
•  Linear programming
–  variables are positive real numbers
–  all constraints are linear, the objective is linear
–  in P

•  (Mixed) Integer programming
–  (Some) All variables are integer
–  NP-hard

•  Basic computation
–  Big O
–  Polynomial-time reduction

1

Last class: linear programming
and computation

•  A real proof of NP-hardness
(completeness)

•  Computational social choice: the easy-to-
compute axiom
– voting rules that can be computed in P

•  satisfies the axiom

– Kemeny: a(nother) real proof of NP-hardness
–  IP formulation of Kemeny

2

Today’s schedule

•  Polynomial-time reduction: convert an instance of A to an
instance of another decision problem B in polynomial-time
–  so that answer to A is “yes” if and only if the answer to B is “yes”

•  If you can do this for all instances of A, then it proves that B
is HARDER than A w.r.t. polynomial-time reduction

•  But it does not mean that B is always harder than A 3

How a reduction works?

Instance of A Instance of B

Yes

No

Yes

No

P-time

•  NP-hard problems
–  the decision problems “harder” than any problem in NP
–  for any problem A in NP there exits a P-time reduction from A

•  NP-complete problems
–  the decision problems in NP that are NP-hard
–  the “hardest” problems in NP

4

NP-hard and NP-complete problems

P NP-hard

NP
NP-C

•  How to put an elephant in a fridge
–  Step 1. open the door
–  Step 2. put the elephant in
–  Step 3. close the door

•  To prove a decision problem B is NP-hard
–  Step 1. find a problem A
–  Step 2. prove that A is NP-hard
–  Step 3. find a p-time reduction from A to B

•  To prove B is NP-complete
–  prove B is NP-hard
–  prove B is in NP (find a p-time verification for any correct

answer)

5

How to prove a problem is NP-hard

•  3SAT
–  Input: a logical formula F in conjunction

normal form (CNF) where each clause has
exactly 3 literals

•  F = (x1∨x2∨x3)∧(¬x1∨¬x3∨x4)∧(¬x2∨x3∨¬x4)

– Answer: Is F satisfiable?

•  3SAT is NP-complete (Cook-Levin
theorem)

6

The first known NP-complete problem

•  Vertex cover (VC):
–  Given a undirected graph and a natural number k.
–  Does there exists a set S of no more than k vertices so

that every edge has an endpoint in S	

•  Example: Does there exists a vertex cover of 4? 	

7

Vertex cover (VC)

•  Given F= (x1∨x2∨x3)∧(¬x1∨¬x3∨x4)∧(¬x2∨x3∨¬x4)

•  Does there exist a vertex cover of 4+2*3?

8

VC is NP-complete

x3 x2

x1

¬x1 x1 ¬x2 x2 ¬x3 x3

¬x3 x4

¬x1

x3 ¬x4

¬x2

¬x4 x4

•  More details: http://cgm.cs.mcgill.ca/~athens/
cs507/Projects/2001/CW/npproof.html

•  A yes to B must correspond to a yes to A
–  if yes↔no then this proves coNP-hardness

•  The best source for NP-complete problems
– Computers and Intractability: A Guide to the

Theory of NP-Completeness
–  by M. R. Garey and D. S. Johnson
–  cited for >46k times [Google Scholar]

•  vs the “most cited book” The Structure of Scientific
Revolutions 59K 9

Notes

•  A voting rule satisfies the easy-to-
compute axiom if computing the winner
can be done in polynomial time
– P: easy to compute

– NP-hard: hard to compute

– assuming P≠NP

10

The easy-to-compute axiom

•  Given: a voting rule r	

•  Input: a preference profile D and an
alternative c	

–  input size: nmlog m	

•  Output: is c the winner of r under D?

11

The winner determination problem

•  If following the description of r the winner can
be computed in p-time, then r satisfies the
easy-to-compute axiom

•  Positional scoring rule
– For each alternative (m iter)

•  for each vote in D (n iter)
–  find the position of m, find the score of this position

– Find the alternative with the largest score (m iter)
– Total time O(mn+m)=O(mn)

12

Computing positional scoring rules

•  For each pair of alternatives c,d (m(m-1) iter)
–  let k = 0

–  for each vote R	

•  if c>d add 1 to the counter k	

•  if d>c subtract 1 from k	

–  the weight on the edge c→d is k	

13

Computing the weighted
majority graph

•  Kendall tau distance
– K(R,W)= # {different pairwise comparisons}

•  Kemeny(D)=argminW K(D,W)	

	

 	

 	

 	

 	

 	

=argminW ΣR∈D K(R,W)	

•  For single winner, choose the top-ranked
alternative in Kemeny(D)

14

Kemeny’s rule

K(b ≻ c ≻ a , a ≻ b ≻ c) = 2

•  For each linear order W (m! iter)
–  for each vote R in D (n iter)

•  compute K(R,W)

•  Find W* with the smallest total distance
– W*= argminW K(D,W)=argminW ΣR∈DK(R,W)

–  top-ranked alternative at W* is the winner

•  Takes exponential O(m!n) time!
15

Computing the Kemeny winner

•  Ranking R → direct acyclic complete graph G(R)

•  Given the WMG G(D) of the input profile D

•  K(D,W) =Σa→b∈G(W) (n-w(a→b))/2 	

	

 	

 	

 	

 = constant - Σa→b∈G(W) w(a→b)/2	

•  argminW K(D,W)=argmaxW Σa→b∈G(W) w(a→b)	

16

Kemeny

a>b>c>d	

b	

a	

c	

 d	

•  Reduction from feedback arc set
– Given a directed graph and a number k	

– does there exist a way to eliminate no more
than k edges to obtain an acyclic graph?

17

Kemeny is NP-hard to compute

c	

c1	

c2	

c1	

c2	

c2	

 c2	

18

Satisfiability of easy-to-compute

Rule Complexity
Positional scoring

P

Plurality w/ runoff
STV

Copeland
Maximin

Ranked pairs
Kemeny

NP-hard Slater
Dodgson

•  For each pair of alternatives a, b there is a
binary variable xab	

–  xab = 1 if a>b in W	

–  xab = 0 if b>a in W

•  max Σa,bw(a→b)xab	

s.t. for all a, b, xab+xba=1	

 for all a, b, c, xab+xbc+xca≤2	

•  Do we need to worry about cycles of >3
vertices? Homework

19

Solving Kemeny in practice

No edges in both directions

No cycle of 3 vertices

•  Approximation

•  Randomization

•  Fixed-parameter analysis

20

Advanced computational
techniques

•  In California, voters voted on 11 binary issues
(/)
–  211=2048 combinations in total
–  5/11 are about budget and taxes

21

Next class: combinatorial voting

•  Prop.30 Increase sales
and some income tax
for education

•  Prop.38 Increase
income tax on almost
everyone for education

