News in the world

- Scottish independence referendum
 - 45% yes vs 55% no
- The YouGov survey predicts Scots have rejected independence by a margin of 54% to 46%
 - based on the responses of 1,828 people after they voted,
 as well as 800 people who had already cast their ballots
 - Peter Kellner of YouGov said: "At risk of looking utterly ridiculous in a few hours time, I would say it's a 99% chance of a No victory."
- Where does this 99% come from?
 - we will learn in the hypothesis testing class

Last class: combinatorial voting

Computational efficiency

Tradeoff

Expressiveness

Manipulation under plurality rule (ties are broken in favor of)

Strategic behavior (of the agents)

- Manipulation: an agent (manipulator) casts a vote that does not represent her true preferences, to make herself better off
- A voting rule is strategy-proof if there is never a (beneficial) manipulation under this rule
 - truthful direct revelation mechanism
- Is strategy-proofness compatible with other axioms?

Any strategy-proof voting rule?

- ••
- No reasonable voting rule is strategyproof
- Gibbard-Satterthwaite Theorem [Gibbard Econometrica-73, Satterthwaite JET-75]: When there are at least three alternatives, no voting rules except dictatorships satisfy
 - non-imposition: every alternative wins for some profile
 - unrestricted domain: voters can use any linear order as their votes
 - strategy-proofness
- Axiomatic characterization for dictatorships!
- Revelation principle: among all voting rules that satisfy nonimposition and unrestricted domain, only dictatorships can be implemented w.r.t. dominant strategy
- Randomized version [Gibbard Econometrica-77]

A few ways out

- Relax non-dictatorship: use a dictatorship
- Restrict the number of alternatives to 2
- Relax unrestricted domain: mainly pursued by economists
 - Single-peaked preferences:
 - Range voting: A voter submit any natural number between 0 and 10 for each alternative
 - Approval voting: A voter submit 0 or 1 for each alternative

Computational thinking

- Use a voting rule that is too complicated so that nobody can easily predict the winner
 - Dodgson
 - Kemeny
 - The randomized voting rule used in Venice Republic for more than 500 years [Walsh&Xia AAMAS-12]
- We want a voting rule where
 - Winner determination is easy
 - Manipulation is hard
- The hard-to-manipulate axiom: manipulation under the given voting rule is NP-hard

Overview

Manipulation: A computational complexity perspective

If it is computationally too hard for a manipulator to compute a manipulation, she is best off voting truthfully

- Similar as in cryptography
- For which common voting rules manipulation is computationally hard?

Unweighted coalitional manipulation (UCM) problem

Given

- The voting rule *r*
- The non-manipulators' profile P^{NM}
- The number of manipulators n'
- The alternative c preferred by the manipulators
- We are asked whether or not there exists a profile P^M (of the manipulators) such that c is the winner of $P^{NM} \cup P^M$ under r

The stunningly big table for UCM

#manipulators	One manipulator		At least two		
Copeland	P [BT	TT SCW-89b]	NPC	[FHS AAMAS-08,10]	
STV	NPC [BC	O SCW-91]	NPC	[BO SCW-91]	
Veto	P [ZF	PR AIJ-09]	Р	[ZPR AIJ-09]	
Plurality with runoff	P [ZF	PR AIJ-09]	Р	[ZPR AIJ-09]	
Cup	P [CS	SL JACM-07]	Р	[CSL JACM-07]	
Borda	P [BT	TT SCW-89b]	NPC	[DKN+ AAAI-11] [BNW IJCAI-11]	Ψ
Maximin	P [BT	TT SCW-89b]	NPC	[XZP+ IJCAI-09]	
Ranked pairs	NPC [XZ	ZP+ IJCAI-09]	NPC	[XZP+ IJCAI-09]	
Bucklin	P [XZ	ZP+ IJCAI-09]	Р	[XZP+ IJCAI-09]	
Nanson's rule	NPC [NV	WX AAA-11]	NPC	[NWX AAA-11]	
Baldwin's rule	NPC [NV	WX AAA-11]	NPC	[NWX AAA-11]	

What can we conclude?

- For some common voting rules, computational complexity provides some protection against manipulation
- Is computational complexity a strong barrier?
 - NP-hardness is a worst-case concept

Probably NOT a strong barrier

1. Frequency of manipulability

2. Easiness of Approximation

3. Quantitative G-S

A first angle: frequency of manipulability

- Non-manipulators' votes are drawn i.i.d.
 - E.g. i.i.d. uniformly over all linear orders (the impartial culture assumption)
- How often can the manipulators make c win?
 - Specific voting rules [Peleg T&D-79, Baharad&Neeman RED-02, Slinko T&D-02, Slinko MSS-04, Procaccia and Rosenschein AAMAS-07]

A general result [Xia&Conitzer EC-08a]

- Theorem. For any generalized scoring rule
 - Including many common voting rules

- Computational complexity is not a strong barrier against manipulation
 - UCM as a decision problem is easy to compute in most cases
 - The case of $\Theta(\sqrt{n})$ has been studied experimentally in [Walsh IJCAI-09]

A second angle: approximation

- Unweighted coalitional optimization
 (UCO): compute the smallest number of
 manipulators that can make c win
 - A greedy algorithm has additive error no more than 1 for Borda [Zuckerman, Procaccia, &Rosenschein AlJ-09]

An approximation algorithm for positional scoring rules [Xia, Conitzer, & Procaccia EC-10]

- A polynomial-time approximation algorithm that works for all positional scoring rules
 - Additive error is no more than m-2
 - Based on a new connection between UCO for positional scoring rules and a class of scheduling problems
- Computational complexity is not a strong barrier against manipulation
 - The cost of successful manipulation can be easily approximated (for positional scoring rules)

The scheduling problems $Q|pmtn|C_{max}$

- m^* parallel uniform machines $M_1, ..., M_{m^*}$
 - Machine i's speed is sⁱ (the amount of work done in unit time)
- n^* jobs $J_1, ..., J_{n^*}$
- preemption: jobs are allowed to be interrupted (and resume later maybe on another machine)
- We are asked to compute the minimum makespan
 - the minimum time to complete all jobs

Thinking about UCO pos

• Let $p,p_1,...,p_{m-1}$ be the total points that $c,c_1,...,c_{m-1}$ obtain in the non-manipulators' profile

The approximation algorithm

Complexity of UCM for Borda

- Manipulation of positional scoring rules = scheduling (preemptions at integer time points)
 - Borda manipulation corresponds to scheduling where the machines speeds are m-1, m-2, ..., 0
 - NP-hard [Yu, Hoogeveen, & Lenstra J.Scheduling 2004]
 - UCM for Borda is NP-C for two manipulators
 - [Davies et al. AAAI-11 best paper]
 - [Betzler, Niedermeier, & Woeginger IJCAI-11 best paper]

A third angle: quantitative G-S

- G-S theorem: for any reasonable voting rule there exists a manipulation
- Quantitative G-S: for any voting rule that is "far away" from dictatorships, the number of manipulable situations is non-negligible
 - First work: 3 alternatives, neutral rule [Friedgut, Kalai, &Nisan FOCS-08]
 - Extensions: [Dobzinski&Procaccia WINE-08, Xia&Conitzer EC-08b, Isaksson, Kindler, & Mossel FOCS-10]
 - Finally proved: [Mossel&Racz STOC-12]

Next steps

- The first attempt seems to fail
- Can we obtain positive results for a restricted setting?
 - The manipulators has complete information about the non-manipulators' votes
 - The manipulators can perfectly discuss their strategies

Limited information

 Limiting the manipulator's information can make dominating manipulation computationally harder, or even impossible [Conitzer, Walsh, & Xia

Bayesian information [Lu et al. UAI-12]

Limited communication among manipulators

- The leader-follower model
 - The leader broadcast a vote W, and the potential followers decide whether to cast W or not
 - The leader and followers have the same preferences
 - Safe manipulation [Slinko&White COMSOC-08]: a vote
 W that
 - No matter how many followers there are, the leader/ potential followers are not worse off
 - Sometimes they are better off
 - Complexity: [Hazon&Elkind SAGT-10, Ianovski et al. IJCAI-11]

Overview

Research questions

- How to predict the outcome?
 - Game theory
- How to evaluate the outcome?
- Price of anarchy [Koutsoupias&Papadimitriou STACS-99]
 - Optimal welfare when agents are truthful
 Worst welfare when agents are fully strategic
 - Not very applicable in the social choice setting
 - Equilibrium selection problem
 - Social welfare is not well defined
 - Use best-response game to select an equilibrium and use scores as social welfare [Brânzei et al. AAAI-13]

Simultaneous-move voting games

- Players: Voters 1,...,n
- Strategies / reports: Linear orders over alternatives
- Preferences: Linear orders over alternatives
- Rule: r(P'), where P' is the reported profile

Equilibrium selection problem

Stackelberg voting games [Xia&Conitzer AAAI-10]

- Voters vote sequentially and strategically
 - voter $1 \rightarrow \text{voter } 2 \rightarrow \text{voter } 3 \rightarrow \dots \rightarrow \text{voter } n$
 - any terminal state is associated with the winner under rule r
- Called a Stackelberg voting game
 - Unique winner in SPNE (not unique SPNE)
 - Similar setting in [Desmedt&Elkind EC-10]

Other types of strategic behavior (of the chairperson)

- Procedure control by
 - {adding, deleting} × {voters, alternatives}
 - partitioning voters/alternatives
 - introducing clones of alternatives
 - changing the agenda of voting
 - [Bartholdi, Tovey, &Trick MCM-92, Tideman SCW-07, Conitzer, Lang, &Xia IJCAI-09]
- Bribery [Faliszewski, Hemaspaandra, &Hemaspaandra JAIR-09]
- See [Faliszewski, Hemaspaandra, &Hemaspaandra CACM-10] for a survey on their computational complexity
- See [Xia Axriv-12] for a framework for studying many of these for generalized scoring rules

Next class: statistical approaches

GOAL1: democracy

GOAL2: truth

Axiomatic approaches

Statistical approaches