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Abstract. In this paper, we characterize strategy-proof voting rutksn the set

of alternatives has a multi-issue structure, and the vopeeerences are repre-
sented by acyclic CP-nets that follow a common order oveleissOur main re-

sult is a simple full characterization of strategy-proofing rules satisfying non-

imposition for a very natural restriction on preferencesniulti-issue domains:

we show that if the preference domain is lexicographic, ewoting rule satis-

fying non-imposition is strategy-proof if and only if it cdre decomposed into
multiple strategy-proof local rules, one for each issue each setting of the is-
sues preceding it. We also obtain the following variant dftiaird-Satterthwaite:
when there are at least two issues and each of the issueskeaattieast two

values, then there is no non-dictatorial strategy-prodfngorule that satisfies
non-imposition, even when the domain of voters’ prefersnseestricted to lin-

ear orders that are consistent with acyclic CP-nets folgna common order
over issues. This impossibility result follows from eitloere of two more general
new impossibility results we obtained.

Keywords: Voting, multi-issue domains, strategy-proofness, legiaphic do-
mains

1 Introduction

When agents have conflicting preferences over a set of atfees, and they want to
make a joint decision, a natural way to do so is/ying Each agent (voter) is asked to
report his or her preferences. Theryating ruleis applied to the vector of submitted
preferences to select a winning alternative. However, mes@ases, a voter has an
incentive to submit false preferences in order to changeitheer to a more preferable
alternative (to her). An instance of such misreporting ifedsa manipulation and the
perpetrating voter is called manipulator If there is no manipulation under a voting
rule, then, the rule istrategy-proof

Unfortunately, there are some very natural propertiestfeasatisfied by no strategy-
proofvoting rule, according to the Gibbard-Satterthwtitnrem [16, 27]. The theorem
states that when there are three or more alternatives, anebser can chooseanylin-
ear order over alternatives to represent her preferertoers, ho non-dictatorial voting
rule that satisfies non-imposition is strategy-proof. Aingtrule is dictatorial if the
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same voter's most-preferred alternative is always chadseatisfies non-imposition if
for every alternative, there exisomereported preferences that make that alternative
win.

There are several approaches to circumventing this imipiiigsiresult. One that
has received significant attention from computer scieistecent years is to consider
whether finding a manipulation is computationally hard urgtame rules. If so, then
even though a manipulation is guaranteed to exist, it withpps not occur because
the manipulator(s) cannot find it. Indeed, it has been shdwahfinding a manipula-
tion is computationally hard (more precisely, NP-hard)farious rules, for various
definitions of the manipulation problere.g, [6,5,13,17, 14, 34]). On the other hand,
NP-hardness isworst-casenotion of hardness, so that it may very well be the case that
mostmanipulations are easy to find. Various recent results sigdhat this is indeed
the case [25,12, 24,15, 35, 30, 29, 28, 32, 18]. This papey doifall under this line of
research.

Instead, this paper falls under another, older, line ofasgeon circumventing the
Gibbard-Satterthwaite result. This line, which has beasyed mainly by economists,
is to restrict the domain of preferences. That is, we asshate/bters’ preferences al-
ways lie in a restricted class. An example of such a clasatxtsingle-peakegrefer-
ences [7]. Here, it is assumed that each alternative is e¢sdavith a position in some
space (for example, the alternative’s position on a leftigbt political spectrum), and
that voters always prefer alternatives that are closerdi thost preferred alternative.
That is, if a is voteri’s most-preferred alternative, and we have thas in the left-
most positionp is in the middle position, andis in the rightmost position, then voter
1 must prefew to c. For single-peaked preferences, desirable strategyf-prtss exist,
such as thenedianrule, which, if we assume for simplicity that the number ofers
is odd, chooses the median of the voters’ peaks (which isthss@€ondorcet winner).
Other strategy-proof rules are also possible in this pegfee domain: for example, it
is possible to add some artificigblfanton) votes before running the median rule. In
fact, this characterizes all strategy-proof rules for Ergeaked preferences [22]. On
the other hand, preferences have to be significantly réstrim obtain such positive
results: Aswakt al. [1] extend the Gibbard-Satterthwaite theorem, showingittthe
preference domain Igked, then with three or more alternatives the only strategyspro
voting rule that satisfies non-imposition is a dictatorship

In real life, the set of alternatives often has a multi-isstrecture. That is, there
are multipleissueg(or attributeg, each taking values in its respective domain, and an
alternative is completely characterized by the valuesttimtssues take. For example,
consider a situation where the inhabitants of a county \@téetermine a government
plan. The plan is composed of multiple sub-plans for sevetafrelated issues, such
as the transportation, environment, and health [10]. Glearvoter’s preferences for
one issue in general depend on the decision taken on theisshies: if a new highway
is constructed through a forest, a voter may prefer a nagsgerve to be established;
but if the highway is not constructed, the voter may prefat tio nature reserve is es-
tablished. As another example, in each US presidentiatietegear, the president as
well as members of the Senate and the House must be electedndiple, a voter’s
preferences for a senator can depend on who is elected adgme$or example if the
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voter prefers a balance of power between the Democratic apdifitican parties. A
straightforward way to aggregate preferences in multiessomains isssue-by-issue
(a.k.a.seat-by-seatvoting, which requires that the voters explicitly expréssir pref-
erences over each issue separately, after which each ssdeeided by applying issue-
wise voting rules independently. This makes sense if vopeeerences arseparable
that is, each voter’s preferences over a single issue aepéamtient of her preferences
over other issues. However, if preferences are not seggiitis not clear how the voter
should vote in such an issue-by-issue election. Indeesikitown that natural strategies
for voting in such a context can lead to very undesirableltg§l0, 20].

The problem of characterizing strategy-proof voting rutesnulti-issue domains
has received significant attention. Strategy-proof vatirigs for high-dimensional single-
peaked preferences (where each dimension can be seen aa@rhiave been charac-
terized [8, 2, 3, 23]. Barberat al. [4] characterized strategy-proof voting rules when
the voters’ preferences are separable, and each issueaiy lfthat is, the domain for
each issue has two elements). Ju [19] studied multi-isso&dts where each issue can
take three values: “good”, “bad”, and “null”, and charaized all strategy-proof voting
rules that satisfynull-independencehat is, if a voter votes “null” on an issugethen
her preferences over other issues do not affect the valussoéi (because she voted
“null” for issue ).

The prior research that is closest to ours was performed [Brétn and Sen [11].
They proved that if the voters’ preferences are separabtkttee restricted preference
domain of the voters satisfiegighnesscondition, then, a voting rule is strategy-proof
if and only if it is an issue-by-issue voting rule, in whichcedssue-wise voting rule is
strategy-proof over its respective domain.

The work by Le Breton and Sen is limited by the restrictiveneisseparable pref-
erences: as we have argued above, in general, a voter'sgmeés on one issue depend
on the decision taken on other issues. On the other hand, onklwot necessarily
expect the preferences for one issue to depend on everyissiuer. CP-nets [9] were
developed in the artificial intelligence community as a nattepresentation language
for capturing limited dependence in preferences over plalissues. Recent work has
started to investigate using CP-nets to represent prafesdn voting contexts [26, 21,
33, 31]. If there is an order over issues such that every gopeeferences for “later”
issues depend only on the decisions made on “earlier” isthves the voters’ CP-nets
are acyclic, and a natural approach is to apply issue-wisegaulessequentiallyj21].
While the assumption that such an order exists is still i@ste, it is much less re-
strictive than assuming that preferences are separabler{fg the resulting preference
domain is exponentially larger [21]). Recent extensionseagfuential voting rules in-
clude order-independent sequential voting [33], as weflfaaaeworks for voting when
preferences are modeled by general (that is, not necgsaayitlic) CP-nets [31].
However, in this paper, we only study acyclic CP-nets thatcamsistent with a com-
mon order over the issues.
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Our results. In this paper, we focus on multi-issue domains that are caegho
of at least two issues with at least two possible values éath.first show that over
lexicographicpreference domains (where earlier issues dominate lateessin terms
of importance to the voters), the class of strategy-prodihgorules that satisfy non-
imposition is exactly the class of voting rules that can beodegposed into multiple
strategy-proof local rules, one for each issue and eadhgettthe issues preceding it.
Technically, it is exactly the class of abnditional rule nets (CR-netgjefined later in
this paper but analogous to CP-nets, whose local (issue)}eigries are strategy-proof
voting rules. CR-nets represent how the voting rule’s bidran one issue depends on
the decisions made on all issues preceding it. ConcepttiaByis similar to how acyclic
CP-nets represent how a voter’s preferences on one isseadiep the decisions made
on all issues precedingit.

Then, we prove an impossibility theorem, which is the follegwariant of Gibbard-
Satterthwaite. When there are at least two issues with st tea values each, the only
strategy-proof voting rule that satisfies non-impositi®aidictatorship. This result as-
sumes that each voter is free to choose any linear order ¢hagsponds to an acyclic
CP-net that follows a common order over the issues. This gsipdity result follows
from either one of two more general new impossibility restiiat we included in Ap-
pendix C.

We are not aware of any previous characterization or impdggiresults of strategy-
proof voting rules when voters’ preferences display depeoiks across issues (that is,
when they are modeled by CP-nets).

2 Preliminaries

In a voting setting (not necessarily one with multiple isguéet X’ be the set oalter-
natives(or candidatey. A linear orderV on X is a transitive, antisymmetric, and total
relation onX’. The set of all linear orders oki is denoted by (X). An n-voter profile
P on X consists ofn linear orders ort. Thatis,P = (V4,...,V,), where for every
1<j<n,V; € L(X). The set of all profiles o/’ is denoted byP(X). In this paper,
we letn denote the number of voters. @oting) ruler is a mapping from the set of
all profiles onX to X, thatis,r : P(X) — X. For example, thelurality rule (also
called themajority rule, when there are only two alternatives) chooses thenaltee
that is ranked in the top position in the most votes (with edtieaking mechanism, for
example, ties are broken in alphabetical order. In this papdoes not matter which
tie-breaking mechanism we use). A voting rulsatisfies

e unanimityif top(V') = cforall V € P impliesr(P) = c.

e non-impositiorif for any ¢ € X and anyn € N, there exists an n-voter profile
such that(P) = c.

e (strong) monotonicityf for any pair of profilesP = (V4,...,V,,), P’ = (V{,..., V)
such that for any alternativeand anyl < j < n, we haver -y, r(P) = ¢ v, r(P),
then,r(P’) = r(P).

! This is the standard assumption for studying voting in rdskile domains, because otherwise

the domain can be simplified (by removing issues that onlg taie value), or have no multi-
issue structure (when there is only one issue).
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e strategy-proofnesi§ there does not exist a pai, V;/), whereP is a profile, and
V is a false vote of votef, such that:(P—;, V) v, r(P). Thatis, in each profile, no
voter can misrepresent her preferences to make hersedf lodt

In this paper, the set of all alternativdsis amulti-issue domainThat is, letZ =
{x1,...,%x,} be a set ofssueswhere each issue; takes values in éocal domain
denoted byD;. An alternative is uniquely identified by its values on afluss, that is,

X =Dy x---x D,

Example 1 A group of people must make a joint decision on the menu faredifthe
caterer can only serve a single menu to everyone). The me&owiposed of two issues:
the main courseN]) and the wine V). There are three choices for the main course:
beef (b), fish (f), or salad (s). The wine can be either red Wihewhite wine (w), or
pink wine (p). The set of alternatives is a multi-issue dom&i = {b, f, s} x {r, w, p}.

CP-nets [9] are a compact representation that capturesdepeies across issues.
In this paper, we use them not for their representationalpamtmess, but rather as
useful mathematical notation for describing preferenoesiilti-issue domains, where
preferences over one issue can depend on the values of ésmlies.

A CP-net\ over X consists of two parts: (a) a directed gragh= (Z, £) and (b)
a set of conditional linear preference§ over D;, for each settingl of the parents of
x; In G. Let CPT(x;) be the set of the conditional preferences of a votebgrthis is
called aconditional preference table (CPT)

A CP-net\ captures dependencies across issues in the following.s&hiseluces
a partial preordei-, over the alternatives’ as follows: for anya,,b; € D;, any
settingd of the set of parents of; (denoted byParq(x;)), and any setting of Z \
(Parg(xi) U {x;}), (ai,d,z) =n (b;,d,2) if and only if a; =% b;. In words, the
preferences over issog only depend on the setting of the parentsp{but not on any
other issues). For any < i < p, CPT(x;) specifies conditional preferences owgr
Now, if we obtain an alternativé’ from d by only changing the value of théh issue of
d, we can look up CP{k;) to conclude whether the voter prefel'sto d, or vice versa.
In general, however, from the CP-net, we will not always ble &b conclude which of
two alternatives a voter prefers, if the alternatives diffe two or more issues. This is
why N usually induces a partial preorder rather than a linearrorde

We note that when the graph 4f is acyclic,= x is transitive and asymmetric, that
is, a strict partial order. L&D = x; > --- > x,,. We say that a CP-né{ is compatible
with (or, follows) O, if x; is a parent ofk; in the graph implies that < j. That is,
preferences over issues only depend on the values of eiadigzs inO. A CP-net is
separabldf there are no edges in its graph, which means that therecapeaierential
dependencies among issues.

Example 2 Let X be the multi-issue domain defined in Example 1. We define ae€P-n
N as follows:M is the parent oW, and the CPTs consist of the following conditional
preferencesCPT(M) ={b > f = s}, CPT(W)={b:r=p>w,f:w>p >
r,s:p>=w > r}, whereb: r = p = wis interpreted as follows: “wheiM is b, then,

r is the most preferred value f&iV, p is the second most preferred value, ands the
least preferred value N and its induced partial order 5 are illustrated in Figure 1.

N is compatible witiMl > W. A is not separable.
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CPT (M) br — bp——=bw
b~ f>s
M—™W CPT(W) fw——s fp—— fr
b:r>=p>w
frws=p>r
S:p=w>r Sp——> SW——sr
(a) A CP-netV. (b) The partial order induced by

Fig. 1. A CP-netN and its induced partial order.

A linear orderV over X extendsa CP-netV, denoted byi” ~ N, if it extends
the partial order thatv” induces. (This is merely saying th&tis consistent with the
preferences implied by the CP-nkt) V is separabléf it extends a separable CP-net.
The set of all linear orders that extend CP-nets that are atiip withO is denoted by
Legal(O). Throughout the paper, we make the following assumption aboumulti-
issue domains and the voters’ preferences.

Assumption 1 In this paper, each multi-issue domain is composed of at teasissues
(p > 2), and each issue can take at least two values. Moreover,Rlh€ts are com-
patible withO = x; > --- > x,,, and the voters’ preferences are alway<iagal(O)
(thatis, a voter’s preferences over an issue do not deperidewnalues of later issues).

To present our results, we will frequently use notationstbpresent the projection
of a vote/CP-net/profile to an issug (that is, the voter’s local preferences ovg),
given the setting of all issues precedixng These notations are defined as follows. For
any issuex;, any settingd of Parg(x;), and any linear ordel that extendsV, we let
Vx,;.a andN|x,.qa denote the the projection &f (or, equivalently\) to x;, givend.
That is, each of these notations evaluates to the linear erfjén the CPT associated
with x;. For example, lef\" be the CP-net defined in Example/|w., =7 = p =
w. For anyO-legal profile P, P|x,.q4 is the profile overD; that is composed of the
projections of each vote iR onx;, givend. Thatis,P|x,.a = (Vi|x,:ds - - - » Vaulx,:d) =
(Mlxseds - - -, Nulx,:a), whereP = (V4,...,V,), and for anyl < i < p, V; extends

Thelexicographic extensionf a CP-netV, denoted byLez(N), is a linear order
V over X such that forany < ¢ < p,anyd; € Dy x --- x D;_1, anya;,b; € D;,
and anyy, z < Di+1 X oo X Dp, if a; >-N‘xi:d1', b, then(di,ai,y) -V (di,bi,z).
Intuitively, in the lexicographic extension o¥, x; is the most important issuex,
is the next important issue, and so on; a desirable change &adier issue always
outweighs any changes to later issues. We note that theolgreiphic extension of any
CP-net is unique w.r.t. the ordél. We say thal” € L(X) is lexicographicif it is the
lexicographic extension of a CP-n&f. For example, lef\" be the CP-net defined in
Example 2. We hav&ex(N) = br = bp = bw = fw = fp = fr = sp > sw = sr.
A profile P is O-legal/separable/lexicographic, if each of its votes iduyal(O)/ is
separable/ is lexicographic.

Given a vector ofocal rules(ry,...,r,) (thatis, foranyl < i < p, r; is a voting
rule onD;), thesequential compositioof 4, . . ., , W.r.t. O, denoted bySeq(r1, . .., 1),
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is defined for allO-legal profiles as followsSeq(r1, . ..,mp)(P) = (di,...,dp) € X,
so that for anyl < i < p, d; = r;(P|x,:d,---d;_, )- That is, the winner is selected in

steps, one for each issue, in the following way: in stef is selected by applying the

local ruler; to the preferences of voters ouvef, conditioned on the values, . .., d;_;
that have already been determined for issues that precetféhen the input profile is
separableSeq(ry, . .., 7,) becomes aissue-by-issugoting rule.

3 Conditional rule nets (CR-nets)

We now move on to the contributions of this paper. In a seqalerdting rule, the local
voting rule that is used for an issue is always the same, shaheé local votingule
does not depend on the decisions made on earlier issuegfthaicourse, the voters’
preferencegor this issue do depend on those decisions).

However, in many cases, it makes sense to let the local vatieg depend on the
values of preceding issues. For example, let us considar Hgasetting in Example 1,
and let us suppose that the caterer is collecting the votemaking the decision based
on some rule. Suppose the order of votingvs > W. Suppose the main course is
determined to be beef. One would expect that, conditionimdp@ef being selected,
most voters prefer red wine @, » > p > w). Still, it can happen that even conditioned
on beef being selected, surprisingly, slightly more thalf the voters vote for white
wine (w > p > r), and slightly less than half vote for red & p > w). If the caterer
uses an unbiased rule, then presumably white wine will bectsd. While this is in
the interest of slightly more than half the voters and mayefoee appear to be a good
idea, consider now a setting where not everyone who willyettje meal is voting. For
example, some people may not have been available at the tithe wote; some people
may bring their spouses, who were not present for the vofieghaps the caterer’s
(non-voting) crew will be able to eat some of the mest. In this case, the caterer,
who knows that in the general population most people prefta white given a meal
of beef, may “overrule” the preference for white wine amomg $light majority of the
voters, and select red wine anyway. While this may appeaesdrat snobbish on the
part of the caterer, in fact she may be acting in the bestastaf social welfare if we
take the non-voting agents (who are likely to prefer redgiveef) into account.

Of course, if a large majority of the voters prefer white wiieen beef, then the
caterer should not overrule this. This effectively comesidto a local rule where (say)
at least 60% of voters need to prefer white wine for it to beceld given beef (equiva-
lently, the caterer may add some “phantom votes” for red wimen beef, to represent
the non-voting diners’ likely preferences). Converseljewfish is chosen, the caterer’s
rule for deciding the wine based on the votes may be slighdsdal towards white wine.
Hence, in this situation, it makes good sense for the lodalfor wine to depend on the
values of its parent (the main course), unlike in a typicglusatial voting rule.

There are many other settings where we may wish to bias tleefoulone issue
conditioned on the decision for an earlier issue. For exampé may consider letting
citizens vote for president first, and for vice-presidemsel; but, given the choice of
the president, his or her running mate would need to recea®than 30% of the vote
to not be elected.
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In this section, we introduceonditional rule nets (CR-net&) model voting rules
where the local rules depend on the values chosen for eiadiggs. A CR-net is defined
similarly to a CP-net—the difference is that CPTs are regddiy conditional rule tables
(CRTs), which specify a local voting rule ové); for each issue; and each setting of
the parents ok;. 2

Definition 1 An (acyclic)conditional rule net (CR-net)p1 over X’ is composed of the
following two parts.

1. Adirected acyclic grapty over{x,...,x,}.

2. A set ofconditional rule table¢CRTSs) in which, for any variable; and any
settingd of Parg(x;), there is alocal conditional voting ruleM |x.q over D;.

A CR-net encodes a voting rule over éMllegal profiles (we recall that we fi©0 =
x1 > --- > X, in this paper). For any < i < p, in theith step, the valuel;
is determined by applying\|x;.4,...4,_, (the local rule specified by the CR-net for
theith issue given that the earlier issues take the vadlyjes-d;_1) to Plx,.d,--d;_,
(the profile of preferences over thith issue, given that the earlier issues take the
valuesd; - - - d;—1). Formally, for anyO-legal profile P, M(P) = (di,...,dp) is
defined as followsd; = M|x, (Plx,), d2 = Mx,:d; (Plxy:d, ), €tC. Finally,d, =
M|xp:dl'”dp71(P|xp:dl"'dpfl)'

A CR-net M is separableif there are no edges in the graph 8. That is, the
local voting rule for any issue is independent of the valualbbther issues (which
corresponds to a sequential voting rule).

4 Restricting voters’ preferences

We now consider restrictions on preferences. A restriatiopreferences (for a single
voter) rules out some of the possible preferencek(i#’). Following the convention
of [11], a preference domaiis a set of all admissible profiles, which represents the
restricted preferences of the voters. Usually a preferdoogain is the Cartesian prod-
uct of the sets of restricted preferences for individuakv®t A natural way to restrict
preferences in a multi-issue domain is to restrict the pesfees on individual issues.
For example, we may decide that- w > p is not a reasonable preference for wine
(regardless of the choice of main course), and thereforeitwut (assume it away).
More generally, which preferences are considered reasof@atone issue may depend
on the decisions for the other issues. Hence, in generadafdni, for each settingl; of
the issues before issue, there is a set of “reasonable” (or: possible, admissibriefgp-
ences ovek;, which we callS|x,.q4,. Formally,admissible conditional preference sets
which encode all possible conditional preferences of wtere defined as follows.

Definition 2 Anadmissible conditional preference stbver X’ is composed of multi-
ple local conditional preference setdenoted byS|x,.q,, such that foranyl < i < p
and anyd; € Dy x --- X D;_1, S|x;.d, iS @ set of (not necessarily all) linear orders
overD;.

2 ltis not clear how a cyclic CR-net could be useful, so we omfirte acyclic CR-nets.
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Thatis, foranyl <i <pandanyd; € Dy x --- x D;_1, S|x,.4; €ncodes the voter’s
local language over issug given the preceding issues takidg. In other words, if
S is the admissible conditional preference set for a votem tive require the voter’s
preferences ovex; be inS|x; .4, -

An admissible conditional preference set restricts thsiptes CP-nets, preferences,
and lexicographic preferences. We note that Le Breton and B defined a similar
structure, which works specifically for separable votes.

Now we are ready to define the restricted preferences of a votr X'. Let S be
the admissible conditional preference set for the vote#rs admissible vote can be
generated in the following two steps: first, a CP-néts constructed such that for any
1<i<pandanyd; € D; x ---D;_1, the restriction of\" onx; givend,; is chosen
from Slx,.4,; second, an extension @f is chosen as the voter’s vote. By restricting
the freedom in either of the two steps (or both), we obtaint @kthe voter’s restricted
preferences. Hence, we have the following definitions.

Definition 3 LetS be an admissible conditional preference set over

e CPnet$S) = {N : Nis a CP-netovet, andViVd; € Dy x---xD;_1,N|x,.a; €
S|X'L:di}'

o Pref(S) = {V : V ~ N, N € CPnets$S)}.

e LD(S) = {Lex(N) : N € CPnetsS)}.

That is, CPnetsS) is the set of all CP-nets ove¥ corresponding to preferences
that are consistent with the admissible conditional pefee setS. PrefS) is the set
of all linear orders that are consistent with the admisstleditional preference set
S. LD(S), which we call theexicographic preference domairs the subset of linear
orders in PrefS) that are lexicographic. For any C Pref(S), we say that. extends
S if for any CP-net in CPne(s), there exists at least one linear orderZirconsis-
tent with that CP-net. It follows that D(S) extendsS; in this case, for any CP-ng¢’
in CPnet$S), there exists exactly one linear orderiiD(S) that extendsV. Lexico-
graphic preference domains are natural extensions of atgiconditional preference
sets, but they are also quite restrictive, since any CP-nigtltas one lexicographic
extension.

We now define a notion of richness for admissible conditigmeference sets. This
notion says that for any issue, given any setting of the&adsues, each value of the
current issue can be the most-preferred éne.

Definition 4 An admissible conditional preference sets rich if for eachl < i < p,
each valuationd; of the preceding issues, and eaghc D;, there existd’* ¢ S
such thata; is ranked in the top position af*.

X,;:di

We remark that richness is a natural requirement, and iss @ahvery weak restric-
tion in the following sense. It only requires that when a vageasked about her (local)
preferences ovex; givend;, she should have the freedom to at least specify her most
preferred local alternative if; at will. We note thaiS|,.q4,| can be as small ;|
(by letting each alternative ifv; be ranked in the top position exactly once), which is
in sharp contrast to.(D;)| = | D;|! (when all local orders are allowed).

% This isnotthe same richness notion as the one proposed by Le BretonemavBich applies
to preferences over all alternatives rather than to adbiessonditional preference sets.
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We now revisit our example and restrict the voters’ prefeesnin a reasonable
manner. We let the voters’ preferences over any issue biegiegaked.

Example 3 Let the multi-issue domaift' be defined as in Example 1. L&te the ad-
missible conditional preference set whose local conditigmeference sets are single-
peaked, as illustrated in Figure 2. That Sjm = {(b = s > f),(s = b > f),(s >
f>=0b),(f = s = b)} is the single-peaked preference domain in which the positio
of b, s, and f are listed from left to right in the order on a straight linen@ the pref-
erences of a voter is specified by the distance from eacmaltiee to the “peak” (the
voter's most preferred point) along the linSjw., = S|w.r = S|w:s are the single-
peaked preference domains in which the positions pf andw are listed from the left
to the right in the order on a straight line (we note that inglExample, these three
local conditional preference sets are the same, but theybeadifferent in general)S

is rich, because in single-peaked domains, each alteraddivanked in the top position
in at least one linear order. The CP-naf defined in Example 2 is not in CPnefy,
becausdb - f > s) ¢ S|m. Let N’ be a CP-net in whict\’|p = b = s > f, and
all other conditional preferences are the same as\inThen, N’ € CPnet$S), and
Lex(N") € Pref(S).

S‘M 5|W:b:5‘w:f:5‘w:s
beef salad fish red pink  white

Fig. 2. An admissible conditional preference gein which all local domains are single-peaked.
Positions of the alternatives are shown in the figure.

Throughoutthe paper, we focus on the following preferemeeains: for each voter
J (with 1 < j < n), there is an admissible conditional preferenceSgtand voter
j’'s preferences are restricted to a set of linear ordgr¢hat extendsS;. We say all
votes inL; areadmissible Let L7 be the set of all profiles, in each of which voter
j’'s preferences are chosen fralny for any1l < j < n, thatis,Ly = H;‘:l L;. A
CR-netM is locally strategy-prooff all its local conditional rules are strategy-proof
over respective local domains (we remember that the voieeal preferences must be
in the corresponding local conditional preference setatT$ for anyl < i < p,d; €
Dy x -+ X D;_1, Mlx,.q4, is Strategy-proof oveH;.‘:1 Silx;d; -

We now propose a locally strategy-proof rule for our exantipée captures the idea
of the caterer biasing the choice of wine.

Example 4 Let the multi-issue domai&’ be defined as in Example 1, and lgtbe
defined as in Example 3. For aty< j < n,letS; = S. Forany0 < t¢ < 1, letr, be the
voting rule over a single-peaked preference domain thactelthe alternative that is
closestto thé|t(n—1)]+1)th leftmost value within the set of all voters’ favorite vedu
(peaks). For exampley 5 selects the alternative that is closest to the median valeie.
M be a CR-net defined as followsd|m = 70.5, Mlww = 0.1, M|w:r = To.9,
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M|w.s = ro5. * M is locally strategy-proof given this restriction of predeces,
because the local rules are strategy-proof for single-pegreferences [22].

5 Strategy-proof voting rules in lexicographic preferencedomains

In this section, we present our main theorem. We charaetatiategy-proof voting
rules that satisfy non-impaosition, when the voters’ prefees are restricted to lexico-
graphic preference domains.

We are now ready to present our main result, which statesaltening: if each
voter’s preferences are restricted to the lexicographeégpence domain for a rich ad-
missible conditional preference set, then a voting rulé siasisfies non-imposition is
strategy-proof if and only if it is a locally strategy-proBR-net. We recall that in this
paper, there are at least two issues with at least two pessiilies each, and the lexi-
cographic preference domain for a rich admissible conutitipreference sef is com-
posed of all lexicographic extensions of the CP-nets tratanstructed frons.

Theorem 1 Foranyl < j < n, suppose; is a rich admissible conditional preference
set, and votelj’s preferences are restricted to the lexicographic prefieeedomain of
S;. Then, a voting rule that satisfies non-imposition is strategy-proof if and difily

is a locally strategy-proof CR-net.

The proofs of all theorems are relegated to the appendices.

Theorem 1 has some interesting corollaries. First, we tatea CR-net is compu-
tationally easy to apply, as long as each local rule is easyppiy. This suggests that
strategy-proof voting rules that satisfy non-impositiseoa lexicographic preference
domain tend to be easy to apply.

Second, it follows from Theorem 1 that any sequential votirlg that is composed
of locally strategy-proof voting rules is strategy-proafeo lexicographic preference
domains, because a sequential voting rule is a separablee€CR5pecifically, when
the multi-issue domain is binary (that is, for ahy< ¢ < p, |D;| = 2), the sequen-
tial composition of majority rules is strategy-proof whée fprofiles are lexicographic.
This displays an interesting contrast to previous worksherstrategy-proofness of se-
quential composition of majority rules: Lacy and Niou [2@[H_e Breton and Sen [11]
showed that the sequential composition of majority rulesretegy-proof when the pro-
file is restricted to the set of all separable profiles; on theiohand, Lang and Xia [21]
showed that this rule is not strategy-proof when the prddilestricted to the set of all
O-legal profiles.

Of course, Theorem 1 allows for other strategy-proof votirgs besides sequences
of majority rules, when preferences are lexicographic. &ample, with binary is-
sues, we can set different thresholds (instead of the 50@slhlbid of majority), and
the threshold for an issue can depend on the decisions omdhieps issues. With non-
binary issues, if the preferences on each local domain ateated to be single-peaked,
then a sequence of median-voter rules is also strategyf:precan also add phantom

4 This rule is strongly biased towards red wine if beef is chosed towards white wine if fish
is chosen, corresponding to a very snobby caterer.
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voters [22], and again, which phantom voters we add for ameigan depend on the
decisions on the previous issues.

Moreover, from Theorem 1 we immediately obtain the follogvimpossibility the-
orem.

Corollary 1 Suppose that each local domain has at least three elemedtaranvoter

is free to choose any lexicographic linear order. Any styateroof voting rule that
satisfies non-imposition must select the winner in a sequehesteps, as follows: in
stepi wherel < ¢ < p, the value foix; is determined by applying a dictatorship on the
voters’ local preferences ovex;. (The voters’ preferences as well as which dictatorship
is used can depend on the values of preceding issues.)

Conversely, any local-dictatorship CR-net of the form dibsal in Corollary 1 in
fact is strategy-proof and satisfies hon-imposition.

Of course, the restriction to lexicographic preferencestiis limiting. Next, we
investigate whether there is any other preference domaithévoters on which the
set of strategy-proof voting rules that satisfy non-imposiis equivalent to the set
of all locally strategy-proof CR-nets. The answer to thigsfion is “No,” as shown
in the next proposition. More precisely, over any prefeeedomain that extends an
admissible conditional preference set, the set of strapeggf voting rules satisfying
non-imposition and the set of locally strategy-proof CRsreatisfying non-imposition
are identicalf and only ifthe preference domain is lexicographic.

Theorem 2 Foranyl < j < n, suppose; is a rich admissible conditional preference
set,L; C Pref(S;), andL; extendsS;. If there existd < j < n such thatZ; is not the
lexicographic preference domain&f, then there exists a locally strategy-proof CR-net
M that satisfies non-imposition and is not strategy-prooqug‘:1 L;.

6 An impossibility theorem

In this section, we present an impossibility theorem fatsiyy-proof voting rules when
voters’ preferences are restricted to®degal.

Theorem 3 When the set of alternatives is a multi-issue domain, if eaater can
choose any linear order ilegal(O) to represent her preferences, then there is no
strategy-proof voting rule that satisfies non-impositiexgept a dictatorship.

This impossibility theorem is a variant of the Gibbard-8#tiwaite theorem. We em-
phasize that there are at least two issues with at least twsilge values each, and
Legal(©O) is much smaller than the set of all linear orders oveiTherefore, the theo-
rem doesotfollow directly from Gibbard-Satterthwaite. It followsdictly from either
of the two stronger impossibility theorems proved in the eagjices: one is for ex-
tensions of lexicographical domains (Theorem 6 in Appemjixand the other is for
extensions of the “rich” domains defined by Le Breton and Sij [Appendix C).
Due to the space constraint and heavy technicality andiontat the two impossibility
theorems, they are relegated to the appendix.
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We recall that Lang and Xia [21] showed that a specific sedalertting rule (the
sequential composition of majority rules) is not stratgggef when each voter can
choose any linear order ihegal(O) to represent her preferences. Theorem 3 is much
stronger, in that it states that over such a preference dgmei only does the sequential
composition of majority rules fail to be strategy-proof i fact all non-dictatorial
voting rules that satisfy non-imposition fail to be stratgagroof; moreover, this holds
for non-binary multi-issue domains as well.

7 Conclusion

In settings where a group of agents needs to make a jointidecike set of alternatives
often has a multi-issue structure. In this paper, we charaetd strategy-proof voting
rules when the voters’ preferences are represented byiacyetnets that follow a
common order over issues. We showed that if each votersmetes are restricted
to a lexicographic preference domain, then a voting rulesfy@ttg non-imposition is
strategy-proof if and only if it is a locally strategy-pradR-net. We then proved that if
the profile is allowed to be an@-legal profile, then the only strategy-proof voting rules
satisfying non-imposition are dictatorships.

Our result for lexicographic preferences is quite posjthavever, beyond that, our
results do not inspire much hope for desirable strategpfiwating rules in multi-issue
domains. Of course, it is well known that it is difficult to el strategy-proofness in
voting settings in general, and this does not mean that weldlabandon voting as a
general method. Similarly, difficulties in obtaining dedife strategy-proof voting rules
in multi-issue domains should not prevent us from studyioiing rules for multi-issue
domains altogether. From a mechanism design perspedtiaegy/-proofnessis a very
strong criterion, which corresponds to implementation @éméhant strategies. It may
well be the case that rules that are not strategy-proofrssiliit in good outcomes in
practice—or, more formally, in (say) Bayes-Nash equilibmi
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A Proofs

The next two easy lemmas are part of the folklore of straj@mpf voting and will
be frequently used in the proofs of the main theorems (waudelthe proofs in the
appendix for the convenience of the reader). Lemma 1 sthtgsany strategy-proof
ruler satisfies monotonicity, that is, for any profile if each voter changes her vote by
rankingr(P) higher, then the winner is stil( P).

Lemma 1 (Known) Any strategy-proof voting rule satisfies monotonicity.

Proof of Lemma 1: Suppose for the sake of contradictiors strategy-proof but does
not satisfy monotonicity. It follows that there exists afileP, i, andV; such thaf/
is obtained fron¥; by raisingr(P), andr(P-;, V/) # r(P). If r(P-;, V) =y, 7(P),
then we must have tha{ P_;, V/) -y, r(P), which means that voterhas incentive
to falsely report that her true preferences &feif »(P) =y r(P-;, V;), then when
voters’s true preferences afé’ and the other voters’ profile iB_;, she has incentive to
falsely report that her preferences &fe In either case there is a manipulation, which
contradicts the assumption thais strategy-proof. O
Lemma 2 states that any strategy-proof nukatisfying non-imposition always sat-

isfies unanimity, that is, if all votes rank the same altauedirst, that alternative wins.

Lemma 2 (Known) Any strategy-proof voting rule that satisfies non-impositalso
satisfies unanimity.

Proof of Lemma 2: Suppose for the sake of contradictieris strategy-proof and
satisfies non-imposition, but does not satisfy unanimity. There exist an alternative
¢ and a profileP = (V4,...,V,,) such thatc is ranked in the top position in each
of V;, butr(P) # c. Now, because satisfies non-imposition, there exists a pro-
file @ = (Wy,...,W,) such that(Q) = c. Forany0 < j < n, we letP; =
(Wh,...,W;,Vit1,..., V,). We note that?y = P andP,, = Q. Therefore, there ex-
ists j* < n such thatr(Pj«_1) # c andr(P;-) = c. It follows that when the true
preferences of votej* is Vj-, and the preferences of the other voters are aB;in
voterj* has incentive to falsely report that her true preferencég;is which can im-
prove the outcome from(P;-_1) # cto c. This contradicts the assumption thais
strategy-proof. O
Proof of Theorem 1: In the proofs of this paper, for any< i < p, we letx_; denote
I\{x;}, andweletD_; denoteD; x - - -x D;_1 X D; 1 x---xDp. Foranyl < j <mn,
any profile P of n votes, we letP_; denote the profile that consists of all votesin
except the vote by voter.

First, we prove the “only if ” part by induction op. Whenp = 1, the theorem
is immediate. Now, suppose that the theorem holds when k. Whenp = k + 1,
for any strategy-proof rule that satisfies non-imposition, ovéf,; = Dy X --- X
Dy.+1, we prove that this rule can be decomposed into two parts; firapplies a
local voting ruler; for x;, and subsequently, it applies a rulg_,.,, for x_1, which
depends on the outcome of. Thus, we have the property that for aRye L, we
haver(P) = (r1(Plx,)s Tlx_y:r (Plu,) (Plx_1:r(Plx,)))- TheN, we will show that the
induction assumption can be applied to the second part.
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First, we claim that for any strategy-proof voting rulsatisfying non-imposition,
and anyP € L, the value of issug; for the winning alternative only depends on the
restriction of the profile te; . That is, we show that for any pair of profilésQ € L,
P=04,....,V,),Q = (Wy,...,W,) andPlx, = Ql|x,, we must have(P)|x, =
r(Q)|x, - Suppose on the contrary thatP)|x, # r(Q)|x,. For any0 < j < n, we
defineP; = (Wq,...,W;,Vjy1,...,V,). Itfollows that Py = P andP, = Q. We
claim that for any0 < j < n — 1, 7(P})|x, = r(Pj+1)|x,. For the sake of contra-
diction, suppose(P;)|x, # r(Pj+1)|x, for somej < n — 1. Leta; = r(P;)|x, and
by = T(Pj+1)|x1- If a; >-Vj+1‘x1 b1, then, becaUSé;'+1|xl = j+1|x1! (PjJrl, ‘/jJrl)
is a successful manipulation; on the other hand; it~y |, a1, then,(P;, Wj1)
is a successful manipulation. This contradicts the styapFgofness ofr. Thus, we
have shown that the value of issue for the winning alternative only depends on the
restriction of the profile te; .

Therefore, we can define a voting ruleoverD; as follows. For any! € H?:l Silxy s
r1(PY) = r(P)|x,, WwhereP € L andP|,, = P'. Such aP exists becausé D(S;)
extendsS; for all j, and this is well-defined by the observation from the presipara-
graph.r; satisfies non-imposition becaussatisfies non-imposition.

Next, we prove that; is strategy-proof. If we assume for the sake of contradictio
thatr; is not strategy-proof, then there exists a successful nodatipn (P*, Vll) over
Dy, where votei is the manipulator, ané#' = (V;',...,V.}). LetNy, ..., N, N; be
n + 1 CP-nets satisfying the following conditions.

e Foranyl < j < n, Njlx, = V}'; Nilx, = Vj'.
eForanyl <j<n,Nj e CPnet$8j),M € CPnetss)).

Forl < j < n, letV; be the lexicographic extension &f;. Let V; be the lexi-
Cographic extensionAof/l. LetP = (V4,...,V,). We note that thex; component of
(P, Vi) is r1(PL,, V') »=ya ri(P'), which is thex; component of-(P). Because
V;, is the lexicographic extension 8f;, andV;|x, = V!, we have that(P_, Vl) -1,
r(P), which means thatP, ;) is a successful manipulation. This contradicts the styateg
proofness of. So, we have shown that is strategy-proof.

We next show that the second part-afan be written as
Tlx_yr1 (Pley ) (Plx_y:m1 (P, ) )—that s, the rule for the remaining issues; only de-
pends on the outcome far . For anylV’ € Legal(O) and anyu; € Dy, we letV|x_,.a,
denote the linear preference ouer ; that is compatible with the restriction &f to
the set of alternatives whosg component isi, that is, for anya_;,b_1 € D_q,
a1 =vi, .., b_;ifand onlyif (a1,a—1) =v (a1,b_1). For anyO-legal profileP,
Plx_,.qa, is composed o/ |x_,.,, forall V € P. For any CP-net/, we letN|x_, .4,
denote the sub-CP-net &f conditioned onx; = a;. It follows that if V' ~ A/, then,
V|x71:a1 ~ N|x71:a1-

Now, we claim that for any pair of profileB,, P, € Ly, P, = (V4,...,V,) and
P, = (Wl, .. .,Wn), such thatll = Tl(Pl) = Tl(PQ) andP1|x71;a1 = P2|x,1:a1| we
must have(P;) = r(P,). To prove this, we construct a profile such that-(P;) =
r(P) = r(P,). Foranyl < j < n, we letV" € S|, be an arbitrary linear order
overD; in whicha, is in the top position. LeP = (Q1,...,Q,) € L be the profile
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in which for anyl < j < n, Q; is the lexicographic extension of the CP-iéf that
satisfies the following conditions.

® '/V'J |x1 = ‘/jal .

e Nilx_1:ar = Nijlx_,:a,» WhereN; is the CP-net thal; extends.

Leta = (a1,a_1) = r(P1). Foranyl < j <nandanyb € X withb ¢, a, we
have that thec; component ob must beu;, becaus&); is lexicographic, and is in
the top position of);|x,. We letb = (a1,b_1). It follows thatb_, =Qilx_ iy B—1-
We note that),|x_,.q, is the lexicographic extension &;|x_,:q,, Vilx_,:a, IS the
lexicographic extension of/;|x_, .., , and
Nijlx_i:as = Njlx_i:a,- ThereforeQ;lx_,.a; = Vjlx_,:a,» Whichmeans tha_, Vil ooy
a_;. Hence, we havé ~y, a. By Lemma 1, we have(P) = r(P;). By similar rea-
soning,r(P) = r(P2), which means that(P;) = r(P) = r(P). It follows that for
anya; € D, there exists a voting rulgx_,.,, overDs x --- x D, such that for any
Pe LH,

r(P) = (r(Plx)s Plx_ira (Pley ) (Plx_1im (Ply)))

At this point, we have shown thatcan be decomposed as desired. We next show
that for anya; € Di, r|x_,.q, iS strategy-proof ovef[_, LD(S;|x_,.4,). Suppose
for the sake of contradiction that there exists a successéulipulation(P—1, Vl_l),
where voter is the manipulator, ané#~! = (V;™%,..., V.71, Let NV, ..., Ny, N be
n + 1 CP-nets satisfying the following conditions.

e Foranyl < j < n, top(N,|x,) = a1. Thatis,a; is ranked in the top position in
the restriction of\; to x;. Also, top(Ni|x, ) = ax.

e For anyl < j < n, Nj|x_,., is the CP-net oveD_; that ijl extends;
Nilx_,.a, is the CP-netoveb_; thatV,~* extends.

e Foranyl < j <n, N € CPnetsS,); N, e CPnetsS)).

The existence of these CP-nets is guaranteed by the riclofi€gsfor any 1 <
Jj < n.Foranyl < j < n,letV; be the lexicographic extension .4f;. Let V; be the
lexicographic extension of. Let P = V1, ..., V,). We note that

T(P) = (TI(P|X1)’r|x—1:T1(P‘x1)(P|x71:7’1(P|x1)))
= (a1,7]x_y:a1 (Plx_y:a1)) = (a1a7’|x71:a1(P71)>
=V (a1, 7’|x71:a1(P:lla ‘71)) =r(P_, Vl)

This contradicts the strategy-proofness-oHence, we have shown that for amy €
D1, 7|x_;:a, is strategy-proof ovef[_, LD(S;lx ;:a,)-

Moreover, because satisfies non-imposition, for any, € D1, r|x_,.q, Satisfies
non-imposition. Hence, for any; € D;, we can apply the induction assumption to
r|x_,:a; @nd conclude that it is a locally strategy-proof CR-net alder;. It follows
thatr is a locally strategy-proof CR-net ovaft, completing the first part of the proof.

We next prove the “if” part. If the proposition does not holden there exists a
locally strategy-proof CR-nett for which there is a successful manipulatioh Vi).
Leti < p be the smallest natural number such tha{P)|., # M(P_;,V})|x,. Letd;
be the first — 1 components ofVi(P) and M (P_;, V;). BecauseM |y,.q, is strategy-
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proof, we have the following calculation.
M(P)|X¢ = M|xi:di(P|xi:di)

>_Vl|xi:di Mlxi:di (P—la W|X¢:di)

= M(P*la ‘A/l) X;

Becausé/ is lexicographic, for any, z € D;y1 x --- x D, we have
(dia M|xi:d1, (P), y) =V (div Mlxi:di (P—la Vl)v Z)

Therefore, M (P) >y, M(P_1,V;), which contradicts the assumption tha V;) is

a successful manipulation. Hence, locally strategy-p@Rfnets are strategy-proof for
lexicographic preferences. O
Proof of Theorem 2: If, for some;j < n, there is a/; € LD(S;) thatis notinL;,
then there must also belg € L; that is not mLD( i) because some vote ib;
must extend the CP-net tha} extends Hence, it ;é [1j=, LD(S;), there must
existsomej < n, V; € L; such thall; is notinLD(S;). ForthlsVJ, there must exist
1 <pa_1 € Dy x---xD;_ 1,&1,1) S DZ,aHl,le S D1+1 X oo X D such
thatai >_VJ'|X1:1%'71 b;, and (ai_l, b;, bi+1) >—Vj (ai_l, a;, ai+1). Now, let us define a
CR-netM as follows.

— M|x,.a,_, IS the plurality rule that only counts votérand voter;’s votes; ties are
broken in the ordeb; > a; = D; — {a;,b;}.
— Any other local conditional voting rule is a dictatorship\ayter1.

Now, let A7 € CPnetéS; ) be a CP-net such thatp(N;) = a;_1a;a;+1, and for
anyk > i+ 1, top(Ni|x,:ai1bibs1-bsy) = br- LELN] € CPnet$S;) be a CP-
net such thatop(J\/Jf) = a;_1b;b;11. LetV; € L; be such that; ~ N, and let
Vj’ € L; be such thai/j’ ~ J\/J’ SuchV; ande’ must exist, becausk; extendsSy,
andL; extendsS;. For any profileP = (V4,...,V;,...,V,) € Ly (that s, for any
I # 1,4, V; is chosen arbitrarily, becauge!(P) does not depend on them), it follows
that M(P) = a;-1a;a;1, andM(P-;, V/) = a;-1b;b;11, which means thatP, V/)
is a successful manipulation for votﬁrSo M is not strategy-proof (and it satlsfles
non-imposition). O

B Impossibility result for extensions of lexicographic prderence
domains

Section 5 settles the case of lexicographic preferencegqrbterences are not always
lexicographic, even for acyclic CP-nets. For example, inngplified menu example
with beef, fish, red wine, and white wine, a red-wine fanatayrpreferbr - fr -
bw = fw. This is consistent with the orddd > W (in fact, the voter’s preferences
are separable), but the preferences are not lexicograptiia@spect to this order. In
this section, we investigate the possibility of strategged voting rules for supersets of
a lexicographic preference domain. For any linear ofidewe letTop(V') denote the
alternative that is ranked in the top positioniin
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Definition 5 A CP-netV is tops-only-separabliéfor any1 < i < p, a;,b; € Dy x
e X Di*l! tOp(./\/ xi:ai) = top(./\/ xi:bi)‘

That is, in a tops-only-separable CP-net, the most praferadue for any issue is
independent of the values of the other issues (though thayee dependencies in the
lower-ranked values).

We now give a condition on the preference domain that indgtitat any issue can
be considered more important than the first issue in some vote

Definition 6 (Condition 1) L satisfiesCondition lif forany1l < j < n, anyl <
i < panya = (a1,...,a,) € X, anyV}' € Sjlx, with top(V}') = a1, anyV} €
Sj Xita1 Qi1 with tOp(‘/JZ) = a;, anyb1 € Dy (b1 7§ al), and anybi e D; (bz 7§ ai),
there exists a tops-only-separable CP-Nét € CPnet$S;) and a voteV; € L; that
extendsV;, such that

— -/\/'j|x1 = ‘/jl!M Xia1@io1 ij.
— (br,a-1) =v; (a—i,b).

Condition | may seem unnatural and hard to read at first gldntave argue that it
is actually quite a natural approach to capturing the ide&‘#mach issue can be more
important than the first issue in some vote.” In order for éssto be more important
than issuel for a voter, it should be the case that (roughly speaking)afy pair of
alternativesi,. = (b1,a—1) andb, = (a_;, b;) (so that one differs froma on the first
issue, and one on thgh issue), the following is true: If it is the case thatis always
preferred ta; in the local preferences of the voter on isgsyeegardless of the values
of the preceding issues), then the voter preéerso b,.—even if she prefers; to b;.

In our definition of Condition I, requiringy to be tops-only-separable implies that
a; is always preferred to; in the local preferences of the voter on issuand because
this argument should hold for any local preferences ayesndx;, we require that we
can choos#’;" andV; freely in Condition I.

A similar notion was adopted by Le Breton and Sen [11] (seerdifh 7 B(i) in
this paper), but there they focus on separable profiles,lwiBisignificantly different
(and more restrictive) from the preference domain studietiis paper. We also argue
that Condition | is weaker than Condition B(i) in Definitionirr some sense; see the
discussion after Definition 7.

We also note that even i ; satisfies Condition I, it must be significantly smaller
than the universal domain in which every voter is free to cecamy linear order ovex'.
For example, the largest set that can satisfy ConditiorLkigul(Q©), and it has already
been proved that the size d@fegal(O) is exponentially (by a power ofY| = 27)
smaller than the number of all linear orders oa&[31].

We now present the following impossibility result: if thegfierence domain satisfies
Condition | and extends an admissible conditional prefegesetsS, then any locally
strategy-proof CR-net either does not satisfy non-impassior it is a dictatorship.

Theorem 4 Foranyl < j < n, suppose; is a rich admissible conditional preference
set,L; C Pref(S;), L, extendsS;, and L7 satisfies Condition I. Then, for any locally
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strategy-proof CR-netM satisfying non-impositionM is strategy-proof ovet.; if
and only if M is a dictatorship.

Proof of Theorem 4: The “if” part is obvious, so we only prove the “only if” part.
For any CR-neiM, and anya; € D,, we say that votey is ana;-dictator if for any

1 <i<p,anyas € Dy X --- x D;_1, we have thatM |y, .., a, iS @j-dictatorship (that
is, the winner is always the alternative that is ranked indipeposition by votey). We
first prove the following lemma.

Lemma 3 Under the conditions of the theorem, let

Pt = (V{,...,V}}) be aprofile in[[}_, Sj|x,, and letM be a non-dictatorial locally
strategy-proof CR-net satisfying non-imposition, wi|,, (P') = a;. If there exist
j <nandWj € Sjlx, suchthatM|y, (P') # M|y, (P!,;,W}), and voterj is not an
a:-dictator, then M is not strategy-proof.

Proof of Lemma 3: Suppose on the contrary that there exists a non-dictatodally
strategy-proof CR-neM that satisfies non-imposition and is strategy-proof advgr,
and satisfies all conditions in the lemma. &Y' € S;|x, be such thaztop(V‘“) =ay;
then, it follows from the strategy-proofnesshpf|,, and LemmalthaM|xl( = Vi) =
a1. Since voterj is not ana;-dictator, there exist* < p, as = (ag,...,a— 1) €
Dy x ---x Ds_1, and a profileP?” ¢ IT/—1 Sjlx;:ara» SUCh thatM |y . .q,a, (P") #
top(V}").
Leta; = Mlx..:a1as (Pi*). We arbitrarily choose

—
Qix 1 = (az‘*+1,---,ap) € Djxy1 X ---x Dy

Let by = M|y, (PL;,W}),bi» = top(VZ ). Next, we construct a vector of CP-nets
Ni,..., Ny, Nj as follows.

— Foranyl # j, Nilx, = V;', Vi
top(Nilx_y:a,) = astop(V}” )az—JrL
top(-/\[l|x 1t bl) = asz*m-

- N |x1 = ‘/jl y
top(N;) = alagbz*az*ﬂ Let\V; be any tops-only-separable CP-net obtained by
Condition | (whereb; correspondst(aZ in Condition I, andu;- corresponds té;
in Condition I).

- N|x, = W}, N is tops-only-separable, andp(\}) = top(W} )asb;- 1.

- N’ € CPnet$S,) Foranyl < n, N; € CPnet$S;). All entries that are not defined
above are chosen arbitrarily.

=V

*

BecauseS is rich, such CP-nets must exist. We 1ét be the extension of/; (which
satisfies Condition I). That i§/; ~ N; and

— —
biasbi-ai 11 =v; 1020+ 41

LetP = (Vi,...,V;21,V;, Vjta,...,V,) be suchthat forall < n, V; € L; andV ~
Ni. LetW; € Lj, W; ~ N. We next show thatP, ;) is a successful manipulation
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for voterj. We note thaP|x, = P!, M|x, (P') = aq; foranyi < i*, a; is ranked in the
top position in all votes oP|x,.a,as-a; 1 Plx,-:a1as = P* s Mlx,e:a1a0(P? ) = ai=;

foranyi > i, a; is ranked in the top position in all votes &x,.q;aza,. a1 ai_s -

Therefore, M (P) = ajasa;-a;-11. On the other handM |y, (P, W}) = by; for

anyi < i*, a; is ranked in the top position in all votes @1_;|x,.s,a5..-0;_, @nd

Wilx;:bras--a;_1; bi= IS ranked at the top position in all votes &f j|x,..,,a, and

Wi |x,«:b1a0; fOr anyi > i*, a, is ranked in the top position in all votes of

P xitbyagbsazeq-—a;_y - 1NETEfOrE,

Xitbra@ob;xa; yq1-a;—1 ande

M(P_j, W) = biagb;- a1

P —
=V; Q1G20+ Qi 41

= M(P)

This contradicts the strategy-proofness\df (End of proof of Lemma 3.) O

We prove the theorem by contradiction. Suppose there existen-dictatorial lo-
cally strategy-proof CR-ne# that satisfies non-imposition and is strategy-proof over
Ly. For anya; € Dy, we let P™ = (V)*',..., V%) be a profile in]_[?zléiﬂx1
such that each voter ranks in the top position. Becaus#1|,, is strategy-proof
and satisfies non-impositioi! |, satisfies unanimity by Lemma 2, which means that
M|x, (P™) = ay. For anyb; # a1, becauseM |y, (P®) # M|y, (P"), there exists a
minimumj < n such that

b b a a a
M, (VP VR Ve v V) = g

b b b
M|x1(‘/117“."/j_lp‘/}l"/}u_«’}l’_“’v#]) #al

That is, by replacing th&,"* by Vlbl one after another fof = 1,... n, before step
j — 1, the winner of the profile ia;, and in stepy the winner is not;;. By Lemma 3,
voterj must be am; -dictator.

Therefore, for anyi; € Ds, there existsi < n such that for anyi > 2, any
as € Dy X -+ D;_1, M|x,.a,a, IS @ j-dictatorship. We consider the following two
cases.

Case 1: there existg < n such that for alk; € D,, voterj is ana,-dictator.
BecauseM is non-dictatorial M is not aj-dictatorship, which means that |,
is not aj-dictatorship. Therefore, there exists a profité in ]_[;?:1 S;jlx, such

that My, (P') # top(V}'). Without loss of generality we lef = 1. We let
a1 = Mx, (P'), by = top(V}'). BecauseM|y, is strategy-proof and satisfies
non-imposition M|y, (Vi*, Vi, ..., V') = b, (we recall thatop(V}!) = b;, and
forall 2 < I < n, top(V,"") = by). Therefore, there exits < k < n such that

1 b b 1 1 1
M|x1(‘/1a‘/Qla"-7Vkl13Vk7Vk+1a"-7Vn):al

M, (VE VR VLV VR VD #a

Because votet is ana;-dictator, voterk is not ana;-dictator. But this contradicts
Lemma 3.
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Case 2: there existgj; # j» anda; # by such that voter; (j2) is ana(b1)-
dictator. Without loss of generality, we gt = 1, jo = 2. Let

Pl :(ma]7‘/2b]7‘/:$a]7"'7v7;11)

Ql = (Vlalvvéblvvi’,bla'-'avrfl)

If M|x,(P') # a1, then, becausé |y, (V}*,...,V,%) = a;, Lemma 3 implies
that voter 2 is am, -dictator, which is not possible because voter 1 ig gdictator.
Therefore M|y, (P') = ay. Similarly, M|, (Q*) = b;. Next, we consider the
following steps: we change votgis vote fromVj“1 to ijl, one after another, for
3 < j < n. It follows that there exist8 < j < n such that

a b b a a a
M, (VL VP VB Ve v V) = g

a b b b a a
M, (VL V2LV Vi v Ve £ a

Lemma 3 implies that voteris ana;-dictator, which is not possible because voter
1is ana;-dictator.

Hence, we have obtained the desired contradiction, andaaeiude thatM is dicta-
torial. (End of proof of Theorem 4.) O
The following corollary is easily obtained from Theorem 4.

Corollary 2 Foranyl < j < n, suppose; is a rich admissible conditional preference
set,LD(S;) C L; C Pref(S;), and L; satisfies Condition I. Then, a CR-n#t that
satisfies non-imposition is strategy-proof ovgt if and only if M is a dictatorship.

Proof of Corollary 2: Let.M be a strategy-proof CR-net ovBf;. Becausd D(S;) C
L; for everyl < j < n, M is strategy-proof oveH?:1 LD(S;), which implies that
M is locally strategy-proof by Theorem 1. We note tlidD(S;) extendsS; for all 7,
which means thal; extendsS; for everyl < j < n. Hence, by Theorem 4M is
dictatorial. O

The next theorem states that over any superset of the ledpbiz preference
domain, the only strategy-proof voting rule that satisfies-imposition is a locally
strategy-proof CR-net. We note that this result does netctly follows from Theo-
rem 1, because from Theorem 1 we only know that this rule mest BR-net when
all votes are lexicographic, which does not mean that itilsas{CR-net beyond the
lexicographic preference domain.

Theorem 5 Foranyl < j < n, suppose; is a rich admissible conditional preference
set, andLD(S;) C L; C Pref(S;). If a voting ruler that satisfies non-imposition is
strategy-proof oveL 7, thenr is a locally strategy-proof CR-net.

Proof of Theorem 5: Becauser is strategy-proof ovel.j, the restriction ofr to
[1;—, LD(S;), denoted by;,p(s,,), is strategy-proof ovef[;_, LD(S;). It follows
from Theorem 1 that; p(s,,) is a locally strategy-proof CR-net, denoted by. Be-
cause forany < j <n, LD(S;) extendsS;, M can be naturally extended fo7. All
that remains to show is thatand M are the same rule.
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Lemma 4 For any profileP € L, if at most one of the votes i is not lexicographic,
thenr(P) = M(P).

Proof of Lemma 4: Suppose that the lemma does not hold. Then, there eRists
(Vi,...,Vn) € Ly such thatr(P) # M(P), (without loss of generality}); ¢
Lex(S81), and, for anyj > 2, V; is lexicographic. Let* be the index of the first com-
ponent ofr(P) that is different from the same component/of( P). That is, the value
of issuex;- in r(P) (denoted by, ) is different from the value of issue;+ in M (P*)
(denoted byb;~); and for anyl < i*, the value of issug; in r(P) is the same as the
value of issuex; in M(P). Leta = (a1,...,a,) = r(P). Foranyl < j < n, we
define a CP-ned; as follows.

_Nll}(*a] @ik _q V|X*a1 @ikt
- N’ is tops-only-separable, amdp(/\f’)
(al,.. 5 Qj* —latOP(V |x,* taq- al*,l) Qg* +la---7ap)-

For anyl < j < n, letV] be the lexicographic extensmnM’ BecauseV’ is lexico-
graphic, foranyj > 2, anyd e Xx,ifd v a, then,d;- PV sag e «. We note
that Vl|xl*.a1 ey = Vilxeiar-ae s WhICh means thadz* *‘/Jlxi*:al---aﬁ | Qi
Therefored -y, a. Itfollows from Lemma 1 that(Vy, V5, ..., V) = a. We note that
r(VI,Vy,...,V)) = M(V],V4,.... V) = (a_;, by~ ), whereb;« # a;~, because this
is a lexicographic profile. 16, P Vilxgesay g, Qi then,(a—_;-,b;«) =v, a, which
means that(V1, V3, ..., V), V/) is a successful manipulation for voteron the other
hand, ifa; v, ., ... b, then, becaus&/ =W
we havea -y (a—;-,b;-), which means that(Vy, V3, ..., V), V1) is a successful
manipulation for votet. This contradicts the strategy-proofness ofend of proof of
Lemma 4.) O

Next, we prove the more general proposition that for g L7, (P) = M(P),
which will complete the proof of the theorem. Suppose thatdlaim does not hold.
Then, we letZ be the set of profiles il ; whose winner under is different from
the winner undetM, that is,” = {P € Ly : r(P) # M(P)}. We have? #
0. Let P* € 2 denote a profile in which the number of non-lexicographiesas
minimized (equivalently, the number of lexicographic vstis maximized). That is, for
any P € &, the number of non-lexicographic voteshhis at least the number of non-
lexicographic votes irP*. Let [ be the number of non-lexicographic votesiti (by
Lemma 4, > 2). It follows that for anyP € Ly, if the number of non-lexicographic
votes inP is at most — 1, thenr(P) = M(P).

Without loss of generality, we leP* = (V4,...,V,,), whereVy,...,V; are non-
lexicographic, and4,...,V, are
lexicographic. For any < j < n, we letN; € CPnet$S;) be the CP-net thal
extends. LefM((P) = a, r(P) = b. By the minimality ofl, r(Lex(N1), Va, ..., V) =
M(Lex(Ni), Va, ..., V,,) = a, because the number of non-lexicographic votes in the
modified profile isl — 1. Becauser is strategy-proof, we must have thiat>-v, a:
otherwise(P*, Lex(N7)) is a successful manipulation for voter 1.

Let N} be a CP-net in whicl is ranked at the top. It follows from Lemma 1 and
the strategy-proofness ofthat

@ik 19
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r(Lex(NT), Va,...,V,) = b. Then, because the number of non-lexicographic votes in
(Lex(NY), Va,...,V,)isl — 1, we have the following equations.

b=r(Lex(Ny),Va,...,V3)
=M(Lex(N7), Va,..., V3)
=M(Lex(N7Y), Lex(N3), ..., Lex(N,))

The second equation holds because the number of non-lezjgioig votes if{ Lex(N7), Va, . ..

is! — 1. By Lemma 4, we have the following equations.

r(Vi, Lex(N2), ..., Lex(N,,))
=M(V1, Lex(N2), ..., Lex(N,))
:M(‘/la‘/éaav’ﬂ) =a

We recall thab >y, a, which means that

((V1, Lex(N2), ..., Lex(N,,)), Lex(N7)) is a successful manipulation for voter 1.

This contradicts the strategy-proofnessrofTherefore;s = M. (End of proof of

Theorem 5.) O
Combining Corollary 2 and Theorem 5, we obtain the followimgossibility the-

orem on supersets of any lexicographic preference domain.

Theorem6 For any1 < j < n, supposeS; is a rich conditional preference set,
LD(S;) € L; C Pref(S;), and L; satisfies Condition |. Then, the only strategy-proof
voting rule overL j; that satisfies non-imposition is a dictatorship.

We recall that ifL; satisfies Condition |, which informally means that any issue
is more important than issuein at least one admissible vote. Theorem 3 follows from
Theorem 6 by lettingS;|«,.q, = L(D;) andL; = PrefS;) (the same corollary also
follows from Theorem 8 in the next section).

C Impossibility result for extensions of rich preference danains

Le Breton and Sen [11] characterized strategy-proof vatithes when preferences are
separable, that is, each vote extends a CP-net with no efig@simissible conditional
preference sef is separableif for any x;, anya;,b; € D1 x --- x D;_1, we have
Slx;:a; = Slx;:b;- In this case, we writ&|x, = S|x,.q,. FOr example, Example 3 has
a separable admissible conditional preference set (bethasllowed preferences for
wine do not depend on the choice of the main course). For grarable admissible con-

ditional preference s&t, we let SCPnetsS) = {\ : NV is a CP-net with no edge, and for ahy

p,Nx;, € S|x,; }-

That is, SCPnefs) is the set of all CP-netd/ with no edges, such that the projec-
tion of A/ to any issuex; is in S|x,. Let SPrefS) denote the set of all separable votes
that extend some CP-net in SCPr{é&ts We now present the richness definition by Le
Breton and Sen (in our notation).
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Definition 7 (Le Breton and Sen [11]) Ry = ]'[;.‘:1 R; is arich preference domain,
if forany1 < j < n, there exists a separable admissible conditional prefegesetS;
such thatR; C SPrefS;) and
(A) foranyl < j < n,anyl < i < p, anya; € D;, there existd/? € S;lx; such
thattop(V?) = a;.
(B) for anyl < j < n, anyN; € SPrefS;), and anyl < i < p, there exist
V;, V] € R;, Vj ~ Nj, V] ~ Nj such that
() foranya,b € X, if a; =), bi,thena -y, b. Thatis, issueé dominates all
other issues foi/;.
(i) foranya,b € X, ifforall i’ # i, ay =, , by and there exists’ # i such
thata,; " Nijlx,s by (thatis,a_; weakly dominatebfi), then,a v b. Thatis, issué
is dominated by the (union of) other issues ¥gr

Ry satisfies condition (A) if and only i is rich (according to our earlier definition
of richness). We note that Condition | (in Definition 6) is weathan condition B(i)
in the following sense: ilR; C SPrefS;) satisfies condition B(i), then, it also satis-
fies Condition |, because the vote guaranteed to exist byitond(i) satisfies all the
premises of Condition I.

The following is the main theorem by Le Breton and Sen (in atation).

Theorem 7 (Le Breton and Sen [11])Let Ry = H;;l R; be a rich preference do-
main. A voting rule- that satisfies non-imposition is strategy-proof of&gy if and only
if it is a separable locally strategy-proof CR-net.

Theorem 7 works (only) for any rich preference dom&in C H;'l:1 SPretS;), where
S; is the separable admissible conditional preference set’th&orresponds to. We
note that for anyl < j < n, SPre{S;) is a strict subset of Pr&§;), and SPrefS;) is
exponentially smaller than Pi&; ). Next, we consider the case that for dny j < n,
the preference domain of votgrdenoted byL;, is both a superset @t;, and a subset
of Pref(S;). We first obtain a corollary from Theorem 7.

Corollary 3 Let Ry be arich preference domain. For any< j < n, supposeR; C
L; C Pref(S;) and L; extendsS;. If a sequential voting ruleV that satisfies non-
imposition is strategy-proof over 7, then, M is a dictatorship.

Proof of Corollary 3: Foranyl < j < n, anya = (as,...,a,) € X, anij"1 €
Sjlx, such thattop(V;"') = a1, any V" € Sj|x, such thattop(V;"") = a;, we let
N € SCPnetkS;) be such thatVj|x, = V"', Nj|x, = V;", andtop(N;) = a; letV;
be an extension oV/; satisfying the condition B(i) for issugin Definition 7. We note
that for anyb; € D1,by # a1, anyb; € D;, b; # aj, (b1, a_1) »v; (b, a_;), because
ai ~v,|,, bi. BecauseR; C L;, we haveV; € L;, which means thal; satisfies
Condition .

By Theorem 7 M is locally strategy-proof ove]F[;?:1 R;.Becausd ; C PrefS),
M is locally strategy-proof ovek ;7. Therefore, by Theorem 4\1 is dictatorial. O

Our next theorem states that if for ahy< j < n, L; is a superset oR;, then the
only strategy-proof voter rule ovéryy is the sequential composition of locally strategy-
proof rules, one for each issue.
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Theorem 8 Let Ry be a rich preference domain. For any< j < n,letR; C L; C
Pref(S;). If voting ruler that satisfies non-imposition is strategy-proof oﬂef thenr
is a locally strategy-proof sequential voting rule (sepaieaCR-net).

Proof of Theorem 8: Becauser is strategy-proof oveR 7, by Theorem 7, there exists
a separable CR-ne¥t such that for anyP € Ry, r(P) = M(P). We note that the
domain of M can be extended tﬁ[?zl PrefS;) in a natural way, as follows. For any
P e [}, PrefS;), let M(P) = (du,. .., d,) in which

di = Mlx, (Plx;:d,---d;_,)- In this case M is equivalent to the sequential voting rule
Seq(Mlx,, - .., Mlx,). We next show that for any> < [[}_, Pref(S;), r(P) =
M(P). Suppose for the sake of contradiction that there exists []_, PrefS;)
such that(P) # M(P). Leta = r(P), b = M(P), and leti* be the smallest num-
ber that satisfieg;« # bl* Let J\/l, ..., N, be a set of CP-nets with no edges such
that for anyl < i < p, i # i*, top(Nj|x,) = ai, f g
Let P' = (V{,..., V) be the proflle |n wh|ch forall < j < n, V] is the exten-
sion of \V; that satisfies condition B(ii) from Definition 7 w.rt*. That is, for any

1 <j<n, anyy,z € X, if y_;~ weakly dominatez_;- in \V;, theny v z. For
anyd € X,anyl < j < n,d v a if and only if for anyi # i*, d; = a;, and
di= = Vile . iayoa,._, Giv- We note tha1V lx;:a1--aie 1 = Vjlxieiar-a;e_,- It fOllOWs
thatd -v; a impliesd v, a. Therefore, by Lemma I,(P’) = a. SinceP’ € Ry,
M(P’) = r(P') = a. We note that”’|x.. = P|x,.:a;..-a,~_,» Which means that

Qgx :M(Pl)|xl* = M|XT(PI|X'L*)
:M|X'L(‘P|Xi*:al'”ai*—])

This contradicts the assumption that # b;-. [l
Finally, by combining Theorem 8 and Corollary 3, we obtaie tbllowing impos-
sibility result. This theorem states that if take a rich prehce domain that corresponds
to a separable admissible conditional preference set,dadcit so that for any acyclic
CP-net that uses the same admissible conditional prefessicwe include some pref-
erences extending that CP-net, then we must give up oneatégir-proofness, non-

dictatorship, and non-imposition.

Theorem 9 Let Ry be a rich preference domain. For anly< j < n, suppose that
R; C L; C Pref(S;) and L; extendsS;. A voting rule that satisfies non-imposition is
strategy-proof oveL 7 if and only if it is a dictatorship.

We note that Theorem 3 also follows from Theorem 9.



