A New Solution To The Random Assignment Problem

By Anna Bogomolnaia, Herve Moulin

Presented By Zach Jablons, Bharath Santosh

The Assignment Problem

- How to best assign n objects to n agents
- Lotteries
 - Random assignments of objects to agents
- Random Priority mechanism
 - AKA Random Serial Dictatorship
 - Draw a random ordering of agents, then let them pick objects in that order

Properties

- Random Priority is fair
- Incentive compatible
 - Agents have no reason to lie about their preference
- Inefficient in a certain setting
 - When agents have Von Neumann-Morgenstern (VNM) preferences over lotteries
 - VNM preferences are characterized by VNM utility function
 - Simply the expected value over the lotteries

The Assignment Problem

- CEEI
 - View VNM utility function as utility over shares
 - Shares are the probability of receiving
- Properties
 - Not strategyproof
 - In fact no such mechanism can be strategyproof
 - Efficient for VNM utilities

Different types of Efficiencies

- Ex-Post Efficiency
 - All possible assignments are Pareto optimal
- Ex-Ante Efficiency
 - Efficient in terms of the profile of VNM utilities
- New! Ordinal Efficiency
 - In terms of distributions over assignments
 - Most probable and most valuable in terms of utilities
 - Will get into more detail later

Notation

- N is the set of n agents, A is the set of n objects
- □ is some bistochastic matrix of 1s and 0s
 - Deterministic assignment
- D is the set of all □
- P is some bistochastic matrix
 - Random assignment
 - Weighted sum of all $\Pi \subseteq D$
- R is the set of all P
- > is all agents strict preference orders over A
- A is the domain of A

More notation

- A random allocation to an agent is a probability distribution over A
- L(A) is the set of all such allocations
- u_i is a mapping of A -> Rⁿ, the VNM utility o u is the profile over all of these
- Compatibility: > is compatible with u means that for any $a, b \in A$,
 - \circ a > b in >, iff $u_i(a) > u_i(b)$

Even more notation

- σ is an ordering of agents
- \bullet θ is the set of all such orderings
- Prio(σ, >) is a function mapping the orderings and the set of preferences to a deterministic assignment
- Prio creates an assignment by going through the ordering σ and giving each agent their top-ranked available item by >

Efficiencies

- Given some random assignment matrix P and a profile of utilities u compatible with a profile of preferences >
 - Ex-ante efficiency comes from:
 - Pareto optimality at u
 - Ex-post efficiency
 - If P can be represented as a sum over a distribution of $Prio(\sigma,>)$ from all possible orderings σ with some weights

Random Priority

- In this notation, easy to define random priority assignment
- P is the average over all $Prio(\sigma, >)$
 - All weights are 1/n!
 - That is, average over all serial dictatorships

Stochastic Dominance

- A strict ordering > implies a partial ordering on <u>L(A)</u>
- This is called the stochastic dominance relation, sd(>;)
- Formally, given some P_i and Q_i from <u>L(A)</u>
 - P_i sd(>_i) Q_i iff for all t in [1,n], the sum over the row
 P_i from 1 to t is greater than or equal to Q_i's sum
 - Example

Stochastic Dominance

- Given some preference $>_i$, $P_i sd(>_i) Q_i$ is equivalent to $u_i P_i >= u_i Q_i$ for all compatible utilities u_i
- Definition: If some random assignment P dominates some other random assignment Q for all agents, then Q is stochastically dominated by P

Ordinal Efficiency (O-efficiency)

- A random assignment P is O-efficient if it is not stochastically dominated by any other random assignment
- Some corollaries
 - If P is ex-ante efficient for u, then it is O-efficient at >
 - If P is ex-post efficient for >, then it is O-efficient at >
 - Extra conditions when n <= 4

- Each object is an infinitely divisible commodity
- Each agent has an eating speed function $\omega_i(t)$
 - Each agent is allowed to consume an object with speed ω_i(t) at time t
 - \circ $\omega_i(t)$ is non-negative and integrates to 1 over the interval [0,1]

- Simply allow agents to 'eat' from their best available objects at the specified eating speeds
- Example

- Getting P_{ω} can be done with an iterative algorithm
- M(a,A) is the set of agents who prefer a to all other objects in A.
- Initialize: $A^0 = A$, $y^0 = 0$, $P^0 = zeros(n,n)$
- Basically this formalizes having each agent eat from their best available object, and the algorithm finds best times to allow

- Let y^s(a) be the minimum y such that the
 - o sum over all agents i in M(a,A^{s-1}) of the integral from y^{s-1} to y of $\omega_i(t)$
 - plus the sum over all agents of the probability of that agent getting a in P^{s-1}
 - o is equal to 1.
 - With the condition that $y^s(a)$ be ∞ if there are no agents that prefer a to all other objects in A^{s-1}

- At each step s, let
 - o ys be the minimum ys(a) over all objects in As-1
 - o As be As-1 without the object that minimized ys
 - Ps be the following
 - Update each cell P^s[i,a] by using the previous if
 i is not in the set of agents that prefer a to any
 other object
 - Otherwise add the eating speed $ω_i(t)$ integrated from y^{s-1} to y^s to $P^{s-1}[i,a]$

- Since at each step we remove an object, at Aⁿ there will be no objects, so Pⁿ is the final random assignment
- Theorem:
 - \circ P_{ω} is ordinally efficient for all profiles of eating functions.
 - Conversely, there exists a profile of eating functions for any ordinally efficient P

Probabilistic Serial Assignment

- Apply Simultaneous Eating Algorithm to profile of uniform eating speeds
 - \circ All $ω_i(t) = 1$ for all t in [0,1] and all agents i in N
- This makes y^s(a) easy to compute at any step
- Has some nice properties

Probabilistic Serial Assignment

- Anonymous
- Only equitable mechanism
 - In order to construct an anonymous assignment, we will always end up with the Probabilistic Serial assignment

Fairness and Incentives of PS vs RP

- Random Priority may generate envy
- Probabilistic Serial may be manipulated
- Both only happen under limited conditions
- For small n:
 - \circ n = 2, trivially RP and PS give the same results
 - n = 3, RP may generate envy and PS may be manipulated
 - o n >= 4?

For n = 3

- RP
 - O-efficient
 - Strategy-proof
 - Treats equal utilities with equal random allocations
- PS
 - O-efficient
 - No envy
 - Weakly strategy-proof

For $n \ge 3$

- Proposition:
- PS
 - Envy free
 - Weakly strategy-proof
- RP
 - Weakly envy free
 - Strategy-proof

Impossibility Result

- For n >= 4, there is no possible mechanism such that
 - It is O-efficient
 - It is strategyproof
 - Treats equal preferences equally
 - Proof is very long

Further caveats

- Note some assumptions
 - Same number of agents and objects
 - Models can be easily adjusted for either more agents than objects or more objects than agents
 - Objective Indifferences
 - Some pair of objects are the same to all agents
 - Subjective Indifferences
 - Some pair of objects are the same to some

n agents and m objects

Both RP and PS still work

- If there are more objects than agents, everything still holds if the bistochastic matrices loosen to allow the columns to sum to less than one
- If there are more agents than objects, then rows sum to m/n and if the eating functions integrate to m/n instead of 1.
- Can instead add the remainder of null objects,
 which are the same to all agents

Objective Indifferences

- The simultaneous eating theorem still holds since the choice is inconsequential
- This provides no issue with the current results

Subjective Indifferences

- Since the difference could be unimportant to some agent but not to others, an agent can't be allowed to choose arbitrarily
- Best option seems to be eliciting more preferences from those agents
- Could be a subject of further research

Discussion Considerations

- Other caveats?
- How computable is
 - Probabilistic Serial
 - Random Priority