Last class: linear programming and computation

- Linear programming
- variables are positive real numbers
- all constraints are linear, the objective is linear
- in P
- (Mixed) Integer programming
- (Some) All variables are integer
- NP-hard
- Basic computation
- Big O
- Polynomial-time reduction

Today's schedule

- A real proof of NP-hardness (completeness)
- Computational social choice: the easy-tocompute axiom
- voting rules that can be computed in P
- satisfies the axiom
- Kemeny: a(nother) real proof of NP-hardness
- IP formulation of Kemeny

How a reduction works?

- Polynomial-time reduction: convert an instance of A to an instance of another decision problem B in polynomial-time
- so that answer to A is "yes" if and only if the answer to B is "yes"

- If you can do this for all instances of A, then it proves that B is HARDER than A w.r.t. polynomial-time reduction
- But it does not mean that B is always harder than A

NP-hard and NP-complete problems

- NP-hard problems
- the decision problems "harder" than any problem in NP
- for any problem A in NP there exits a P-time reduction from A
- NP-complete problems
- the decision problems in NP that are NP-hard
- the "hardest" problems in NP

How to prove a problem is NP-hard

- How to put an elephant in a fridge
- Step 1. open the door
- Step 2. put the elephant in
- Step 3. close the door
- To prove a decision problem B is NP-hard
- Step 1. find a problem A
- Step 2. prove that A is NP-hard
- Step 3. find a p-time reduction from A to B
- To prove B is NP-complete
- prove B is NP-hard
- prove B is in NP (find a p-time verification for any correct answer)

The first known NP-complete problem

- 3SAT
- Input: a logical formula F in conjunction normal form (CNF) where each clause has exactly 3 literals
- $\mathrm{F}=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee \neg x_{4}\right)$
- Answer: Is F satisfiable?
- 3SAT is NP-complete (Cook-Levin theorem)

Vertex cover (VC)

- Vertex cover (VC):
- Given a undirected graph and a natural number k.
- Does there exists a set S of no more than k vertices so that every edge has an endpoint in S
- Example: Does there exists a vertex cover of 4 ?

VC is NP-complete

- Given $\mathrm{F}=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee \neg x_{4}\right)$
- Does there exist a vertex cover of $4+2 * 3$?

Notes

- More details: http://cgm.cs.mcgill.ca/~athens/ cs507/Projects/2001/CW/npproof.html
- A yes to B must correspond to a yes to A
- if yes \leftrightarrow no then this proves coNP-hardness
- The best source for NP-complete problems
- Computers and Intractability: A Guide to the Theory of NP-Completeness
- by M. R. Garey and D. S. Johnson
- cited for >46k times [Google Scholar]
- vs the "most cited book" The Structure of Scientific Revolutions 59K

The easy-to-compute axiom

- A voting rule satisfies the easy-tocompute axiom if computing the winner can be done in polynomial time
- P: easy to compute
- NP-hard: hard to compute
- assuming $\mathrm{P} \neq \mathrm{NP}$

The winner determination problem

- Given: a voting rule r
- Input: a preference profile D and an alternative c
- input size: $n m \log m$
- Output: is c the winner of r under D ?

Computing positional scoring rules

- If following the description of r the winner can be computed in p-time, then r satisfies the easy-to-compute axiom
- Positional scoring rule
- For each alternative (m iter)
- for each vote in D (n iter)
- find the position of m, find the score of this position
- Find the alternative with the largest score (m iter)
- Total time $O(m n+m)=O(m n)$

Computing the weighted majority graph

- For each pair of alternatives $c, d(m(m-1)$ iter $)$
- let $k=0$
- for each vote R
- if $c>d$ add 1 to the counter k
- if $d>c$ subtract 1 from k
- the weight on the edge $c \rightarrow d$ is k

Kemeny's rule

- Kendall tau distance
- $\mathrm{K}(R, W)=$ \# \{different pairwise comparisons\}

$$
\mathrm{K}(b>c>a, a>b>c)=2
$$

- Kemeny $(D)=\operatorname{argmin}_{W} \mathrm{~K}(D, W)$

$$
=\operatorname{argmin}_{W} \Sigma_{R \in D} \mathrm{~K}(R, W)
$$

- For single winner, choose the top-ranked alternative in Kemeny(D)

Computing the Kemeny winner

- For each linear order W (m ! iter)
- for each vote R in D (n iter)
- compute $\mathrm{K}(R, W)$
- Find W^{*} with the smallest total distance
$-W^{*}=\operatorname{argmin}_{W} \mathrm{~K}(D, W)=\operatorname{argmin}_{W} \Sigma_{R \in D} \mathrm{~K}(R, W)$
- top-ranked alternative at W^{*} is the winner
- Takes exponential $O(m!n)$ time!

Kemeny

- Ranking $R \rightarrow$ direct acyclic complete graph $G(R)$

- Given the WMG $G(D)$ of the input profile D
- $\mathrm{K}(D, W)=\Sigma_{a \rightarrow b \in G(W)}(n-w(a \rightarrow b)) / 2$
$=$ constant $-\Sigma_{a \rightarrow b \in G(W)} w(a \rightarrow b) / 2$
- $\operatorname{argmin}_{W} \mathrm{~K}(D, W)=\operatorname{argmax}_{W} \Sigma_{a \rightarrow b \in G(W)} w(a \rightarrow b)$

Kemeny is NP-hard to compute

- Reduction from feedback arc set
- Given a directed graph and a number k
- does there exist a way to eliminate no more than k edges to obtain an acyclic graph?

Satisfiability of easy-to-compute

Rule	Complexity
Positional scoring	P ${ }^{-0}$
Plurality w/ runoff	
STV	
Copeland	
Maximin	
Ranked pairs	
Kemeny	NP-hard 0
Slater	
Dodgson	

Solving Kemeny in practice

- For each pair of alternatives a, b there is a binary variable $x_{a b}$
$-x_{a b}=1$ if $a>b$ in W
$-x_{a b}=0$ if $b>a$ in W
- max $\sum_{a, b} w(a \rightarrow b) x_{a b}$
s.t. for all $a, b, x_{a b}+x_{b a}=1$

No edges in both directions for all $a, b, c, x_{a b}+x_{b c}+x_{c a} \leq 2 \quad$ No cycle of 3 vertices

- Do we need to worry about cycles of >3 vertices? Homework

Advanced computational techniques

- Approximation
- Randomization
- Fixed-parameter analysis

Next class: combinatorial voting

- In California, voters voted on 11 binary issues (
$-2^{11}=2048$ combinations in total
- 5/11 are about budget and taxes

- Prop. 30 Increase sales and some income tax for education
- Prop. 38 Increase income tax on almost everyone for education

