
•  Linear programming 
–  variables are positive real numbers 
–  all constraints are linear, the objective is linear 
–  in P 

•  (Mixed) Integer programming 
–  (Some) All variables are integer 
–  NP-hard 

•  Basic computation 
–  Big O 
–  Polynomial-time reduction 
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Last class: linear programming 
and computation 



•  A real proof of NP-hardness 
(completeness)  

•  Computational social choice: the easy-to-
compute axiom 
– voting rules that can be computed in P 

•  satisfies the axiom 

– Kemeny: a(nother) real proof of NP-hardness 
–  IP formulation of Kemeny 
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Today’s schedule 



•  Polynomial-time reduction: convert an instance of A to an 
instance of another decision problem B in polynomial-time 
–  so that answer to A is “yes” if and only if the answer to B is “yes” 

•  If you can do this for all instances of A, then it proves that B 
is HARDER than A w.r.t. polynomial-time reduction 

•  But it does not mean that B is always harder than A 3 

How a reduction works? 

Instance of A Instance of B 

Yes 

No 

Yes 

No 

P-time 



•  NP-hard problems 
–  the decision problems “harder” than any problem in NP 
–  for any problem A in NP there exits a P-time reduction from A 

•  NP-complete problems 
–  the decision problems in NP that are NP-hard 
–  the “hardest” problems in NP 

4 

NP-hard and NP-complete problems 

P NP-hard 

NP 
NP-C 



•  How to put an elephant in a fridge 
–  Step 1. open the door 
–  Step 2. put the elephant in 
–  Step 3. close the door 

•  To prove a decision problem B is NP-hard 
–  Step 1. find a problem A 
–  Step 2. prove that A is NP-hard 
–  Step 3. find a p-time reduction from A to B 

•  To prove B is NP-complete 
–  prove B is NP-hard 
–  prove B is in NP (find a p-time verification for any correct 

answer) 
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How to prove a problem is NP-hard 



•  3SAT 
–  Input: a logical formula F in conjunction 

normal form (CNF) where each clause has 
exactly 3 literals 

•  F = (x1∨x2∨x3)∧(¬x1∨¬x3∨x4)∧(¬x2∨x3∨¬x4) 

– Answer: Is F satisfiable? 

•  3SAT is NP-complete (Cook-Levin 
theorem) 
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The first known NP-complete problem 



•  Vertex cover (VC):  
–  Given a undirected graph and a natural number k.  
–  Does there exists a set S of no more than k vertices so 

that every edge has an endpoint in S	



•  Example: Does there exists a vertex cover of 4? 	
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Vertex cover (VC) 



•  Given F= (x1∨x2∨x3)∧(¬x1∨¬x3∨x4)∧(¬x2∨x3∨¬x4) 

•  Does there exist a vertex cover of 4+2*3? 
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VC is NP-complete 

x3 x2 

x1 

¬x1 x1 ¬x2 x2 ¬x3 x3 

¬x3 x4 

¬x1 

x3 ¬x4 

¬x2 

¬x4 x4 



•  More details: http://cgm.cs.mcgill.ca/~athens/
cs507/Projects/2001/CW/npproof.html 

•  A yes to B must correspond to a yes to A 
–  if yes↔no then this proves coNP-hardness 

•  The best source for NP-complete problems 
– Computers and Intractability: A Guide to the 

Theory of NP-Completeness 
–  by M. R. Garey and D. S. Johnson 
–  cited for >46k times [Google Scholar] 

•  vs the “most cited book” The Structure of Scientific 
Revolutions 59K 9 

Notes 



•  A voting rule satisfies the easy-to-
compute axiom if computing the winner 
can be done in polynomial time 
– P: easy to compute 

– NP-hard: hard to compute 

– assuming P≠NP 
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The easy-to-compute axiom 



•  Given: a voting rule r	



•  Input: a preference profile D and an 
alternative c	


–  input size: nmlog m	



•  Output: is c the winner of r under D? 
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The winner determination problem 



•  If following the description of r the winner can 
be computed in p-time, then r satisfies the 
easy-to-compute axiom 

•  Positional scoring rule 
– For each alternative (m iter) 

•  for each vote in D (n iter) 
–  find the position of m, find the score of this position 

– Find the alternative with the largest score (m iter) 
– Total time O(mn+m)=O(mn) 
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Computing positional scoring rules 



•  For each pair of alternatives c,d (m(m-1) iter)  
–  let k = 0 

–  for each vote R	


•  if c>d add 1 to the counter k	



•  if d>c subtract 1 from k	



–  the weight on the edge c→d is k	
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Computing the weighted 
majority graph 



•  Kendall tau distance  
– K(R,W)= # {different pairwise comparisons} 

•  Kemeny(D)=argminW K(D,W)	



	

 	

 	

 	

 	

 	

=argminW ΣR∈D K(R,W)	



•  For single winner, choose the top-ranked 
alternative in Kemeny(D) 
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Kemeny’s rule 

K(  b  ≻  c  ≻ a , a ≻ b ≻ c ) = 2 



•  For each linear order W (m! iter) 
–  for each vote R in D (n iter) 

•  compute K(R,W) 

•  Find W* with the smallest total distance  
– W*= argminW K(D,W)=argminW ΣR∈DK(R,W) 

–  top-ranked alternative at W* is the winner 

•  Takes exponential O(m!n) time! 
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Computing the Kemeny winner 



•  Ranking R → direct acyclic complete graph G(R) 

 

•  Given the WMG G(D) of the input profile D 

•  K(D,W) =Σa→b∈G(W) (n-w(a→b))/2 	



	

 	

 	

 	

 = constant - Σa→b∈G(W) w(a→b)/2	



•  argminW K(D,W)=argmaxW Σa→b∈G(W) w(a→b)	
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Kemeny 

a>b>c>d	


b	

a	



c	

 d	





•  Reduction from feedback arc set 
– Given a directed graph and a number k	



– does there exist a way to eliminate no more 
than k edges to obtain an acyclic graph? 
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Kemeny is NP-hard to compute 

c	


c1	



c2	



c1	



c2	



c2	

 c2	
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Satisfiability of easy-to-compute 

Rule Complexity 
Positional scoring 

P 

Plurality w/ runoff 
STV 

Copeland 
Maximin 

Ranked pairs 
Kemeny 

NP-hard Slater 
Dodgson 



•  For each pair of alternatives a, b there is a 
binary variable xab	


–  xab = 1 if a>b in W	


–  xab = 0 if b>a in W 

•  max   Σa,bw(a→b)xab	


s.t.  for all a, b, xab+xba=1	



  for all a, b, c, xab+xbc+xca≤2	



•  Do we need to worry about cycles of >3 
vertices? Homework 
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Solving Kemeny in practice 

No edges in both directions  

No cycle of 3 vertices 



•  Approximation 

•  Randomization 

•  Fixed-parameter analysis 
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Advanced computational 
techniques 



•  In California, voters voted on 11 binary issues 
(     /      ) 
–  211=2048 combinations in total 
–  5/11 are about budget and taxes 
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Next class: combinatorial voting 

•  Prop.30 Increase sales 
and some income tax 
for education 

•  Prop.38 Increase 
income tax on almost 
everyone for education 


