Schedule

- Hypothesis testing
- Statistical decision theory
 - a more general framework for statistical inference
 - try to explain the scene behind tests
- Two applications of the minimax theorem
 - Yao's minimax principle
 - Finding a minimax rule in statistical decision theory

An example

- The average GRE quantitative score of
 - RPI graduate students vs.
 - national average: 558(139)
- Randomly sample some GRE Q scores of RPI graduate students and make a decision based on these

Simplified problem: one sample location test

- You have a random variable X
 - you know
 - the shape of X: normal
 - the standard deviation of X: 1
 - you don't know
 - the mean of X

The null and alternative hypothesis

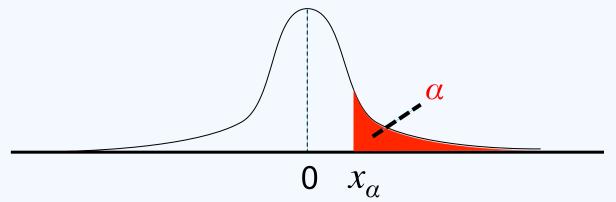
- Given a statistical model
 - parameter space: Θ
 - sample space: S
 - $Pr(s|\theta)$
- H₁: the alternative hypothesis
 - $H_1 \subseteq \Theta$
 - the set of parameters you think contain the ground truth
- H₀: the null hypothesis
 - $H_0 \subseteq \Theta$
 - $H_0 \cap H_1 = \emptyset$
 - the set of parameters you want to test (and ideally reject)
- Output of the test
 - reject the null: suppose the ground truth is in H₀, it is unlikely that we see
 what we observe in the data
 - retain the null: we don't have enough evidence to reject the null

One sample location test

- Combination 1 (one-sided, right tail)
 - H₁: mean>0
 - H_0 : mean=0 (why not mean<0?)
- Combination 2 (one-sided, left tail)
 - H₁: mean<0</p>
 - H_0 : mean=0
- Combination 3 (two-sided)
 - H₁: mean≠0
 - H_0 : mean=0
- A hypothesis test is a mapping f: S→{reject, retain}

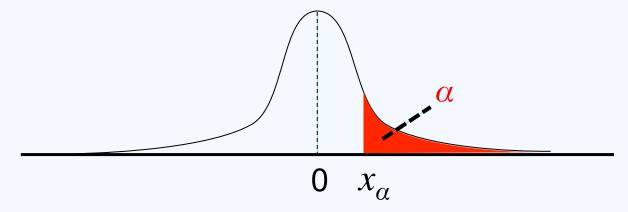
One-sided Z-test

- H₁: mean>0
- H_0 : mean=0
- Parameterized by a number 0<α<1
 - is called the level of significance
- Let x_{α} be such that $Pr(X>x_{\alpha}|H_0)=\alpha$
 - $-x_a$ is called the critical value



- Output reject, if
 - $-x>x_{\alpha}$, or $Pr(X>x|H_0)<\alpha$
 - $Pr(X>x|H_0)$ is called the p-value
- Output retain, if
 - x≤ x_{α} , or p-value≥ α

Interpreting level of significance



- Popular values of α :
 - -5%: x_{α} = 1.645 std (somewhat confident)
 - 1%: x_{α} = 2.33 std (very confident)
- α is the probability that given mean=0, a randomly generated data will leads to "reject"
 - Type I error

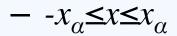
Two-sided Z-test

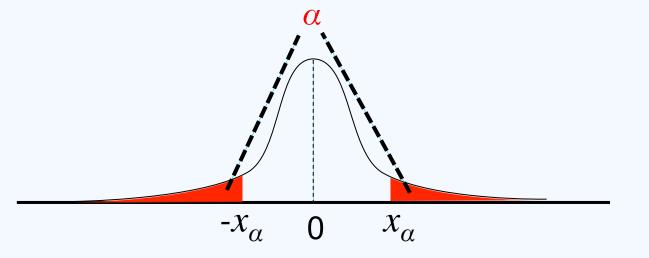
- H₁: mean≠0
- H_0 : mean=0
- Parameterized by a number $0 < \alpha < 1$
- Let x_{α} be such that $2\Pr(X>x_{\alpha}|H_0)=\alpha$

Output reject, if

$$-x>x_{\alpha}$$
, or $x< x_{\alpha}$

Output retain, if





Evaluation of hypothesis tests

- What is a "correct" answer given by a test?
 - when the ground truth is in H₀, retain the null (≈saying that the ground truth is in H₀)
 - when the ground truth is in H₁, reject the null (≈saying that the ground truth is in H₁)
 - only consider cases where $\theta \in H_0 \cup H_1$
- Two types of errors
 - Type I: wrongly reject H₀, false alarm
 - Type II: wrongly retain H₀, fail to raise the alarm
 - Which is more serious?

Type I and Type II errors

		Output		
		Retain	Reject	
Ground truth in	H ₀	size: 1-α	Type I: α	
	H ₁	Type II: β	power: 1- β	

- Type I: the max error rate for all θ∈H₀
 α=sup_{θ∈H₀}Pr(false alarm|θ)
- Type II: the error rate given $\theta \in H_1$
- Is it possible to design a test where $\alpha = \beta = 0$?
 - usually impossible, needs a tradeoff

Illustration

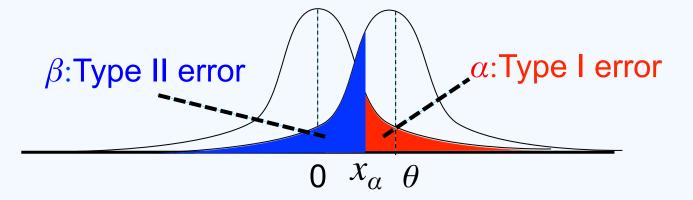
Type II: β Black: One-sided Z-test

Another test

Type I: α

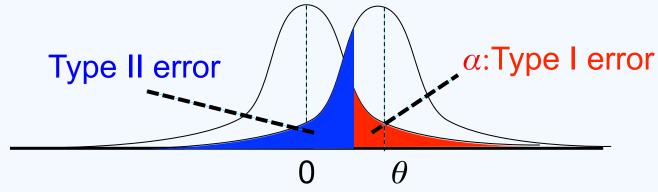
- One-sided Z-test
 - we can freely control Type I error
 - for Type II, fix some $\theta \in H_1$

		Output	
_		Retain	Reject
Ground truth in	H ₀	size: 1-α	Type I: α
	H ₁	Type II: β	power: 1-β

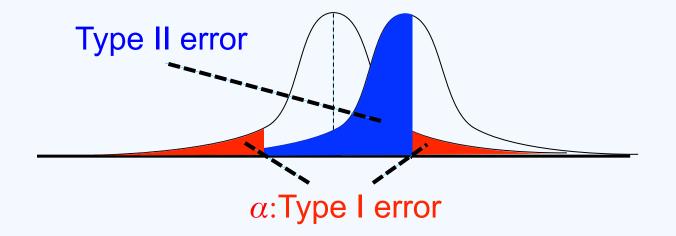


Using two-sided Z-test for one-sided hypothesis

Errors for one-sided Z-test



Errors for two-sided Z-test, same α



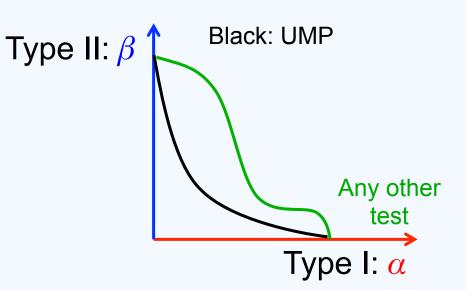
Using one-sided Z-test for a set-valued null hypothesis

- H_0 : mean ≤ 0 (vs. mean = 0)
- H₁: mean>0
- sup_{θ≤0}Pr(false alarm|θ)=Pr(false alarm| θ=0)
 - Type I error is the same
- Type II error is also the same for any $\theta > 0$
- Any better tests?

Optimal hypothesis tests

- A hypothesis test f is uniformly most powerful (UMP), if
 - for any other test f' with the same
 Type I error
 - for any θ ∈ H₁,

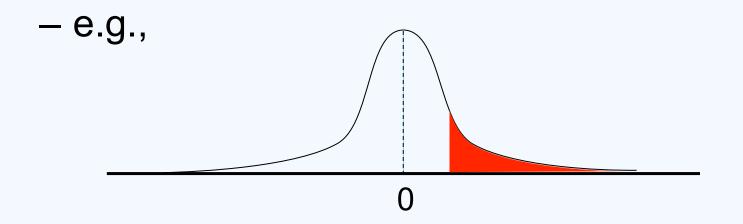
Type II error of f < Type II error of f



- Corollary of Karlin-Rubin theorem:
 - One-sided Z-test is a UMP for H₀:≤0 and H₁:>0
 - generally no UMP for two-sided tests

Template of other tests

- Tell you the H₀ and H₁ used in the test
 - e.g., H₀:mean≤0 and H₁:mean>0
- Tell you the test statistic, which is a function from data to a scalar
 - e.g., compute the mean of the data
- For any given α, specify a region of test statistic that will leads to the rejection of H₀



How to do test for your problem?

- Step 1: look for a type of test that fits your problem (from e.g. wiki)
- Step 2: choose H₀ and H₁
- Step 3: choose level of significance α
- Step 4: run the test

Statistical decision theory

- Given
 - statistical model: Θ , S, $Pr(s|\theta)$
 - decision space: D
 - − loss function: $L(\theta, d) \in \mathbb{R}$
- We want to make a decision based on observed generated data
 - decision function f: data \rightarrow D

Hypothesis testing as a decision problem

- D={reject, retain}
- L(θ, reject)=
 - -0, if $\theta \in H_1$
 - -1, if $\theta \in H_0$ (type I error)
- L(θ, retain)=
 - -0, if $\theta \in H_0$
 - -1, if $\theta \in H_1$ (type II error)

Bayesian expected loss

- Given data and the decision d
 - $EL_B(data, d) = E_{\theta|data}L(\theta, d)$
- Compute a decision that minimized EL for a given the data

Frequentist expected loss

- Given the ground truth θ and the decision function f
 - $EL_F(\theta, f) = E_{data|\theta}L(\theta, f(data))$
- Compute a decision function with small EL for all possible ground truth
 - c.f. uniformly most powerful test: for all $\theta \in H_1$, the UMP test always has the lowest expected loss (Type II error)
- A minimax decision rule f is $\operatorname{argmin}_f \operatorname{max}_\theta \operatorname{EL}_\mathsf{F}(\theta, f)$
 - most robust against unknown parameter

Two interesting applications of game theory

The Minimax theorem

- For any simultaneous-move two player zero-sum game
- The value of a player's mixed strategy s is her worst-case utility against against the other player
 - Value(s)= $\min_{s'} U(s,s')$
 - $-s_1$ is a mixed strategy for player 1 with maximum value
 - $-s_2$ is a mixed strategy for player 2 with maximum value
- Theorem $Value(s_1)=-Value(s_2)$ [von Neumann]
 - (s_1, s_2) is an NE
 - for any s_1 ' and s_2 ', Value (s_1) ' \leq Value (s_1) = -Value (s_2) \leq Value (s_2) '
 - to prove that s_1^* is minimax, it suffices to find s_2^* with $Value(s_1^*)=-Value(s_2^*)$

App1: Yao's minimax principle

- Question: how to prove a randomized algorithm A is (asymptotically) fastest?
 - Step 1: analyze the running time of A
 - Step 2: show that any other randomized algorithm runs slower for some input
 - but how to choose such a worst-case input for all other algorithms?
- Theorem [Yao 77] For any randomized algorithm A
 - the worst-case expected running time of A

is more than

- for any distribution over all inputs, the expected running time of the fastest deterministic algorithm against this distribution
- Example. You designed a $O(n^2)$ randomized algorithm, to prove that no other randomized algorithm is faster, you can
 - find a distribution π over all inputs (of size n)
 - show that the expected running time of any deterministic algorithm on π is more than $O(n^2)$

Proof

- Two players: you, Nature
- Pure strategies
 - You: deterministic algorithms
 - Nature: inputs
- Payoff
 - You: negative expected running time
 - Nature: expected running time
- For any randomized algorithm A
 - largest expected running time on some input
 - is more than the expected running time of your best (mixed) strategy
 - the expected running time of Nature's best (mixed) strategy
 - is more than the smallest expected running time of any deterministic algorithm on any distribution over inputs

App2: finding a minimax rule?

- Guess a least favorable distribution π over the parameters
 - let f_{π} denote its Bayesian decision rule
 - Proposition. f_{π} minimizes the expected loss among all rules, i.e. f_{π} =argmin $_f$ $E_{\theta \circ \pi}$ EL $_F(\theta, f)$
- Theorem. If for all θ , $EL_F(\theta, f_\pi)$ are the same, then f_π is minimax

Proof

- Two players: you, Nature
- Pure strategies
 - You: deterministic decision rules
 - Nature: the parameter
- Payoff
 - You: negative frequentist loss, want to minimize the max frequentist loss
 - Nature: frequentist loss $EL_F(\theta, f) = E_{data|\theta}L(\theta, f(data))$, want to maximize the minimum frequentist loss
- Nee to prove that f_{π} is minimax
 - suffices to show that there exists a mixed strategy π^* for Nature
 - π^* is a distribution over Θ
 - such that
 - for all rule f and all parameter θ , $EL_F(\pi^*, f) \ge EL_F(\theta, f_\pi)$
 - the equation holds for $\pi^* = \pi \ QED$

Recap

- Problem: make a decision based on randomly generated data
- Z-test
 - null/alternative hypothesis
 - level of significance
 - reject/retain
- Statistical decision theory framework
 - Bayesian expected loss
 - Frequentist expected loss
- Two applications of the minimax theorem