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Abstract
Understanding the computational complexity of
manipulation in elections is arguably the most cen-
tral agenda in Computational Social Choice. One
of the influential variations of the the problem in-
volves a coalition of manipulators trying to make
a favorite candidate win the election. Although the
complexity of the problem is well-studied under the
assumption that the voters are weighted, there were
very few successful attempts to abandon this strong
assumption.
In this paper, we study the complexity of the un-
weighted coalitional manipulation problem (UCM)
under several prominent voting rules. Our main re-
sult is that UCM is NP-complete under the max-
imin rule; this resolves an enigmatic open question.
We then show that UCM is NP-complete under the
ranked pairs rule, even with respect to a single
manipulator. Furthermore, we provide an extreme
hardness-of-approximation result for an optimiza-
tion version of UCM under ranked pairs. Finally,
we show that UCM under the Bucklin rule is in P.

1 Introduction
Voting is a methodology that enables a group of agents (or
voters) to make a joint choice from a set of candidates. Each
agent reports his or her preferences over the candidates; then,
a voting rule is applied to aggregate the preferences of the
agents—that is, to select a winning candidate. However,
sometimes a subset of the agents can report their preferences
insincerely to make the outcome more favorable to them. This
phenomenon is known as manipulation. A rule for which no
group of agents can ever beneficially manipulate is said to be
group strategy-proof; if no single agent can ever beneficially
manipulate, the rule is said to be strategy-proof (a weaker re-
quirement).

Unfortunately, any strategy-proof voting rule will fail to
satisfy some natural property. The celebrated Gibbard-
Satterthwaite theorem [Gibbard, 1973; Satterthwaite, 1975]
states that when there are three or more candidates, there is
no strategy-proof voting rule that satisfies non-imposition (for
every candidate, there exist votes that would make that can-
didate win) and non-dictatorship (the rule does not simply

always choose the most-preferred candidate of a single fixed
voter). However, the mere existence of beneficial manipula-
tions does not imply that voters will use them: in order to do
so, voters must also be able to discover the manipulation, and
this may be computationally hard. Recently, the approach of
using computational complexity to prevent manipulation has
attracted more and more attention.

In early work [Bartholdi et al., 1989; Bartholdi and Orlin,
1991], it was shown that when the number of candidates is
not bounded, the second-order Copeland and STV rules are
hard to manipulate, even by a single voter. More recent re-
search has studied how to modify other existing rules to make
them hard to manipulate [Conitzer and Sandholm, 2003;
Elkind and Lipmaa, 2005].

One of the most prominent problems considered in the
context of manipulation in elections is known as weighted
coalitional manipulation (WCM). In this setting, there is a
coalition of manipulative voters trying to coordinate their ac-
tions in a way that makes a specific candidate win the elec-
tion. In addition, the voters are weighted; a voter with weight
k counts as k voters voting identically. Previous work has
established that this problem is computationally hard under
a variety of prominent voting rules, even when the number
of candidates is constant (see, e.g., [Conitzer et al., 2007;
Hemaspaandra and Hemaspaandra, 2007]).

However, the current literature contains very few results
regarding the unweighted version of the coalitional manip-
ulation problem (UCM), which is in fact more natural in
most settings. This is not completely surprising since, un-
like WCM, the UCM problem is quite unwieldy under many
voting rules, that is, it has proven mathematically difficult
to resolve its complexity, despite some effort by various re-
searchers over the past few years. Notice that, as UCM
is a special case of WCM, any tractability results from the
weighted setting carry over to the unweighted setting. How-
ever, hardness results do not carry over. We argue that, if one
wishes to claim that a given voting rule is resistant to coali-
tional manipulation, in most cases hardness of UCM would
be more relevant than hardness of WCM.

A few very recent papers have directly dealt with UCM.
Faliszewski et al. [2008] have shown that UCM is NP-
complete under a family of voting rules derived from the
Copeland rule, even when there are only two manipulators. In
addition, Zuckerman et al. [2008] have established, as corol-



laries of their main theorems, that unweighted coalitional
manipulation is tractable under the Veto and Plurality with
Runoff voting rules. However, Zuckerman et al. also conjec-
tured that UCM is intractable under the prominent Borda and
Maximin voting rules.

Zuckerman et al. further observed that the unweighted
coalitional manipulation setting admits an optimization prob-
lem that they called unweighted coalitional optimization
(UCO). The goal is to find the minimum number of manip-
ulators required to make a given candidate win the election.
They gave a 2-approximation algorithm for this problem un-
der maximin (even though this problem was not previously
known to be NP-hard), and an algorithm for Borda that finds
an optimal solution up to an additive term of one.

Our results. In this paper, we study the computational com-
plexity of the unweighted coalitional manipulation problem
under several voting rules. Our main result is that the UCM
problem under maximin is NP-complete for any fixed number
of manipulators (≥ 2); thus we resolve the abovementioned
conjecture of Zuckerman et al. in the positive. We next show
that the UCM problem under ranked pairs is NP-complete,
even when there is only one manipulator. This means that
ranked pairs is a member of a very exclusive club of “natu-
ral” voting rules that have this property (which previously in-
cluded only second-order Copeland and STV). We strengthen
this result by providing a surprising, extreme hardness-of-
approximation result for UCO under ranked pairs: it is hard
to approximate the problem within a factor of N1−ε where
N is the input size and ε > 0 is an arbitrary constant. Fi-
nally, we present a polynomial-time algorithm for the UCM
problem under Bucklin.

2 Preliminaries
Let C be the set of candidates. A linear order on C is a transi-
tive, antisymmetric, and total relation on C. The set of all lin-
ear orders on C is denoted by L(C). An n-voter profile P on C
consists of n linear orders on C. That is, P = (R1, . . . , Rn),
where for every i ≤ n, Ri ∈ L(C). The set of all profiles on
C is denoted by P(C). In the remainder of the paper, we let
m denote the number of candidates (that is, |C|).

A voting rule r is a function from the set of all profiles on
C to C, that is, r : P(C) → C. Below we formally define
the three prominent voting rules that we study in this paper.
For a definition of other voting rules that we mention, the
reader is referred to the book by Tideman [2006], or to the
preliminaries of one of the many papers on the subject (e.g.,
[Conitzer et al., 2007]).

• Maximin: Let the advantage of ci over cj with respect
to P , denoted advP (ci, cj), be the number of votes in P
that rank ci ahead of cj . The winner is the candidate c
that maximizes min{advP (c, c′) : c′ ∈ C \ {c}}.
• Bucklin (see, e.g., [Tideman, 2006]): A candidate c’s

Bucklin score is the smallest number k such that more
than half of the votes rank c among the top k candidates.
The winner is the candidate that has the smallest Bucklin
score.1

1Sometimes, ties are broken by the number of votes that rank a

• Ranked pairs [Tideman, 1987]: This rule first creates an
entire ranking of all the candidates, as follows. Define
advP (ci, cj) as for the maximin rule. In each step, we
consider a pair of candidates ci, cj that we have not pre-
viously considered (as a pair): specifically, we choose
the remaining pair with the highest advP (ci, cj). We
then fix the order ci � cj , unless this contradicts previ-
ous orders that we fixed (that is, it violates transitivity).
We continue until we have considered all pairs of can-
didates (hence, in the end, we have a full ranking). The
candidate at the top of the ranking wins.

All of these rules allow for the possibility that multiple can-
didates end up tied for the win. Technically, therefore, they
are really voting correspondences; a correspondence can se-
lect more than one winner. In the remainder of this paper,
we will sometimes somewhat inaccurately refer to the above
correspondences as rules.

Let us now turn to the definition of the problems that we
are interested in investigating. We study the constructive ma-
nipulation variations, in which the goal is to make a given
candidate win.

Definition 2.1. The Unweighted Coalitional Manipulation
(UCM) problem is defined as follows. An instance is a tu-
ple (r, PNM , c,M), where r is a voting rule, PNM is the
non-manipulators’ profile, c is the candidate preferred by the
manipulators, andM is the set of manipulators. We are asked
whether there exists a profile PM for the manipulators such
that r(PNM ∪ PM ) = {c}.

The above definition uses the unique winner formulation,
which is the common one in the literature. It is also possible
to consider a co-winner formulation which is similar, only we
require that c ∈ r(PNM ∪ PM ), that is, instead of being the
unique winner, c should be included among the set of win-
ners. Our results hold for the co-winner formulation as well.

For any k ∈ N, we let UCMk be the subproblem of UCM
in which the number of manipulators is k. That is, a UCMk

instance is a tuple (r, PNM , c,M) where |M | = k.
Zuckerman et al. [2008] suggested that the unweighted ma-

nipulation setting allows for a natural optimization problem:
the unweighted coalitional optimization problem. Given, es-
sentially, an unweighted coalitional manipulation instance,
we ask how many manipulators are needed in order to make
c win. Formally:

Definition 2.2. The Unweighted Coalitional Optimization
(UCO) problem is defined as follows. An instance is a tu-
ple (r, PNM , c), where r is a voting rule, PNM is the non-
manipulators’ profile, and c is the candidate preferred by the
manipulators. We must find the minimum k such that there
exists a set of manipulators M with |M | = k, and a profile
PM , that satisfies r(PNM ∪ PM ) = {c}.

3 Maximin
In this section, we prove our main result: the UCM prob-
lem under maximin is NP-complete. We thus resolve an an

candidate among the top k, but for simplicity we will not consider
this tie-breaking rule here.



open question that has proved quite enigmatic over the past
few years (see, e.g., [Zuckerman et al., 2008]). The proof
uses a reduction from the two vertex disjoint paths in di-
rected antisymmetric graph problem, which is known to be
NP-complete [Fortune et al., 1980].
Definition 3.1. The two vertex disjoint paths in directed
graph problem is defined as follows. We are given a directed
graph G and two disjoint pairs of vertices (u, u′) and (v, v′),
where u, u′, v, v′ are all different from each other. We are
asked whether there exist two directed paths u → u1 →
. . . → uk1 → u′ and v → v1 → . . . → vk2 → v′ such
that u, u′, u1, . . . , uk1 , v, v

′, v1, . . . , vk2 are all different from
each other.

For any profile P and any pair of candidates c1, c2, let
DP (c1, c2) denote the number of times that c1 is ranked
higher than c2 in P minus the number of times that c2 is
ranked higher than c1 in P , that is,

DP (c1, c2) = |{R ∈ P : c1 �R c2}|−|{R ∈ P : c2 �R c1}| .

We shall require the following previously known lemma.
Lemma 3.2. [McGarvey, 1953] Given a function F : C ×
C → Z such that

1. for all c1, c2 ∈ C, c1 6= c2, F (c1, c2) = −F (c2, c1), and

2. either for all pairs of candidates c1, c2 ∈ C (with c1 6=
c2), F (c1, c2) is even, or for all pairs of candidates
c1, c2 ∈ C (with c1 6= c2), F (c1, c2) is odd,

there exists a profile P such that for all c1, c2 ∈ C, c1 6= c2,
DP (c1, c2) = F (c1, c2) and

|P | ≤ 1
2

∑
c1,c2: c1 6=c2

|F (c1, c2)− F (c2, c1)| .

Theorem 3.3. The UCMk problem under maximin is NP-
complete for any number of manipulators k ≥ 2.
Proof of Theorem 3.3: It is easy to verify that the UCM
problem under maximin is in NP. We now show that UCM is
NP-hard, by giving a reduction from the two vertex disjoint
paths in directed graph problem.

Let the instance of the two vertex disjoint paths in di-
rected graph problem be denoted by G = (V,E), (u, u′)
and (v, v′) where V = {u, u′, v, v′, c1, . . . , cm−5}. Without
loss of generality, we assume that every vertex is reachable
from u or v (otherwise, we can remove the vertex from the
instance). We also assume that (u, v′) 6∈ E and (v, u′) 6∈ E
(since such edges cannot be used in a solution). Let G′ =
(V,E ∪ {(v′, u), (u′, v)}), that is, G′ is the graph obtained
from G by adding (v′, u) and (u′, v).

We construct a UCM instance as follows.
Set of candidates: C = {c, u, u′, v, v′, c1, . . . , cm−5}.
Candidate preferred by the manipulators: c.
Number of unweighted manipulators: |M | (for some |M | ≥
2).
Non-manipulators’ profile: PNM satisfying the following
conditions:

1. For any c′ 6= c, DPNM (c, c′) = −4|M |.
2. DPNM (u, v′) = DPNM (v, u′) = −4|M |.

3. For any (s, t) ∈ E such that DPNM (t, s) is not defined
above, we let DPNM (t, s) = −2|M | − 2.

4. For any s, t ∈ C such that DPNM (t, s) is not defined
above, we let |DPNM (t, s)| = 0.

The existence of such a PNM , whose size is polynomial in
m, is guaranteed by Lemma 3.2.

We can assume without loss of generality that each manip-
ulator ranks c first. Therefore, for any c′ 6= c,

DPNM∪PM (c, c′) = −3|M | . (1)

We are now ready to show that there exists PM such that
Maximin(PNM ∪PM ) = {c} if and only if there exist two
vertex disjoint paths from u to u′ and from v to v′ in G. First,
we prove that if there exist such paths inG, then there exists a
profile PM for the manipulators such thatMaximin(PNM∪
PM ) = {c}.

Let u → u1 → · · · → uk1 → u′ and v → v1 → · · · →
vk2 → v′ be two vertex disjoint paths. Further, let

V ′ = {u, u′, v, v′, u1, . . . , uk1 , v1, . . . , vk2} .
Then, because any vertex is reachable from u or v in G, there
exists a connected subgraph G∗ of G′ (which still includes
all the vertices) in which u → u1 → · · · → uk1 → u′ →
v → v1 → · · · → vk2 → v′ → u is the only cycle. In
other words, such a subgraph G∗ can obtained by possibly
removing some of the edges of G′. Therefore, by arranging
the vertices of V \ V ′ according to the direction of the edges
of G∗, we can obtain a linear order O over V \ V ′ with the
following property: for any t ∈ V \ V ′, it holds that either

1. there exists s ∈ V \ V ′ such that s �O t and (s, t) ∈ E,
or

2. there exists s ∈ V ′ such that (s, t) ∈ E.
We define PM by letting |M | − 1 manipulators vote

c � u � u1 � · · · � uk1 � u′ � v � v1 � . . . � vk2
� v′ � O

and letting one manipulator vote

c � v � v1 � · · · � vk2 � v′ � u � u1 � . . . � uk1
� u′ � O .

Then, we have the following calculations:

DPNM∪PM (u, v′) = −4|M |+ (|M | − 1)− 1
= −3|M | − 2 < −3|M | ,

and DPNM∪PM (v, u′) = −4|M |+ 1− (|M | − 1)
= −5|M |+ 2 < −3|M | .

Moreover, for any t ∈ C \{c, u, v}, there exists s ∈ C \{c}
such that (s, t) ∈ E and DPM (t, s) = −|M |, which means
that

DPNM∪PM (t, s) = −2|M | − 2− |M | = −3|M | − 2
< −3|M | .

It now follows from Equation (1) that

Maximin(PNM ∪ PM ) = {c} .



Next, we prove that if there exists a profile PM for the
manipulators such that Maximin(PNM ∪PM ) = {c}, then
there exist two vertex disjoint paths from u to u′ and from v
to v′.

We define a function f : V → V such that

DPNM∪PM (t, f(t)) < −3|M | .

Indeed, such a function exists since

Maximin(PNM ∪ PM ) = {c} ,

hence for any t 6= c there must exist s such that

DPNM∪PM (t, s) < −3|M | .

Moreover, s must be a parent of t in G′. If there exists more
than one such s, define f(t) to be any one of them.

It follows that if (t, f(t)) is neither (u, v′) or (v, u′), then
(f(t), t) ∈ E and DPM (t, f(t)) = −|M |, which means that
f(t) � t in each vote of PM ; otherwise, if (t, f(t)) is (u, v′)
or (v, u′), then DPM (t, f(t)) ≤ |M | − 2, which means that
f(t) � t in at least one vote of PM .

Now, since |V | = m is finite, there must exist l1 < l2 ≤ m
such that f l1(u) = f l2(u). That is,

f l1(u)→ f l1+1(u)→ · · · → f l2−1(u)→ f l2(u)

is a cycle in G′. We assume that for any l1 ≤ l′1 < l′2 < l2,
f l

′
1(u) 6= f l

′
2(u). Now we claim that (v′, u) and (u′, v) must

be both in the cycle, because

1. if neither of them is in the cycle, then in each vote of
PM , we must have

f l2(u) � f l2−1(u) � f l1(u) = f l2(u) ,

which contradicts the assumption that each vote is a lin-
ear order;

2. if exactly one of them is in the cycle—without loss of
generality, f l1(u) = v, f l1+1(u) = u′—then in at least
one of the votes of PM , we must have

f l2(u) � f l2−1(u) � . . . � f l1(u) = f l2(u) ,

which contradicts the assumption that each vote is a lin-
ear order.

Without loss of generality, let us assume that f l1(u) =
u, f l1+1(u) = v′, f l3(u) = v, f l3+1(u) = u′, where
l3 ≤ l2−2. We immediately obtain two vertex disjoint paths:

u = f l1(u) = f l2(u)→ f l2−1(u)→ . . .→ f l3+1(u) = u′ ,

and v = f l3(u) → f l3−1(u) → . . . → f l1+1(u) = v′ .
Therefore, UCM under maximin is NP-complete. �

Notice that the NP-completeness of UCM implies the NP-
hardness of UCO under maximin. Zuckerman et al. [2008]
have designed a 2-approximation algorithm for UCO under
maximin, even though it was unclear at the time that the prob-
lem was indeed NP-hard. It still remains open whether the
approximation ratio can be improved, or whether a hardness-
of-approximation result precludes this.

4 Ranked pairs
We now turn to investigating the ranked pairs voting rule.
This interesting voting rule satisfies some important social
choice desiderata [Tideman, 1987]. Moreover, we assert be-
low that ranked pairs is hard to manipulate even by a single
manipulator, making it one of very few “natural” voting rules
with this property. The hardness easily extends to multiple
manipulators as well.
Theorem 4.1. The UCMk problem under ranked pairs is NP-
complete for any number of manipulators.

Crucially, we can prove an even stronger result regarding
ranked pairs: the UCO problem under this rule is extremely
hard to approximate. More accurately, we have the following
theorem.
Theorem 4.2. Let N be the size of the non-manipulators’
profile in the UCO problem. For every constant ε > 0, it is
NP-hard to approximate UCO under ranked pairs within a
factor of N1−ε.

In particular, we show that it is NP-hard to distinguish be-
tween the following two extreme cases: there is a successful
manipulation via a single manipulator, or any successful ma-
nipulation requires more than N1−ε manipulators. It can be
argued that this result makes ranked pairs especially appeal-
ing in terms of its resistance to manipulation. In fact, this is
the strongest hardness of manipulation result currently known
for any voting rule.

The proofs of Theorems 4.1 and 4.2 are the most involved
in this paper (considerably more so than the proof of The-
orem 3.3). The proof of Theorem 4.1 requires an elaborate
reduction from 3SAT. In order to obtain Theorem 4.2, we
extend the proof of Theorem 4.1 using an interesting prop-
erty of ranked pairs: if there is a successful manipulation for
a set of manipulators M , there is a successful manipulation
where all the manipulators vote identically. This allows us
to design instances where manipulations using one manipula-
tor and many manipulators are equivalent. Unfortunately, we
must omit the details of the proofs due to lack of space.

5 Bucklin
In this section, we present a polynomial-time algorithm for
the UCM problem under Bucklin.

For any candidate x ∈ C, any natural number d ∈ N, and
any profile P , let B(x, d, P ) denote the number of times
that x is ranked among the top d candidates in P . The idea
behind the algorithm is as follows. Let dmin be the minimal
depth so that the favorite candidate c is ranked among the top
dmin candidates in more than half of the votes (when all of
the manipulators rank c first). Then, we simply check if there
is a way to assign the manipulators’ votes so that none of the
other candidates is ranked among the top dmin candidates in
more than half of the votes. In other words, the order of the
candidates is not crucial, only their membership in the set of
dmin top-ranked candidates is relevant.

Algorithm 1.
Input. A UCM instance (Bucklin, PNM , c,M),

C = {c, c1, . . . , cm−1} .



Stage 0.
0.1 Calculate the minimal depth dmin such that

B(c, dmin, PNM ) + |M | > 1
2
(|NM |+ |M |) .

0.2 If there exists c′ ∈ C, c′ 6= c such that

B(c′, dmin, PNM ) >
1
2
(|NM |+ |M |) , (2)

then output that there is no successful manipulation.
Aside. Notice that dmin is defined under the assumption that
all the manipulators rank c first. Consider a candidate c′ 6= c
that satisfies the condition in Equation (2). Such a candidate
is ranked in the top dmin positions of half the votes PNM ∪
PM , regardless of PM . Hence, c cannot be a unique winner.
Stage 1.
1.1 For every c′ ∈ C \ {c}, let

dc′ =
⌊

1
2
(|NM |+ |M |)

⌋
−B(c′, dmin, PNM ) ,

and let kc′ = min{dc′ , |M |}.
1.2 If ∑

c′ 6=c

kc′ < (dmin − 1)|M | , (3)

then output that there is no successful manipulation.
Aside. kc′ is the number of times that we can place c′ in the
first dmin positions of the votes of PM , without compromis-
ing the victory of c. In particular, kc′ cannot be greater than
|M |.

Notice that there are exactly (dmin − 1)|M | problematic
positions to fill, since c is ranked first by all the manipulators.
Now, if the condition in Equation (3) is satisfied, for any PM
there must be a candidate c′ that appears too many times in
the first dmin positions, that is,

kc′ < B(c′, dmin, PM ) .

Since B(c′, dmin, PM ) ≤ |M |, we have in particular that
kc′ < |M |, hence it must hold that kc′ = dc′ . It follows that

B(c′, dmin, PNM ∪ PM )

=B(c′, dmin, PNM ) +B(c′, dmin, PM )

>B(c′, dmin, PNM ) + dc′

=
⌊

1
2
(|NM |+ |M |)

⌋
.

Therefore, c cannot be a unique winner.
Stage 2. Construct PM by assigning the candidates to the
first dmin positions of the votes in a way that for every t =
1, . . . ,m− 1,

B(ct, dmin, PM ) ≤ kct
. (4)

Complete the rest of the votes arbitrarily. Return PM as a
successful manipulation.
Aside. Given that (3) does not hold, it is clearly possible to
construct PM such that (4) holds for every c′ 6= c. Moreover,

this can be done in polynomial time, e.g., by enumerating the
candidates and placing each candidate in the next position in
kc′ of the votes of the manipulators, until the crucial positions
are filled.

Now, for every t = 1, . . . ,m− 1 it holds that

B(ct, dmin, PNM ∪ PM ) ≤ B(ct, dmin, PNM ) + kct

≤ 1
2
(|NM |+ |M |) ,

which implies that Bucklin(PNM ∪ PM ) = {c}.
We have obtained the following result.

Theorem 5.1. Algorithm 1 correctly decides the UCM prob-
lem in polynomial time.

It is easy to see that the tractability of UCM under Bucklin
implies that UCO can be solved in polynomial time as well.

6 Discussion
We have studied the computational complexity of the UCM
and UCO problems under the maximin, ranked pairs, and
Bucklin rules. The UCM problem is NP-complete under the
maximin rule for any fixed number (at least two) of manip-
ulators. The UCM problem is also NP-complete under the
ranked pairs rule; in this case, the hardness holds even if there
is only a single manipulator, similarly to the second-order
Copeland [Bartholdi et al., 1989] and STV [Bartholdi and
Orlin, 1991] rules. Furthermore, we have shown that UCO
under ranked pairs is NP-hard to approximate to a factor of
N1−ε, where N is the size of the input and ε is an arbitrary
constant. Finally, we have given a polynomial-time algorithm
for the UCM problem under the Bucklin rule. Table 1 sum-
marizes our results, and puts them in the context of previous
results on the UCM problem.

These results may seem to be at odds with the results of
Conitzer et al. [2007] about weighted coalitional manipula-
tion (WCM). In particular, they show that WCM under max-
imin is in P if the number of candidates is two or three. Even
though UCM is easier than WCM, there is no conflict since
our results rely on the number of candidates being a parame-
ter. In fact, if the number of candidates is constant, UCM is
tractable under any voting rule (that can be executed in poly-
nomial time), via simple enumeration [Conitzer et al., 2007].

It should be noted that all of our hardness results, as well as
the ones mentioned in the introduction, are worst-case results.
Hence, there may still be an efficient algorithm that can find
a beneficial manipulation for most instances. Indeed, nearly
a dozen recent papers suggest that finding manipulations is
easy with respect to some typical distributions on prefer-
ence profiles (see, e.g., [Procaccia and Rosenschein, 2007b;
2007a; Conitzer and Sandholm, 2006; Friedgut et al., 2008;
Dobzinski and Procaccia, 2008; Xia and Conitzer, 2008a;
2008b] and the references therein). However, the fascinating
question of the frequency of manipulation in elections is far
from being resolved, and it is even not completely clear how
this question should be approached. Hence, worst-case hard-
ness still remains the primary tool in the study of complexity
of manipulation.



Number of manipulators One At least two
Copeland (specific tie-breaking) P [Bartholdi et al., 1989] NP-c [Faliszewski et al., 2008]

STV NP-c [Bartholdi and Orlin, 1991] NP-c [Bartholdi and Orlin, 1991]
Veto P [Bartholdi et al., 1989] P [Zuckerman et al., 2008]

Plurality with Runoff P [Zuckerman et al., 2008] P [Zuckerman et al., 2008]
Cup P [Conitzer et al., 2007] P [Conitzer et al., 2007]

Maximin P [Bartholdi et al., 1989] NP-c (Thm 3.3)
Ranked pairs NP-c (Thm 4.1) NP-c (Thm 4.1)

Bucklin P (Thm 5.1) P (Thm 5.1)
Borda P [Bartholdi et al., 1989] ?

Table 1: Complexity of UCM under prominent voting rules. Boldface results appear in this paper.

There are many interesting problems left for future re-
search. For example, settling the complexity of UCM under
positional scoring rules such as Borda is a challenging prob-
lem that remains open despite several attacks. An especially
intriguing open problem concerns the hardness of approxi-
mating UCO. We have seen that UCO under ranked pairs is
extremely hard to approximate. We conjecture that hardness
of approximation results can also be obtained with respect
to other voting rules where manipulation is hard even for a
single manipulator (e.g., STV [Bartholdi and Orlin, 1991]),
although the inapproximability ratio may not be as extreme
as it is for ranked pairs.
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