Last class: Two goals for social choice

GOAL1: democracy

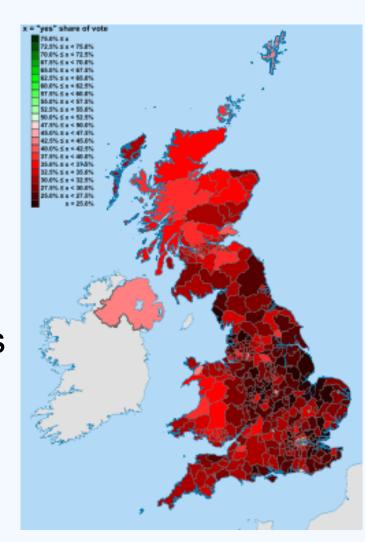
GOAL2: truth

Summary of Piazza discussions

- More social choice problems
 - Ordering pizza, for democracy: Katie, Yu-li
 - tax code/school choice, for both: Onkar, Samta
 - Jury system, for truth: Onkar
 - Rating singers/dancers, for both: Samta
 - Selling goods, for both: John
 - related to supervised/unsupervised learning: Aaron
- John's questions: is sequential allocation (Pareto) optimal?
- Potential project: online teamwork matching system.

Change the world: 2011 UK Referendum

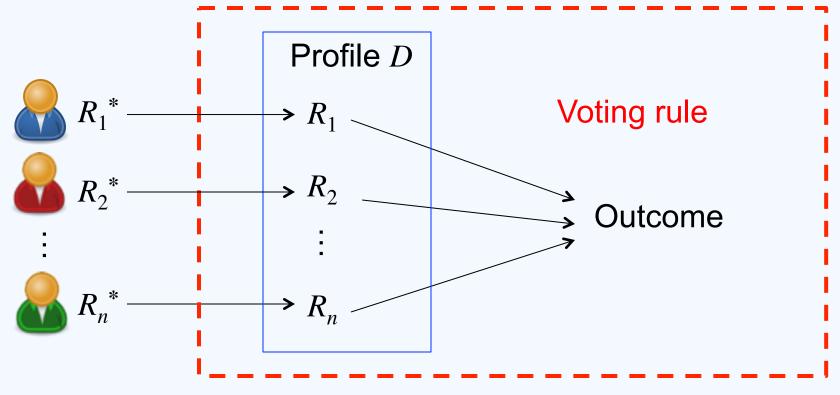
- The second nationwide referendum in UK history
 - The first was in 1975
- Member of Parliament election:
 - Plurality rule → Alternative vote rule
- 68% No vs. 32% Yes
- In 10/440 districts more voters said yes
 - 6 in London, Oxford, Cambridge,
 Edinburgh Central, and Glasgow Kelvin
- Why change?
- Why failed?
- Which voting rule is the best?



Today's schedule: memory challenge

- Topic: Voting
- We will learn
 - How to aggregate preferences?
 - A large variety of voting rules
 - How to evaluate these voting rules?
 - Democracy: A large variety of criteria (axioms)
 - Truth: an axiom related to the Condorcet Jury theorem
 - Characterize voting rules by axioms
 - impossibility theorems
- Home 1 out

Social choice: Voting

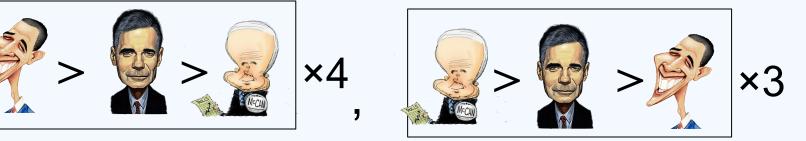


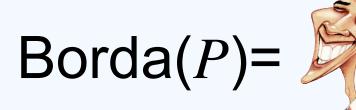
- Agents: *n* voters, *N*={1,...,*n*}
- Alternatives: m candidates, $A = \{a_1, \dots, a_m\}$ or $\{a, b, c, d, \dots\}$
- Outcomes:
 - winners (alternatives): O=A. Social choice function
 - rankings over alternatives: O=Rankings(A). Social welfare function
- Preferences: R_i^* and R_i are full rankings over A
- Voting rule: a function that maps each profile to an outcome

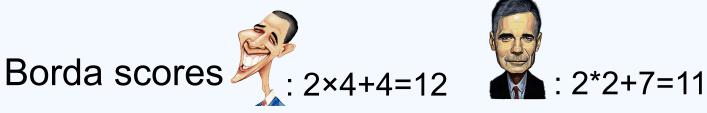
Popular voting rules

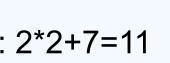
(a.k.a. what people have done in the past two centuries)

The Borda rule









Positional scoring rules

- Characterized by a score vector $s_1,...,s_m$ in non-increasing order
- For each vote R, the alternative ranked in the i-th position gets s_i points
- The alternative with the most total points is the winner
- Special cases
 - Borda: score vector (m-1, m-2, ...,0) [French academy of science 1784-1800, Slovenia, Naru]
 - k-approval: score vector (1...1, 0...0)

 \overline{k}

- Plurality: score vector (1, 0...0) [UK, US]
- Veto: score vector (1...1, 0)

Example

×4

Borda

Plurality (1- approval)

Veto (2-approval)

Off topic: different winners for the same profile?

Research 101

- Lesson 1: generalization
- Conjecture: for any m≥3, there exists a profile P such that
 - for different k≤m-1, k-approval chooses a
 different winner

Research 102

- Lesson 2: open-mindedness
 - "If we knew what we were doing, it wouldn't be called research, would it?"

---Albert Einstein

Homework: Prove or disprove the conjecture

Research 103

- Lesson 3: inspiration in simple cases
- Hint: look at the following example for m=3
 - $-3 \text{ voters: } a_1 > a_2 > a_3$
 - $-2 \text{ voters: } a_2 > a_3 > a_1$
 - -1 voter: $a_3 > a_1 > a_2$

It never ends!

- You can apply Lesson 1 again to generalize your observation, e.g.
 - If the conjecture is true, then can you characterize the smallest number of votes in P? How about adding Borda? How about any combination of voting rules?
 - If the conjecture is false, then can you characterize the set of k-approvals to make it true?

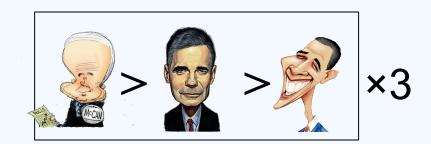
Plurality with runoff

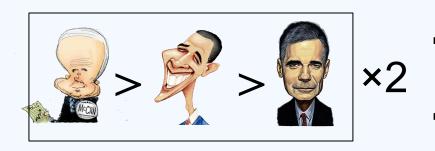
- The election has two rounds
 - First round, all alternatives except the two with the highest plurality scores drop out
 - Second round, the alternative preferred by more voters wins
- [used in France, Iran, North Carolina State]

Example: Plurality with runoff

$$P={$$

×4





drops out

First round:Second round:

Single transferable vote (STV)

- Also called instant run-off voting or alternative vote
- The election has m-1 rounds, in each round,
 - The alternative with the lowest plurality score drops out, and is removed from all votes
 - The last-remaining alternative is the winner
- [used in Australia and Ireland]

$a > b > c \gg dl$	d > a > b > c	c > d > a > b	b > c > d > a
10	7	6	3

Other multi-round voting rules

- Baldwin's rule
 - Borda+STV: in each round we eliminate one alternative with the lowest Borda score
 - break ties when necessary
- Nanson's rule
 - Borda with multiple runoff: in each round we eliminate all alternatives whose Borda scores are below the average
 - [Marquette, Michigan, U. of Melbourne, U. of Adelaide]

Weighted majority graph

Given a profile P, the weighted majority graph
 WMG(P) is a weighted directed complete graph
 (V,E,w) where

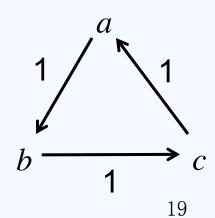
$$-V=A$$

– for every pair of alternatives (a, b)

$$w(a \rightarrow b) = \#\{a > b \text{ in } P\} - \#\{b > a \text{ in } P\}$$

$$-w(a{\rightarrow}b) = -w(b{\rightarrow}a)$$

- WMG (only showing positive edges) might be cyclic
 - Condorcet cycle: { a>b>c, b>c>a, c>a>b}



Example: WMG

$$P=\left\{\begin{array}{c|c} & \times 4 & \times 4 \\ \hline & \times 2 & \times 2 \\ \hline & \times 2 & \times 2 \end{array}\right\}$$

$$WMG(P) = \begin{bmatrix} 1 & 1 & \text{(only showing positive edges)} \\ 1 & \text{(only showing positive edges)} \\ \end{array}$$

WGM-based voting rules

• A voting rule r is based on weighted majority graph, if for any profiles P_1 , P_2 ,

$$[\mathsf{WMG}(P_1) = \mathsf{WMG}(P_2)] \Longrightarrow [r(P_1) = r(P_2)]$$

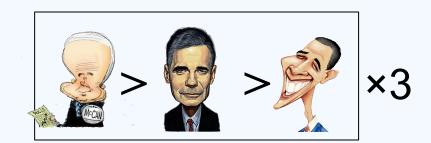
- WMG-based rules can be redefined as a function that maps {WMGs} to {outcomes}
- Example: Borda is WMG-based
 - Proof: the Borda winner is the alternative with the highest sum over outgoing edges.

The Copeland rule

- The Copeland score of an alternative is its total "pairwise wins"
 - the number of positive outgoing edges in the WMG
- The winner is the alternative with the highest Copeland score
- WMG-based

Example: Copeland





Copeland score:

: 2

: 1

U

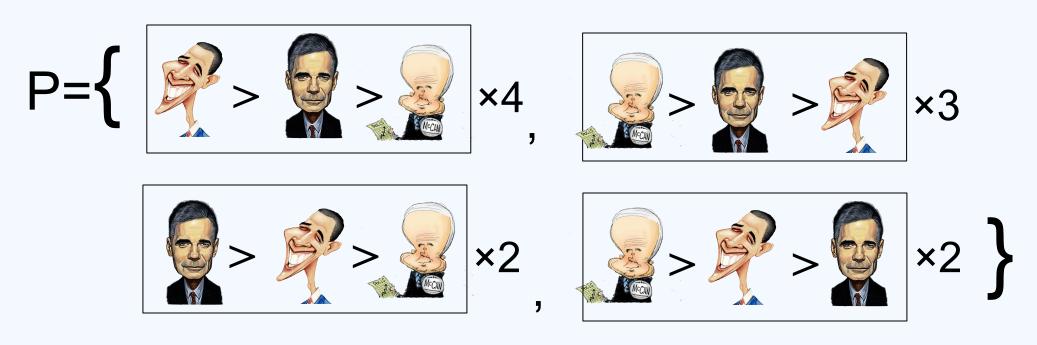
The maximin rule

- A.k.a. Simpson or minimax
- The maximin score of an alternative a is

$$MS_P(a)=\min_b \#\{a>b \text{ in } P\}$$

- the smallest pairwise defeats
- The winner is the alternative with the highest maximin score
- WMG-based

Example: maximin



Maximin score:

: 6

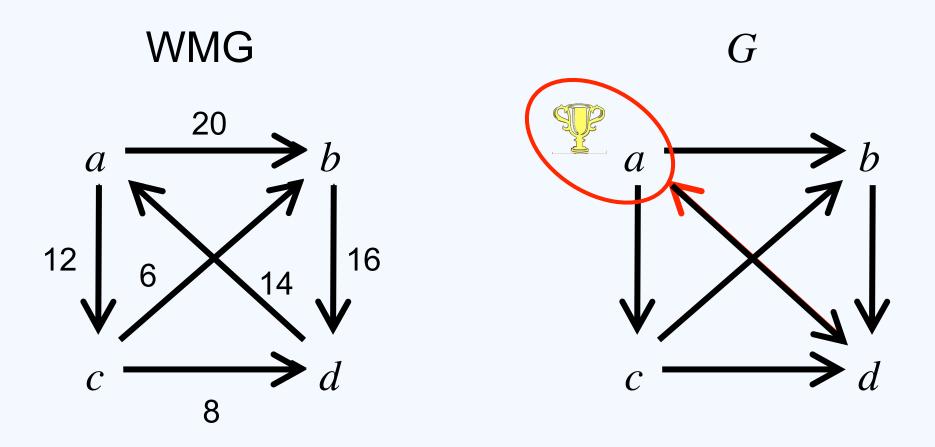
: 5

5

Ranked pairs

- Given the WMG
- Starting with an empty graph G, adding edges to G in multiple rounds
 - In each round, choose the remaining edge with the highest weight
 - Add it to G if this does not introduce cycles
 - Otherwise discard it
- The alternative at the top of G is the winner

Example: ranked pairs



Q1: Is there always an alternative at the "top" of G? piazza poll

Q2: Does it suffice to only consider positive edges?

Kemeny's rule

- Kendall tau distance
 - K(R,W)= # {different pairwise comparisons}

$$K(b>c>a,a>b>c)=$$

- Kemeny(D)=argmin_W K(D,W)=argmin_W $\Sigma_{R \in D} K(R,W)$
- For single winner, choose the top-ranked alternative in Kemeny(D)
- [reveals the truth]

Popular criteria for voting rules

(a.k.a. what people have done in the past 60 years)

How to evaluate and compare voting rules?

- No single numerical criteria
 - Utilitarian: the joint decision should maximize the total happiness of the agents
 - Egalitarian: the joint decision should maximize the worst agent's happiness
- Axioms: properties that a "good" voting rules should satisfy
 - measures various aspects of preference aggregation

Fairness axioms

- Anonymity: names of the voters do not matter
 - Fairness for the voters
- Non-dictatorship: there is no dictator, whose top-ranked alternative is always the winner, no matter what the other votes are
 - Fairness for the voters
- Neutrality: names of the alternatives do not matter
 - Fairness for the alternatives

A truth-revealing axiom

- Condorcet consistency: Given a profile, if there exists a Condorcet winner, then it must win
 - The Condorcet winner beats all other alternatives in pairwise comparisons
 - The Condorcet winner only has positive outgoing edges in the WMG
- Why this is truth-revealing?
 - why Condorcet winner is the truth?

The Condorcet Jury theorem [Condorcet 1785]

Given

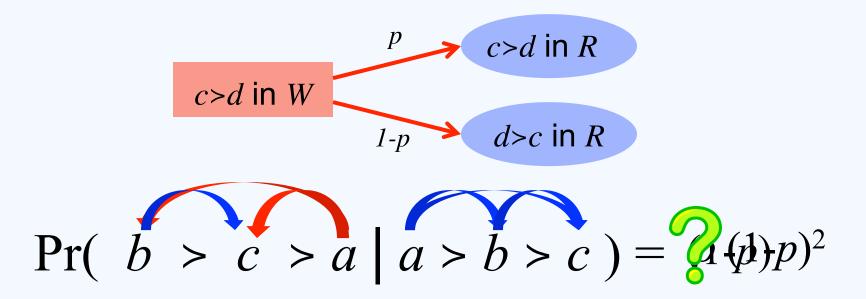
- two alternatives $\{a,b\}$. a: liable, b: not liable
- − 0.5<*p*<1,

Suppose

- given the ground truth (a or b), each voter's preference is generated i.i.d., such that
 - w/p p, the same as the ground truth
 - w/p 1-p, different from the ground truth
- Then, as $n \rightarrow \infty$, the probability for the majority of agents' preferences is the ground truth goes to 1

Condorcet's model [Condorcet 1785]

Given a "ground truth" ranking W and p>1/2,
 generate each pairwise comparison in R
 independently as follows (suppose c > d in W)



Its MLE is Kemeny's rule [Young JEP-95]

Truth revealing

Extended Condorcet Jury theorem

- Given
 - A ground truth ranking W
 - 0.5<*p*<1,
- Suppose
 - each agent's preferences are generated i.i.d. according to Condorcet's model
- Then, as $n \rightarrow \infty$, with probability that $\rightarrow 1$
 - the randomly generated profile has a Condorcet winner
 - The Condorcet winner is ranked at the top of W
- If r satisfies Condorcet criterion, then as $n \rightarrow \infty$, r will reveal the "correct" winner with probability that $\rightarrow 1$.

Other axioms

- Pareto optimality: For any profile D, there is no alternative c such that every voter prefers c to r(D)
- Consistency: For any profiles D_1 and D_2 , if $r(D_1)=r(D_2)$, then $r(D_1 \cup D_2)=r(D_1)$
- Monotonicity: For any profile D_1 ,
 - if we obtain D_2 by only raising the position of $r(D_1)$ in one vote,
 - then $r(D_1)=r(D_2)$
 - In other words, raising the position of the winner won't hurt it

Which axiom is more important?

	Condorcet criterion	Consistency	Anonymity/neutrality, non-dictatorship, monotonicity
Plurality	N	Y	Y
STV (alternative vote)	Υ	N	Υ

- Some axioms are not compatible with others
- Which rule do you prefer?

An easy fact

 Theorem. For voting rules that selects a single winner, anonymity is not compatible with neutrality

- proof:
Alice

Bob

W.O.L.G.

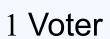
#Anonymity

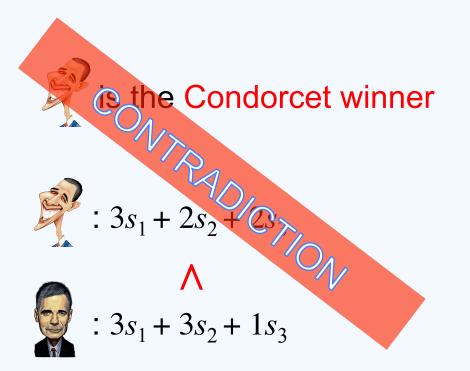
Neutrality

Another easy fact [Fishburn APSR-74]

 Theorem. No positional scoring rule satisfies Condorcet criterion:

- suppose $s_1 > s_2 > s_3$





Arrow's impossibility theorem

- Recall: a social welfare function outputs a ranking over alternatives
- Arrow's impossibility theorem. No social welfare function satisfies the following four axioms
 - Non-dictatorship
 - Universal domain: agents can report any ranking
 - Unanimity: if a>b in all votes in D, then a>b in r(D)
 - Independence of irrelevant alternatives (IIA): for two profiles D_1 = $(R_1,...,R_n)$ and D_2 = $(R_1',...,R_n')$ and any pair of alternatives a and b
 - if for all voter j, the pairwise comparison between a and b in R_j is the same as that in R_i '
 - then the pairwise comparison between a and b are the same in $r(D_1)$ as in $r(D_2)$

Other Not-So-Easy facts

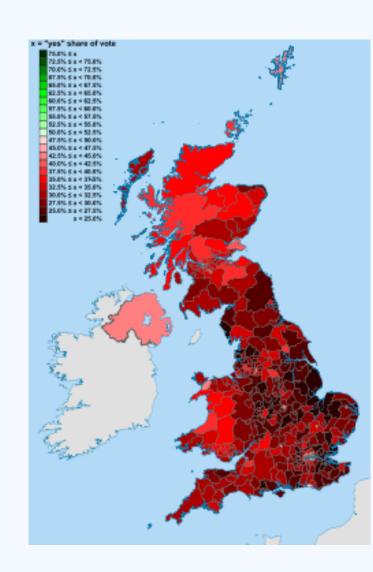
- Gibbard-Satterthwaite theorem
 - Later in the "hard to manipulate" class
- Axiomatic characterization
 - Template: A voting rule satisfies axioms A1, A2, A2 ⇔ if it is rule X
 - If you believe in A1 A2 A3 are the most desirable properties then X is optimal
 - (unrestricted domain+unanimity+IIA) ⇔ dictatorships [Arrow]
 - (anonymity+neutrality+consistency+continuity) ⇔ positional scoring rules [Young SIAMAM-75]
 - (neutrality+consistency+Condorcet consistency) ⇔ Kemeny
 [Young&Levenglick SIAMAM-78]

Remembered all of these?

 Impressive! Now try a slightly larger tip of the iceberg at wiki

Change the world: 2011 UK Referendum

- The second nationwide referendum in UK history
 - The first was in 1975
- Member of Parliament election:
 Plurality rule → Alternative vote rule
- 68% No vs. 32% Yes
- Why people want to change?
- Why it was not successful?
- Which voting rule is the best?



Wrap up

Voting rules

- positional scoring rules
- multi-round elimination rules
- WMG-based rules
- A Ground-truth revealing rule (Kemeny's rule)
- Criteria (axioms) for "good" rules
 - Fairness axioms
 - A ground-truth-revealing axiom (Condorcet consistency)
 - Other axioms

Evaluation

- impossibility theorems
- Axiomatic characterization

The reading questions

- What is the problem?
 - social choice
- Why we want to study this problem? How general it is?
 - It is very general and important
- How was problem addressed?
 - by designing voting rules for aggregation and axioms for evaluation and comparisons
- Appreciate the work: what makes the paper nontrivial?
 - No single numerical criterion for evaluation
- Critical thinking: anything you are not very satisfied with?
 - evaluation of axioms, computation, incentives

Looking forward

- How to apply these rules?
 - never use without justification: democracy or truth?
- Preview of future classes
 - Strategic behavior of the voters
 - Game theory and mechanism design
 - Computational social choice
 - Basics of computation
 - Easy-to-compute axiom
 - Hard-to-manipulate axiom
- You can start to work on the first homework!