News in the world

- Scottish independence referendum
- 45% yes vs 55% no
- The YouGov survey predicts Scots have rejected independence by a margin of 54% to 46%
- based on the responses of 1,828 people after they voted, as well as 800 people who had already cast their ballots
- Peter Kellner of YouGov said: "At risk of looking utterly ridiculous in a few hours time, I would say it's a 99\% chance of a No victory."
- Where does this 99% come from?
- we will learn in the hypothesis testing class

Last class: combinatorial voting

Computational efficiency

Theadeofif

Expressiveness

Manipulation under plurality

 rule (ties are broken in favor of)

Strategic behavior (of the agents)

- Manipulation: an agent (manipulator) casts a vote that does not represent her true preferences, to make herself better off
- A voting rule is strategy-proof if there is never a (beneficial) manipulation under this rule - truthful direct revelation mechanism
- Is strategy-proofness compatible with other axioms?

Any strategy-proof voting rule?

- 1 No reasonable voting rule is strategyproof
- Gibbard-Satterthwaite Theorem [Gibbard Econometrica-73, Satterthwaite JET-75]: When there are at least three alternatives, no voting rules except dictatorships satisfy
- non-imposition: every alternative wins for some profile
- unrestricted domain: voters can use any linear order as their votes
- strategy-proofness
- Axiomatic characterization for dictatorships!
- Revelation principle: among all voting rules that satisfy nonimposition and unrestricted domain, only dictatorships can be implemented w.r.t. dominant strategy
- Randomized version [Gibbard Econometrica-77]

A few ways out

- Relax non-dictatorship: use a dictatorship
- Restrict the number of alternatives to 2
- Relax unrestricted domain: mainly pursued by economists
- Single-peaked preferences:
- Range voting: A voter submit any natural number between 0 and 10 for each alternative
- Approval voting: A voter submit 0 or 1 for each alternative

Computational thinking

- Use a voting rule that is too complicated so that nobody can easily predict the winner
- Dodgson
- Kemeny
- The randomized voting rule used in Venice Republic for more than 500 years [Walsh\&Xia AAMAS-12]
- We want a voting rule where
- Winner determination is easy
- Manipulation is hard
- The hard-to-manipulate axiom: manipulation under the given voting rule is NP-hard

Overview

Manipulation is inevitable

(Gibbard-Satterthwaite Theorem)

Can we use computational complexity as a barrier?

Is it a strong barrier?

Other barriers?

Limited information
Seems not very often

Manipulation: A computational

 complexity perspective- If it is computationally too hard for a manipulator to compute a manipulation, she is best off voting truthfully
- Similar as in cryptography
(? For which common voting rules manipulation is computationally hard?

Unweighted coalitional manipulation (UCM) problem

- Given
- The voting rule r
- The non-manipulators' profile $P^{N M}$
- The number of manipulators n,
- The alternative c preferred by the manipulators
- We are asked whether or not there exists a profile P^{M} (of the manipulators) such that c is the winner of $P^{N M} \cup P^{M}$ under r

The stunningly big table for UCM

\#manipulators	One manipulator	At least two	
Copeland	P [BTT SCW-89b]	NPC [FHS AAMAS-08,10]	
STV	NPC [BO SCW-91]	NPC [BO SCW-91]	
Veto	P [ZPR AIJ-09]	P [ZPR AIJ-09]	
Plurality with runoff	P [ZPR AIJ-09]	P [ZPR AIJ-09]	
Cup	P [CSL JACM-07]	P [CSL JACM-07]	
Borda	P [BTT SCW-89b]	NPC [DKN+ AAAI-11] [BNW IJCAI-11]	V
Maximin	P [BTT SCW-89b]	NPC [XZP+ IJCAI-09]	
Ranked pairs	NPC [XZP+ IJCAI-09]	NPC [XZP+ IJCAI-09]	
Bucklin	P [$\mathrm{XZP}+\mathrm{IJCAI}-09]$	P [XZP+ IJCAI-09]	
Nanson's rule	NPC [NWX AAA-11]	NPC [NWX AAA-11]	
Baldwin's rule	NPC [NWX AAA-11]	NPC [NWX AAA-11]	

Nanson \& Baldwin in the news

What can we conclude?

- For some common voting rules, computational complexity provides some protection against manipulation
- Is computational complexity a strong barrier?
- NP-hardness is a worst-case concept

Probably NOT a strong barrier

1. Frequency of manipulability

2. Quantitative G-S

Approximation

A first angle:
 frequency of manipulability

- Non-manipulators' votes are drawn i.i.d.
- E.g. i.i.d. uniformly over all linear orders (the impartial culture assumption)
- How often can the manipulators make c win?
- Specific voting rules [Peleg T\&D-79, Baharad\&Neeman RED-02, Slinko T\&D-02, Slinko MSS-04, Procaccia and Rosenschein AAMAS-07]

A general result [Xia\&Conitzer EC-08a]

- Theorem. For any generalized scoring rule
- Including many common voting rules

All-powerful

\# manipulators
$\Theta(\sqrt{ } n)$

No power

- Computational complexity is not a strong barrier against manipulation
- UCM as a decision problem is easy to compute in most cases
- The case of $\Theta\left(V_{n}\right)$ has been studied experimentally in [Walsh IJCAI-09]

A second angle: approximation

- Unweighted coalitional optimization
(UCO): compute the smallest number of manipulators that can make c win
- A greedy algorithm has additive error no more than 1 for Borda [Zuckerman, Procaccia, \&Rosenschein AIJ-09]

An approximation algorithm for ec.10]

- A polynomial-time approximation algorithm that works for all positional scoring rules
- Additive error is no more than $m-2$
- Based on a new connection between UCO for positional scoring rules and a class of scheduling problems
- Computational complexity is not a strong barrier against manipulation
- The cost of successful manipulation can be easily approximated (for positional scoring rules)

The scheduling problems $Q|p m t n| C_{\max }$

- m^{*} parallel uniform machines $M_{1}, \ldots, M_{m^{*}}$
- Machine i 's speed is s^{i} (the amount of work done in unit time)
- n^{*} jobs $J_{1}, \ldots, J_{n^{*}}$
- preemption: jobs are allowed to be interrupted (and resume later maybe on another machine)
- We are asked to compute the minimum makespan
- the minimum time to complete all jobs

Thinking about $\cup^{\prime} O_{\text {pos }}$

- Let $p, p_{1}, \ldots, p_{m-1}$ be the total points that $c, c_{1}, \ldots, c_{m-1}$ obtain in the non-manipulators' profile

$$
P^{N M} \cup\left\{V_{1}=\left[c>c_{1}>c_{2}>c_{3}\right]\right\}
$$

The approximation algorithm

Complexity of UCM for Borda

- Manipulation of positional scoring rules = scheduling (preemptions at integer time points)
- Borda manipulation corresponds to scheduling where the machines speeds are $m-1, m-2, \ldots, 0$
- NP-hard [Yu, Hoogeveen, \& Lenstra J.Scheduling 2004]
- UCM for Borda is NP-C for two manipulators
- [Davies et al. AAAI-11 best paper]
- [Betzler, Niedermeier, \& Woeginger IJCAI-11 best paper]

A third angle: quantitative G-S

- G-S theorem: for any reasonable voting rule there exists a manipulation
- Quantitative G-S: for any voting rule that is "far away" from dictatorships, the number of manipulable situations is non-negligible
- First work: 3 alternatives, neutral rule [Friedgut, Kalai, \&Nisan FOCS-08]
- Extensions: [Dobzinski\&Procaccia WINE-08, Xia\&Conitzer EC-08b, Isaksson,Kindler,\&Mossel FOCS-10]
- Finally proved: [Mossel\&Racz STOC-12]

Next steps

- The first attempt seems to fail
- Can we obtain positive results for a restricted setting?
- The manipulators has complete information about the non-manipulators' votes
- The manipulators can perfectly discuss their strategies

Limited information

- Limiting the manipulator's information can make dominating manipulation computationally harder, or even impossible [Conitzer,Walsh,\&Xia AAAl-11]

- Bayesian information [Lu et al. UAI-12]

Limited communication among manipulators

- The leader-follower model
- The leader broadcast a vote W, and the potential followers decide whether to cast W or not
- The leader and followers have the same preferences
- Safe manipulation [Slinko\&White COMSOC-08]: a vote W that
- No matter how many followers there are, the leader/ potential followers are not worse off
- Sometimes they are better off
- Complexity: [Hazon\&Elkind SAGT-10, lanovski et al. IJCAI-11]

Overview

Manipulation is inevitable

(Gibbard-Satterthwaite Theorem)

Can we use computational complexity as a barrier?

Is it a strong barrier?

Other barriers?

Limited information

Seems not very often

Research questions

- How to predict the outcome?
- Game theory
- How to evaluate the outcome?
- Price of anarchy [Koutsoupias\&Papadimitriou STACS-99]
- Optimal welfare when agents are truthful

Worst welfare when agents are fully strategic

- Not very applicable in the social choice setting
- Equilibrium selection problem
- Social welfare is not well defined
- Use best-response game to select an equilibrium and use scores as social welfare [Brânzei et al. AAAl-13]

Simultaneous-move voting games

- Players: Voters $1, \ldots, n$
- Strategies / reports: Linear orders over alternatives
- Preferences: Linear orders over alternatives
- Rule: $r\left(P^{\prime}\right)$, where P^{\prime} is the reported profile

Equilibrium selection problem

Alice

Stackelberg voting games [Xia\&Conitzer AAAI-10]

- Voters vote sequentially and strategically
- voter $1 \rightarrow$ voter $2 \rightarrow$ voter $3 \rightarrow \ldots \rightarrow$ voter n
- any terminal state is associated with the winner under rule r
- Called a Stackelberg voting game
- Unique winner in SPNE (not unique SPNE)
- Similar setting in [Desmedt\&Elkind EC-10]

Other types of strategic behavior (of the chairperson)

- Procedure control by
- \{adding, deleting\} \times \{voters, alternatives $\}$
- partitioning voters/alternatives
- introducing clones of alternatives
- changing the agenda of voting
- [Bartholdi, Tovey, \&Trick MCM-92, Tideman SCW-07, Conitzer,Lang,\&Xia IJCAI-09]
- Bribery [Faliszewski, Hemaspaandra, \&Hemaspaandra JAIR-09]
- See [Faliszewski, Hemaspaandra, \&Hemaspaandra CACM-10] for a survey on their computational complexity
- See [Xia Axriv-12] for a framework for studying many of these for generalized scoring rules

Next class: statistical approaches

GOAL1: democracy

GOAL2: truth

Statistical approaches

