
A New Solution To The 
Random Assignment 
Problem
By Anna Bogomolnaia, Herve Moulin

Presented By Zach Jablons, Bharath Santosh



The Assignment Problem

● How to best assign n objects to n agents
● Lotteries

○ Random assignments of objects to agents
● Random Priority mechanism

○ AKA Random Serial Dictatorship
○ Draw a random ordering of agents, then let them 

pick objects in that order



Properties
● Random Priority is fair
● Incentive compatible

○ Agents have no reason to lie about their 
preference

● Inefficient in a certain setting
○ When agents have Von Neumann-Morgenstern 

(VNM) preferences over lotteries
○ VNM preferences are characterized by VNM utility 

function
■ Simply the expected value over the lotteries



The Assignment Problem

● CEEI
○ View VNM utility function as utility over shares
○ Shares are the probability of receiving

● Properties
○ Not strategyproof

■ In fact no such mechanism can be 
strategyproof

○ Efficient for VNM utilities



Different types of Efficiencies

● Ex-Post Efficiency
○ All possible assignments are Pareto optimal

● Ex-Ante Efficiency
○ Efficient in terms of the profile of VNM utilities

● New! Ordinal Efficiency
○ In terms of distributions over assignments
○ Most probable and most valuable in terms of 

utilities
○ Will get into more detail later



Notation

● N is the set of n agents, A is the set of n objects
● Π is some bistochastic matrix of 1s and 0s

○ Deterministic assignment
● D is the set of all Π
● P is some bistochastic matrix

○ Random assignment
○ Weighted sum of all Π ∈ D

● R is the set of all P
● > is all agents strict preference orders over A
● A is the domain of A



More notation

● A random allocation to an agent is a 
probability distribution over A

● L(A) is the set of all such allocations
● ui is a mapping of A -> Rn, the VNM utility

○ u is the profile over all of these
● Compatibility: >i is compatible with ui 

means that for any a, b ∈ A, 
○ a > b in >i iff ui(a) > ui(b)



Even more notation

● σ is an ordering of agents
● θ is the set of all such orderings
● Prio(σ, >) is a function mapping the 

orderings and the set of preferences to a 
deterministic assignment

● Prio creates an assignment by going 
through the ordering σ and giving each 
agent their top-ranked available item by >



Efficiencies

● Given some random assignment matrix P 
and a profile of utilities u compatible with 
a profile of preferences >
○ Ex-ante efficiency comes from:

■ Pareto optimality at u
○ Ex-post efficiency

■ If P can be represented as a sum over a 
distribution of Prio(σ,>) from all possible 
orderings σ with some weights



Random Priority

● In this notation, easy to define random 
priority assignment

● P is the average over all Prio(σ,>)
○ All weights are 1/n!
○ That is, average over all serial dictatorships



Stochastic Dominance

● A strict ordering >i implies a partial 
ordering on L(A)

● This is called the stochastic dominance 
relation, sd(>i)

● Formally, given some Pi and Qi from L(A)
○ Pi sd(>i) Qi iff for all t in [1,n], the sum over the row 

Pi from 1 to t is greater than or equal to Qi’s sum
○ Example



Stochastic Dominance

● Given some preference >i, Pi sd(>i) Qi is 
equivalent to uiPi >= uiQi for all compatible 
utilities ui

● Definition: If some random assignment P 
dominates some other random 
assignment Q for all agents, then Q is 
stochastically dominated by P



Ordinal Efficiency (O-efficiency)

● A random assignment P is O-efficient if it is 
not stochastically dominated by any other 
random assignment

● Some corollaries
○ If P is ex-ante efficient for u, then it is O-efficient at >
○ If P is ex-post efficient for >, then it is O-efficient at > 
○ Extra conditions when n <= 4



Simultaneous Eating Algorithm

● Each object is an infinitely divisible 
commodity

● Each agent has an eating speed function 
ωi(t)
○ Each agent is allowed to consume an object with 

speed ωi(t) at time t
○ ωi(t) is non-negative and integrates to 1 over the 

interval [0,1]



Simultaneous Eating Algorithm

● Simply allow agents to ‘eat’ from their best 
available objects at the specified eating 
speeds

● Example



Simultaneous Eating Algorithm

● Getting Pω can be done with an iterative 
algorithm

● M(a,A) is the set of agents who prefer a to 
all other objects in A.

● Initialize: A0 = A, y0 = 0, P0 = zeros(n,n)
● Basically this formalizes having each agent 

eat from their best available object, and 
the algorithm finds best times to allow



Simultaneous Eating Algorithm

● Let ys(a) be the minimum y such that the 
○ sum over all agents i in M(a,As-1) of the integral 

from ys-1 to y of ωi(t)
○ plus the sum over all agents of the probability of 

that agent getting a in Ps-1

○ is equal to 1.
○ With the condition that ys(a) be ∞ if there are no 

agents that prefer a to all other objects in As-1



Simultaneous Eating Algorithm

● At each step s, let
○ ys be the minimum ys(a) over all objects in As-1

○ As be As-1 without the object that minimized ys

○ Ps be the following
■ Update each cell Ps[i,a] by using the previous if 

i is not in the set of agents that prefer a to any 
other object 

■ Otherwise add the eating speed ωi(t) 
integrated from ys-1 to ys to Ps-1[i,a]



Simultaneous Eating Algorithm

● Since at each step we remove an object, at 
An there will be no objects, so Pn is the 
final random assignment

● Theorem:
○ Pω is ordinally efficient for all profiles of eating 

functions.
○ Conversely, there exists a profile of eating 

functions for any ordinally efficient P



Probabilistic Serial Assignment

● Apply Simultaneous Eating Algorithm to 
profile of uniform eating speeds
○ All ωi(t) = 1 for all t in [0,1] and all agents i in N

● This makes ys(a) easy to compute at any 
step

● Has some nice properties



Probabilistic Serial Assignment

● Anonymous
● Only equitable mechanism

○ In order to construct an anonymous assignment, 
we will always end up with the Probabilistic Serial 
assignment



Fairness and Incentives of PS vs RP

● Random Priority may generate envy
● Probabilistic Serial may be manipulated
● Both only happen under limited conditions
● For small n:

○ n = 2, trivially RP and PS give the same results
○ n = 3, RP may generate envy and PS may be 

manipulated
○ n >= 4?



For n = 3

● RP
○ O-efficient
○ Strategy-proof
○ Treats equal utilities with equal random 

allocations
● PS

○ O-efficient
○ No envy
○ Weakly strategy-proof



For n >= 3

● Proposition:
● PS

○ Envy free
○ Weakly strategy-proof

● RP
○ Weakly envy free
○ Strategy-proof



Impossibility Result

● For n >= 4, there is no possible mechanism 
such that
○ It is O-efficient
○ It is strategyproof
○ Treats equal preferences equally
○ Proof is very long



Further caveats

● Note some assumptions
○ Same number of agents and objects

■ Models can be easily adjusted for either more 
agents than objects or more objects than 
agents

○ Objective Indifferences
■ Some pair of objects are the same to all agents

○ Subjective Indifferences
■ Some pair of objects are the same to some 

agents



n agents and m objects

● Both RP and PS still work
○ If there are more objects than agents, everything 

still holds if the bistochastic matrices loosen to 
allow the columns to sum to less than one

○ If there are more agents than objects, then rows 
sum to m/n and if the eating functions integrate 
to m/n instead of 1.

○ Can instead add the remainder of null objects, 
which are the same to all agents



Objective Indifferences

● The simultaneous eating theorem still 
holds since the choice is inconsequential

● This provides no issue with the current 
results



Subjective Indifferences

● Since the difference could be unimportant 
to some agent but not to others, an agent 
can’t be allowed to choose arbitrarily

● Best option seems to be eliciting more 
preferences from those agents

● Could be a subject of further research



Discussion Considerations

● Other caveats?
● How computable is

○ Probabilistic Serial
○ Random Priority


