any profileP ∈ LΠ , if at most one of the votes inP is not lexicographic,
thenr(P ) = M(P ).

Proof of Lemma 4: Suppose that the lemma does not hold. Then, there existsP =
(V1, . . . , Vn) ∈ LΠ such thatr(P ) 6= M(P ), (without loss of generality)V1 6∈
Lex(S1), and, for anyj ≥ 2, Vj is lexicographic. Leti∗ be the index of the first com-
ponent ofr(P ) that is different from the same component ofM(P ). That is, the value
of issuexi∗ in r(P ) (denoted byai∗ ) is different from the value of issuexi∗ in M(P ∗)
(denoted bybi∗ ); and for anyl < i∗, the value of issuexl in r(P ) is the same as the
value of issuexl in M(P ). Let a = (a1, . . . , ap) = r(P ). For any1 ≤ j ≤ n, we
define a CP-netN ′

j as follows.

– N ′
j |xi∗ :a1···ai∗−1

= Vj |xi∗ :a1···ai∗−1
.

– N ′
j is tops-only-separable, andtop(N ′

j) =
(a1, . . . , ai∗−1, top(Vj |xi∗ :a1···ai∗−1

), ai∗+1, . . . , ap).

For any1 ≤ j ≤ n, let V ′
j be the lexicographic extension ofN ′

j . BecauseV ′
j is lexico-

graphic, for anyj ≥ 2, anyd ∈ X , if d �V ′

j
a, then,di∗ �V ′

j
|xi∗ :a1···ai∗−1

ai∗ . We note

that V ′
j |xi∗ :a1···ai∗−1

= Vj |xi∗ :a1···ai∗−1
, which means thatdi∗ �Vj |xi∗ :a1···ai∗−1

ai∗ .

Therefore,d �Vj
a. It follows from Lemma 1 thatr(V1, V

′
2 , . . . , V ′

n) = a. We note that
r(V ′

1 , V ′
2 , . . . , V ′

n) = M(V ′
1 , V ′

2 , . . . , V ′
n) = (a−i∗ , bi∗), wherebi∗ 6= ai∗ , because this

is a lexicographic profile. Ifbi∗ �V1|xi∗ :a1···ai∗−1
ai∗ , then,(a−i∗ , bi∗) �V1

a, which

means that((V1, V
′
2 , . . . , V ′

n), V ′
1 ) is a successful manipulation for voter1; on the other

hand, ifai∗ �V1|xi∗ :a1···ai∗−1
bi∗ , then, becauseV ′

1 |xi∗ :a1...ai∗−1
= V1|xi∗ :a1···ai∗−1

,

we havea �V ′

1
(a−i∗ , bi∗), which means that((V ′

1 , V ′
2 , . . . , V ′

n), V1) is a successful
manipulation for voter1. This contradicts the strategy-proofness ofr. (End of proof of
Lemma 4.) �

Next, we prove the more general proposition that for anyP ∈ LΠ , r(P ) = M(P ),
which will complete the proof of the theorem. Suppose that the claim does not hold.
Then, we letP be the set of profiles inLΠ whose winner underr is different from
the winner underM, that is,P = {P ∈ LΠ : r(P ) 6= M(P )}. We haveP 6=
∅. Let P ∗ ∈ P denote a profile in which the number of non-lexicographic votes is
minimized (equivalently, the number of lexicographic voters is maximized). That is, for
anyP ∈ P, the number of non-lexicographic votes inP is at least the number of non-
lexicographic votes inP ∗. Let l be the number of non-lexicographic votes inP ∗ (by
Lemma 4,l ≥ 2). It follows that for anyP ∈ LΠ , if the number of non-lexicographic
votes inP is at mostl − 1, thenr(P ) = M(P ).

Without loss of generality, we letP ∗ = (V1, . . . , Vn), whereV1, . . . , Vl are non-
lexicographic, andVl+1, . . . , Vn are
lexicographic. For any1 ≤ j ≤ n, we letNj ∈ CPnets(Sj) be the CP-net thatVj

extends. LetM(P ) = a, r(P ) = b. By the minimality ofl, r(Lex(N1), V2, . . . , Vn) =
M(Lex(N1), V2, . . . , Vn) = a, because the number of non-lexicographic votes in the
modified profile isl − 1. Becauser is strategy-proof, we must have thatb �V1

a:
otherwise,(P ∗, Lex(N1)) is a successful manipulation for voter 1.

Let N ∗
1 be a CP-net in whichb is ranked at the top. It follows from Lemma 1 and

the strategy-proofness ofr that
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r(Lex(N ∗
1 ), V2, . . . , Vn) = b. Then, because the number of non-lexicographic votes in

(Lex(N ∗
1 ), V2, . . . , Vn) is l − 1, we have the following equations.

b =r(Lex(N ∗
1 ), V2, . . . , Vn)

=M(Lex(N ∗
1 ), V2, . . . , Vn)

=M(Lex(N ∗
1 ), Lex(N2), . . . , Lex(Nn))

The second equation holds because the number of non-lexicographicvotes in(Lex(N ∗
1 ), V2, . . . , Vn)

is l − 1. By Lemma 4, we have the following equations.

r(V1, Lex(N2), . . . , Lex(Nn))

=M(V1, Lex(N2), . . . , Lex(Nn))

=M(V1, V2, . . . , Vn) = a

We recall thatb �V1
a, which means that

((V1, Lex(N2), . . . , Lex(Nn)), Lex(N ∗
1 )) is a successful manipulation for voter 1.

This contradicts the strategy-proofness ofr. Therefore,r = M. (End of proof of
Theorem 5.) �

Combining Corollary 2 and Theorem 5, we obtain the followingimpossibility the-
orem on supersets of any lexicographic preference domain.

Theorem 6 For any 1 ≤ j ≤ n, supposeSj is a rich conditional preference set,
LD(Sj) ⊆ Lj ⊆ Pref(Sj), andLj satisfies Condition I. Then, the only strategy-proof
voting rule overLΠ that satisfies non-imposition is a dictatorship.

We recall that ifLj satisfies Condition I, which informally means that any issuei

is more important than issue1 in at least one admissible vote. Theorem 3 follows from
Theorem 6 by lettingSj |xi:di

= L(Di) andLj = Pref(Sj) (the same corollary also
follows from Theorem 8 in the next section).

C Impossibility result for extensions of rich preference domains

Le Breton and Sen [11] characterized strategy-proof votingrules when preferences are
separable, that is, each vote extends a CP-net with no edges.An admissible conditional
preference setS is separableif for any xi, anyai, bi ∈ D1 × · · · × Di−1, we have
S|xi:ai

= S|xi:bi
. In this case, we writeS|xi

= S|xi:ai
. For example, Example 3 has

a separable admissible conditional preference set (because the allowed preferences for
wine do not depend on the choice of the main course). For any separable admissible con-
ditional preference setS, we let SCPnets(S) = {N : N is a CP-net with no edge, and for anyi ≤
p,N|xi

∈ S|xi
}.

That is, SCPnets(S) is the set of all CP-netsN with no edges, such that the projec-
tion of N to any issuexi is in S|xi

. Let SPref(S) denote the set of all separable votes
that extend some CP-net in SCPnets(S). We now present the richness definition by Le
Breton and Sen (in our notation).
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Definition 7 (Le Breton and Sen [11]) RΠ =
∏n

j=1 Rj is a rich preference domain,
if for any1 ≤ j ≤ n, there exists a separable admissible conditional preference setSj

such thatRj ⊆ SPref(Sj) and
(A) for any1 ≤ j ≤ n, any1 ≤ i ≤ p, anyai ∈ Di, there existsV i ∈ Sj |xi

such
that top(V i) = ai.

(B) for any1 ≤ j ≤ n, anyNj ∈ SPref(Sj), and any1 ≤ i ≤ p, there exist
Vj , V

′
j ∈ Rj , Vj ∼ Nj , V ′

j ∼ Nj such that
(i) for anya, b ∈ X , if ai �Nj |xi

bi, thena �Vj
b. That is, issuei dominates all

other issues forVj .
(ii) for any a, b ∈ X , if for all i′ 6= i, ai′ �Nj |x

i′
bi′ and there existsi′ 6= i such

thatai′ �Nj |x
i′

bi′ (that is,a−i weakly dominatesb−i), then,a �V ′

j
b. That is, issuei

is dominated by the (union of) other issues forV ′
j .

RΠ satisfies condition (A) if and only ifS is rich (according to our earlier definition
of richness). We note that Condition I (in Definition 6) is weaker than condition B(i)
in the following sense: ifRj ⊆ SPref(Sj) satisfies condition B(i), then, it also satis-
fies Condition I, because the vote guaranteed to exist by condition B(i) satisfies all the
premises of Condition I.

The following is the main theorem by Le Breton and Sen (in our notation).

Theorem 7 (Le Breton and Sen [11])Let RΠ =
∏n

j=1 Rj be a rich preference do-
main. A voting ruler that satisfies non-imposition is strategy-proof overRΠ if and only
if it is a separable locally strategy-proof CR-net.

Theorem 7 works (only) for any rich preference domainRΠ ⊆
∏n

j=1 SPref(Sj), where
Sj is the separable admissible conditional preference set that Rj corresponds to. We
note that for any1 ≤ j ≤ n, SPref(Sj) is a strict subset of Pref(Sj), and SPref(Sj) is
exponentially smaller than Pref(Sj). Next, we consider the case that for any1 ≤ j ≤ n,
the preference domain of voterj, denoted byLj , is both a superset ofRj , and a subset
of Pref(Sj). We first obtain a corollary from Theorem 7.

Corollary 3 Let RΠ be a rich preference domain. For any1 ≤ j ≤ n, supposeRj ⊆
Lj ⊆ Pref(Sj) and Lj extendsSj . If a sequential voting ruleM that satisfies non-
imposition is strategy-proof overLΠ , then,M is a dictatorship.

Proof of Corollary 3: For any1 ≤ j ≤ n, anya = (a1, . . . , ap) ∈ X , anyV a1

j ∈
Sj |x1

such thattop(V a1

j ) = a1, anyV ai

j ∈ Sj |xi
such thattop(V ai

j ) = ai, we let
Nj ∈ SCPnets(Sj) be such thatNj |x1

= V a1

j , Nj |xi
= V ai

j , andtop(Nj) = a; let Vj

be an extension ofNj satisfying the condition B(i) for issuei in Definition 7. We note
that for anyb1 ∈ D1, b1 6= a1, anybi ∈ Di, bi 6= ai, (b1, a−1) �Vj

(bi, a−i), because
ai �Vj |xi

bi. BecauseRj ⊆ Lj, we haveVj ∈ Lj, which means thatLj satisfies
Condition I.

By Theorem 7,M is locally strategy-proof over
∏n

j=1 Rj . BecauseLΠ ⊆ Pref(S),
M is locally strategy-proof overLΠ . Therefore, by Theorem 4,M is dictatorial. �

Our next theorem states that if for any1 ≤ j ≤ n, Lj is a superset ofRj , then the
only strategy-proof voter rule overLΠ is the sequential composition of locally strategy-
proof rules, one for each issue.
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Theorem 8 Let RΠ be a rich preference domain. For any1 ≤ j ≤ n, let Rj ⊆ Lj ⊆
Pref(Sj). If voting ruler that satisfies non-imposition is strategy-proof overLΠ , thenr

is a locally strategy-proof sequential voting rule (separable CR-net).

Proof of Theorem 8: Becauser is strategy-proof overRΠ , by Theorem 7, there exists
a separable CR-netM such that for anyP ∈ RΠ , r(P ) = M(P ). We note that the
domain ofM can be extended to

∏n

j=1 Pref(Sj) in a natural way, as follows. For any
P ∈

∏n

j=1 Pref(Sj), letM(P ) = (d1, . . . , dp) in which
di = M|x1

(P |xi:d1···di−1
). In this case,M is equivalent to the sequential voting rule

Seq(M|x1
, . . . ,M|xp

). We next show that for anyP ∈
∏n

j=1 Pref(Sj), r(P ) =

M(P ). Suppose for the sake of contradiction that there existsP ∈
∏n

j=1 Pref(Sj)
such thatr(P ) 6= M(P ). Let a = r(P ), b = M(P ), and leti∗ be the smallest num-
ber that satisfiesai∗ 6= bi∗ . Let N1, . . . ,Nn be a set of CP-nets with no edges such
that for any1 ≤ i ≤ p, i 6= i∗, top(Nj |xi

) = ai, andNj |xi∗
= Vj |xi∗ :a1···ai∗−1

.
Let P ′ = (V ′

1 , . . . , V ′
p) be the profile in which for all1 ≤ j ≤ n, V ′

j is the exten-
sion of Nj that satisfies condition B(ii) from Definition 7 w.r.t.i∗. That is, for any
1 ≤ j ≤ n, anyy, z ∈ X , if y−i∗ weakly dominatesz−i∗ in Nj , theny �V ′

j
z. For

any d ∈ X , any1 ≤ j ≤ n, d �V ′

j
a if and only if for anyi 6= i∗, di = ai, and

di∗ �V ′

j |xi∗ :a1···ai∗−1
ai∗ . We note thatV ′

j |xi∗ :a1···ai∗−1
= Vj |xi∗ :a1···ai∗−1

. It follows

thatd �V ′

j
a impliesd �Vj

a. Therefore, by Lemma 1,r(P ′) = a. SinceP ′ ∈ RΠ ,
M(P ′) = r(P ′) = a. We note thatP ′|xi∗

= P |xi∗ :a1···ai∗−1
, which means that

ai∗ =M(P ′)|xi∗
= M|xi

(P ′|xi∗
)

=M|xi
(P |xi∗ :a1···ai∗−1

)

=bi∗

This contradicts the assumption thatai∗ 6= bi∗ . �

Finally, by combining Theorem 8 and Corollary 3, we obtain the following impos-
sibility result. This theorem states that if take a rich preference domain that corresponds
to a separable admissible conditional preference set, and extend it so that for any acyclic
CP-net that uses the same admissible conditional preference set, we include some pref-
erences extending that CP-net, then we must give up one of strategy-proofness, non-
dictatorship, and non-imposition.

Theorem 9 Let RΠ be a rich preference domain. For any1 ≤ j ≤ n, suppose that
Rj ⊆ Lj ⊆ Pref(Sj) andLj extendsSj . A voting rule that satisfies non-imposition is
strategy-proof overLΠ if and only if it is a dictatorship.

We note that Theorem 3 also follows from Theorem 9.


