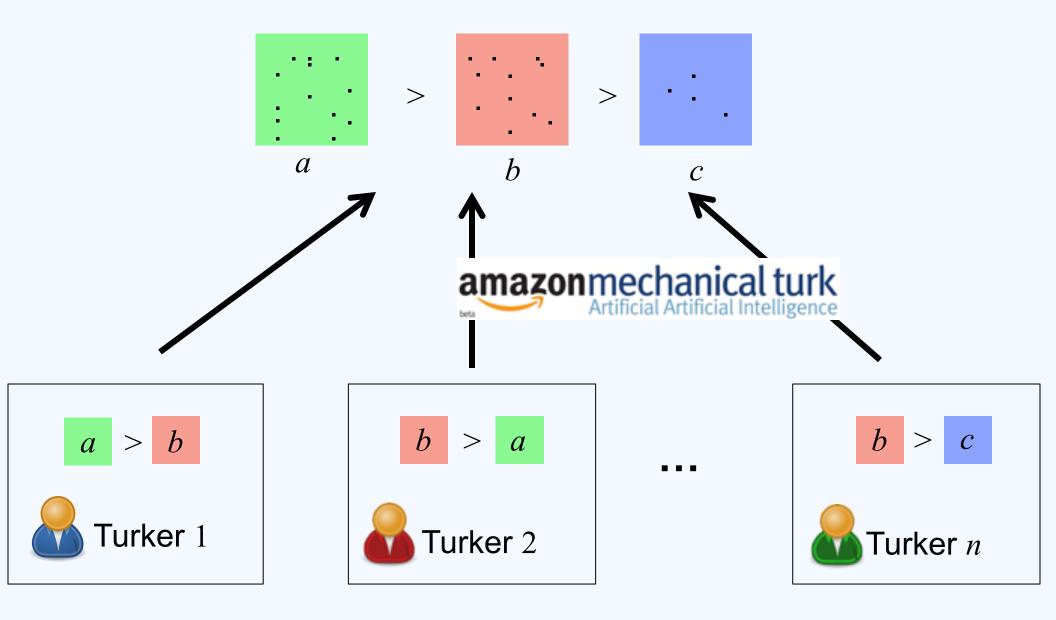
Announcement

- Report your preferences over papers in a week via email! Then
 - meeting 1: before making slides
 - meeting 2: after making the slides
- Start to think about the topic for project

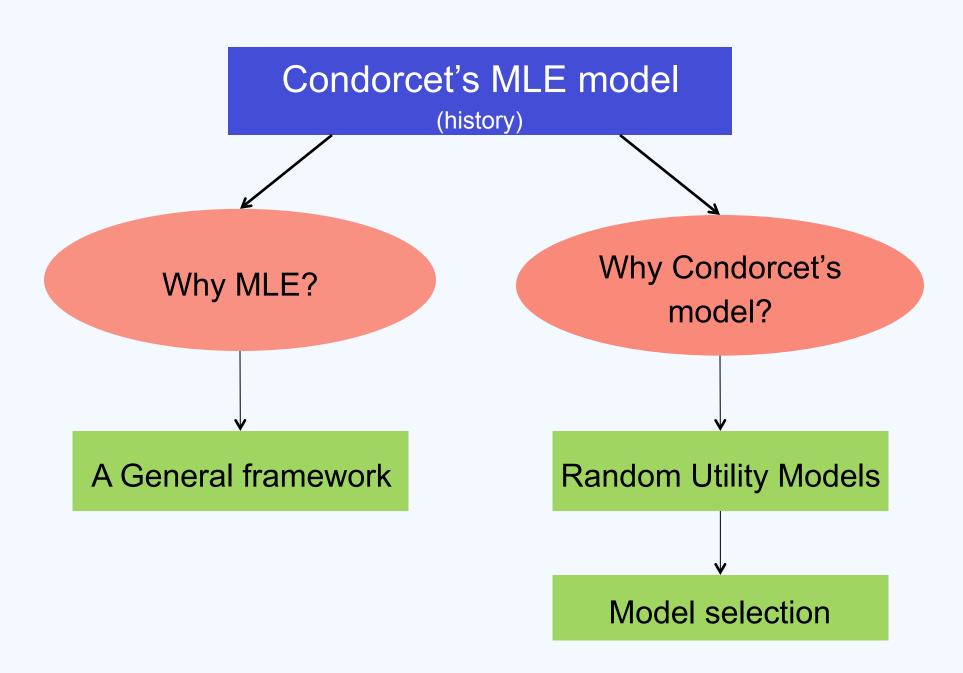
Last class: manipulation

- Various "undesirable" behavior
 - manipulation
 - bribery
 - control

Example: Crowdsourcing



Outline: statistical approaches



The Condorcet Jury theorem [Condorcet 1785]

The Condorcet Jury theorem.

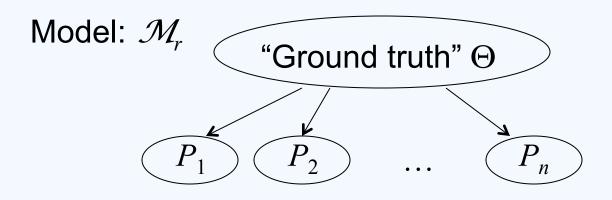
- Given
 - two alternatives $\{a,b\}$.
 - 0.5<*p*<1,
- Suppose
 - each agent's preferences is generated i.i.d., such that
 - w/p p, the same as the ground truth
 - w/p 1-p, different from the ground truth
- Then, as $n \rightarrow \infty$, the majority of agents' preferences converges in probability to the ground truth

Parametric ranking models

- Composed of three parts
 - A parameter space: Θ
 - A sample space: $S = Rankings(C)^n$
 - *C* = the set of alternatives, n=#voters
 - assuming votes are i.i.d.
 - A set of probability distributions over S:

 $\{\Pr(s|\theta) \text{ for each } s \in \text{Rankings}(C) \text{ and } \theta \in \Theta\}$

Maximum likelihood estimator (MLE) mechanism



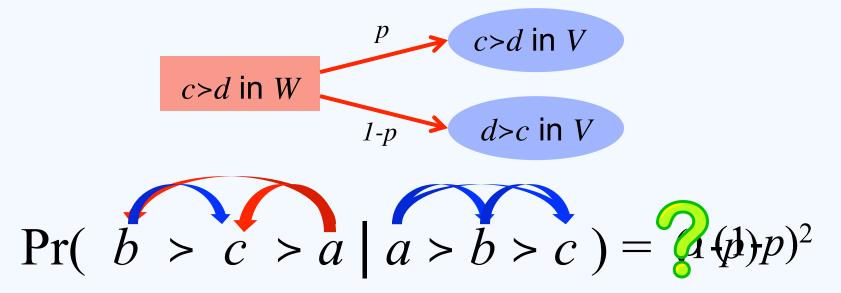
- For any profile $D=(P_1,\ldots,P_n)$,
 - The likelihood of Θ is $L(\Theta|D)$ =Pr($D|\Theta$)= $\prod_{P \in D}$ Pr($P|\Theta$)
 - The MLE mechanism $MLE(D) = \operatorname{argmax}_{\Theta} L(\Theta|D)$
 - Decision space = Parameter space

Condorcet's MLE approach [Condorcet 1785]

- Use a statistical model to explain the data (preference profile)
 - Condorcet's model
- Use likelihood inference to make a decision
 - Decision space = Parameter space
 - not necessarily MLE

Condorcet's model [Condorcet 1785]

- Parameterized by an opinion (simple directed graphs)
- Given a "ground truth" opinion W and p>1/2, generate each pairwise comparison in V independently as follows (suppose c > d in W)



MLE ranking is the Kemeny rule [Young APSR-88]

Condorcet's model for more than 2 alternatives [Young 1988]

- Not very clear in Young's paper, email Lirong for a working note that proofs this according to Young's calculations
 - message 1: Condorcet's model is different from the Mallows model
 - message 2: Kemeny is not an MLE of Condorcet (but it is an MLE of Mallows)
- Fix 0.5<p<1, parameter space: all binary relations over the alternatives
 - may contain cycles
- Sample space: each vote is a all binary relations over the alternatives
- Probabilities: given a ground truth binary relation
 - comparison between a and b is generated i.i.d. and is the same as the comparison between a and b in the ground truth with probability p
- Also studied in [ES UAI-14]

Mallows model [Mallows 1957]

- Fix φ<1, parameter space
 - all full rankings over alternatives
 - different from Condorcet's model
- Sample space
 - i.i.d. generated full rankings over alternatives
 - different from Condorcet's model
- Probabilities: given a ground truth ranking W, generate a ranking V w.p.
 - $-\Pr(V|W) \propto \varphi^{\operatorname{Kendall}(V,W)}$

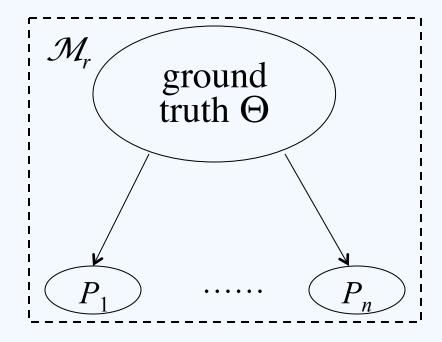
Statistical decision theory

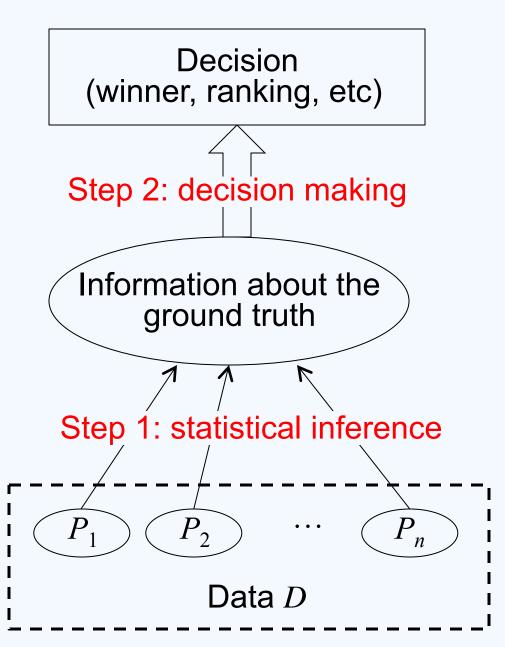
Given

- statistical model: Θ , S, $Pr(s|\theta)$
- decision space: D
- − loss function: $L(\theta, d) \in \mathbb{R}$
- Make a good decision based on data
 - decision function f: data→D
 - Bayesian expected lost:
 - $\mathsf{EL}_\mathsf{B}(\mathsf{data}, d) = \mathsf{E}_{\theta | \mathsf{data}} \mathsf{L}(\theta, d)$
 - Frequentist expected lost:
 - $\mathsf{EL}_{\mathsf{F}}(\theta, f) = \mathsf{E}_{\mathsf{data}|\theta} \mathsf{L}(\theta, f(\mathsf{data}))$
 - Evaluated w.r.t. the objective ground truth
 - different from the approaches evaluated w.r.t. agents' subjective utilities [BCH+ EC-12]

Statistical decision framework

Given \mathcal{M}_r



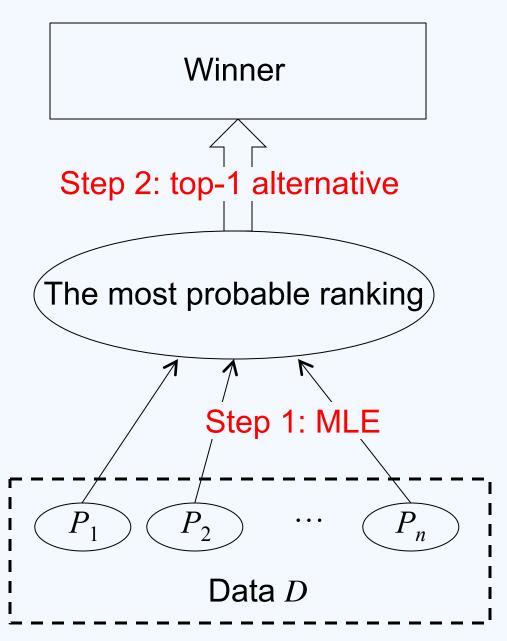


Example: Kemeny

 \mathcal{M}_r = Condorcet' model

Step 1: MLE

Step 2: top-alternative



Frequentist vs. Bayesian in general

- You have a biased coin: head w/p p
 - You observe 10 heads, 4 tails

Credit: Panos Ipeirotis & Roy Radner

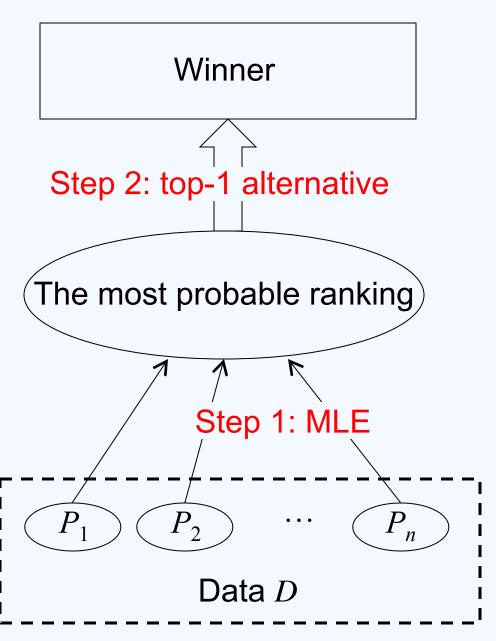
- Do you think the next two tosses will be two heads in a row?
- Frequentist
 - there is an unknown
 but fixed ground truth
 - -p = 10/14 = 0.714
 - Pr(2heads|p=0.714)= $(0.714)^2=0.51>0.5$
 - Yes!

- Bayesian
 - the ground truth is captured by a belief distribution
 - Compute Pr(p|Data)assuming uniform prior
 - Compute Pr(2heads|Data)=0.485<0.5
 - No!

Classical Kemeny [Fishburn-77]

 \mathcal{M}_r = Condorcet' model

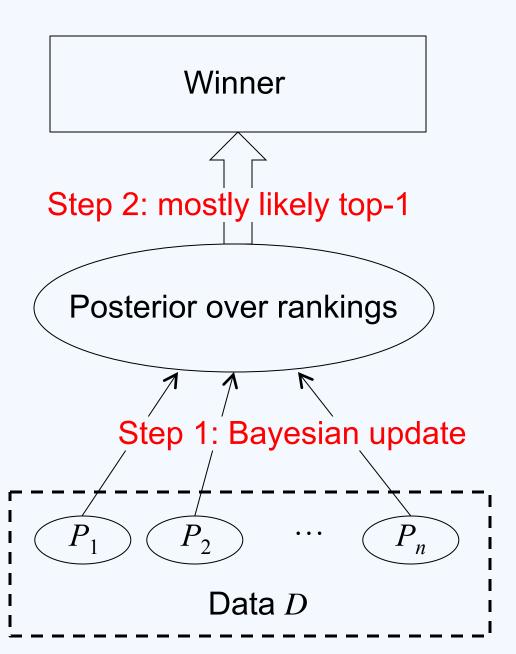
This is the Kemeny rule (for single winner)!



Example: Bayesian

 \mathcal{M}_r = Condorcet' model

This is a new rule!

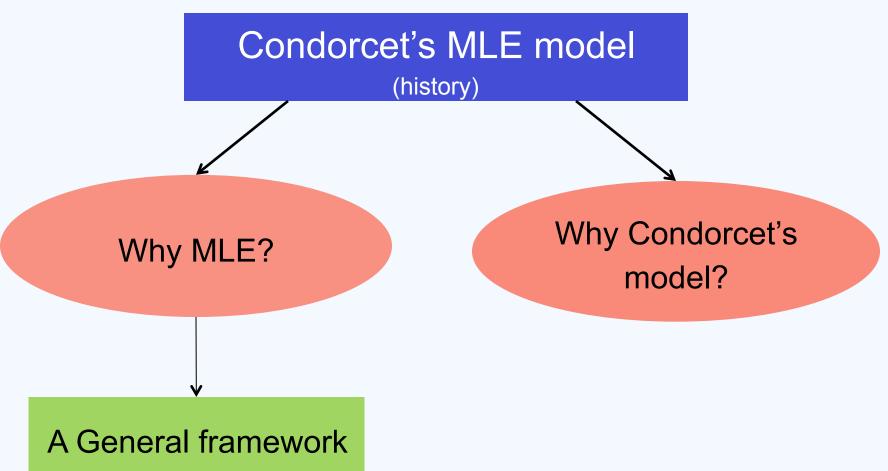


Classical Kemeny vs. Bayesian

	Anonymity, neutrality, monotonicity	Consistency	Condorcet	Easy to compute
Kemeny (Fishburn version)	Y	N	Y	Ν
Bayesian			N	Y

Lots of open questions! New paper (one of discussion papers)

Outline: statistical approaches



Classical voting rules as MLEs [Conitzer&Sandholm UAI-05]

- When the outcomes are winning alternatives
 - MLE rules must satisfy consistency: if $r(D_1) \cap r(D_2) \neq \phi$, then $r(D_1 \cup D_2) = r(D_1) \cap r(D_2)$
 - All classical voting rules except positional scoring rules are NOT MLEs
- Positional scoring rules are MLEs
- This is NOT a coincidence!
 - All MLE rules that outputs winners satisfy anonymity and consistency
 - Positional scoring rules are the only voting rules that satisfy anonymity, neutrality, and consistency! [Young SIAMAM-75]

Classical voting rules as MLEs [Conitzer&Sandholm UAI-05]

- When the outcomes are winning rankings
 - MLE rules must satisfy reinforcement (the counterpart of consistency for rankings)
 - All classical voting rules except positional scoring rules and Kemeny are NOT MLEs
- This is not (completely) a coincidence!
 - Kemeny is the only preference function (that outputs rankings) that satisfies neutrality, reinforcement, and Condorcet consistency [Young&Levenglick SIAMAM-78]

Are we happy?

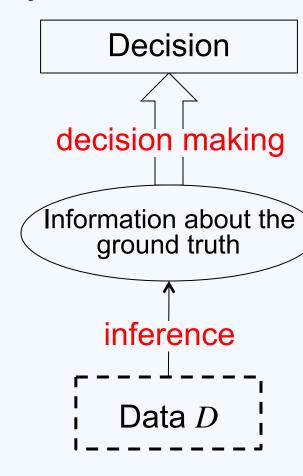
- Condorcet's model
 - not very natural
 - computationally hard
- Other classic voting rules
 - most are not MLEs
 - models are not very natural either
 - approximately compute the MLE

New mechanisms via the statistical decision framework

Model selection

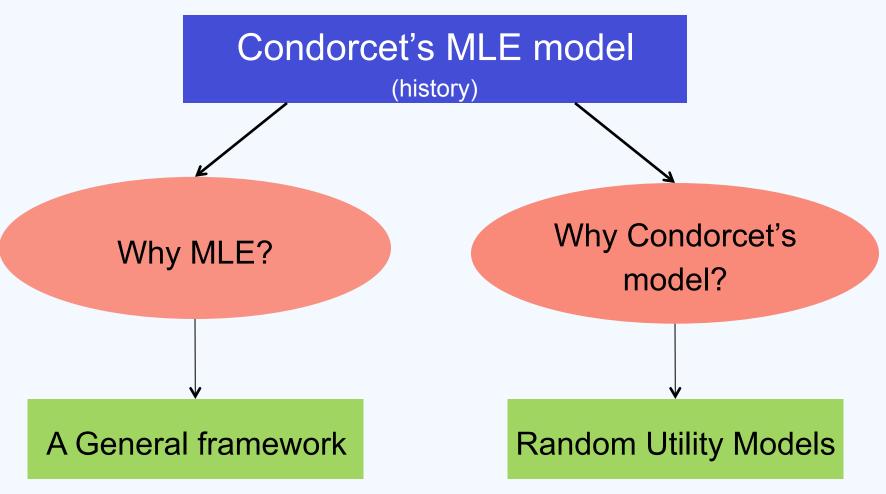
– How can we evaluate fitness?

Frequentist or Bayesian?



– How can we compute MLE efficiently?

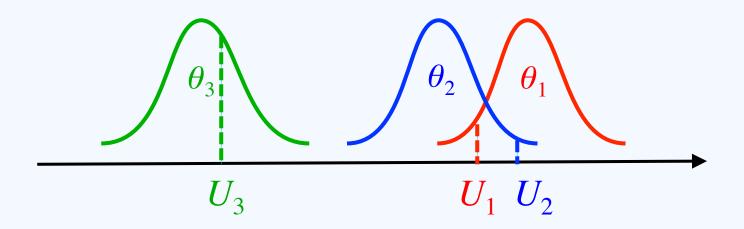
Outline: statistical approaches



Random utility model (RUM) [Thurstone 27]

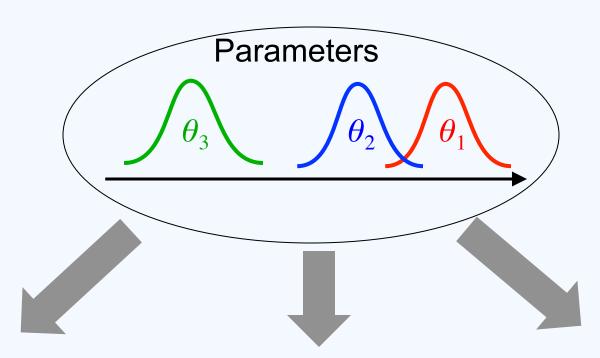
- Continuous parameters: $\Theta = (\theta_1, ..., \theta_m)$
 - m: number of alternatives
 - Each alternative is modeled by a utility distribution μ_i
 - θ_i : a vector that parameterizes μ_i
- An agent's perceived utility U_i for alternative c_i is generated independently according to $\mu_i(U_i)$
- Agents rank alternatives according to their perceived utilities

$$-\Pr(c_2>c_1>c_3|\theta_1,\theta_2,\theta_3)=\Pr_{U_i\sim\mu_i}(U_2>U_1>U_3)$$



Generating a preferenceprofile

• Pr(Data $|\theta_1, \theta_2, \theta_3$) = $\prod_{R \in \text{Data}} \text{Pr}(R | \theta_1, \theta_2, \theta_3)$



Agent 1

$$P_1 = c_2 > c_1 > c_3$$

Agent *n*

$$P_n = c_1 > c_2 > c_3$$

RUMs with Gumbel distributions

- μ_i 's are Gumbel distributions
 - A.k.a. the Plackett-Luce (P-L) model [вм 60, Yellott 77]
- Equivalently, there exist positive numbers $\lambda_1, \dots, \lambda_m$

$$\Pr(c_1 \succ c_2 \succ \cdots \succ c_m \mid \lambda_1 \cdots \lambda_m) = \frac{\lambda_1}{\lambda_1 + \cdots + \lambda_m} \times \frac{\lambda_2}{\lambda_2 + \cdots + \lambda_m} \times \cdots \times \frac{\lambda_{m-1}}{\lambda_{m-1} + \lambda_m}$$

 c_1 is the top pareoeximate $\{c_{m},..,c_m\}$

- Computationally tractable
 - Analytical solution to the likelihood function
 - The only RUM that was known to be tractable
 - Widely applied in Economics [McFadden 74], learning to rank [Liu 11], and analyzing elections [GM 06,07,08,09]
- ••

Cons: does not seem to fit very well

RUM with normal distributions

- μ_i 's are normal distributions
 - Thurstone's Case V [Thurstone 27]

- Intuitive
- Flexible
- Cons: believed to be computationally intractable
 - No analytical solution for the likelihood function $Pr(P \mid \Theta)$ is known

$$\Pr(c_1 \succ \cdots \succ c_m \mid \Theta) = \int_{-\infty}^{\infty} \int_{U_m}^{\infty} \cdots \int_{U_2}^{\infty} \mu_m(U_m) \mu_{m-1}(U_{m-1}) \cdots \mu_1(U_1) dU_1 \cdots dU_{m-1} dU_m$$

 U_m : from $-\infty$ to ∞

 $U_{m ext{-}1}$: from U_m to ∞

 U_1 : from U_2 to ∞

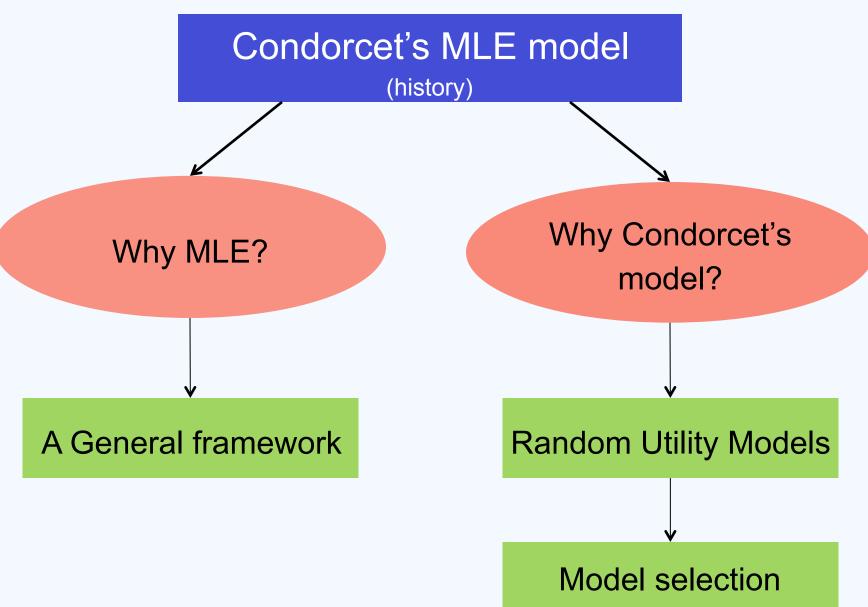
MC-EM algorithm for RUMs [APX NIPS-12]

- Utility distributions μ_l 's belong to the exponential family (EF)
 - Includes normal, Gamma, exponential, Binomial, Gumbel, etc.
- In each iteration t
- E-step, for any set of parameters Θ
 - Computes the expected log likelihood (ELL)

$$ELL(\Theta| \ Data, \Theta^t) = f(\Theta|, g(Data, \Theta^t))$$
 Approximately computed by Gibbs sampling

- M-step
 - Choose $\Theta^{t+1} = \operatorname{argmax}_{\Theta} ELL(\Theta| Data, \Theta^t)$
- Until $|\Pr(D|\Theta^t)-\Pr(D|\Theta^{t+1})| < \varepsilon$

Outline: statistical approaches



Model selection

- Compare RUMs with Normal distributions and PL for
 - log-likelihood: log $Pr(D|\Theta)$
 - predictive log-likelihood: E log $Pr(D_{test}|\Theta)$
 - Akaike information criterion (AIC): 2k-2log Pr($D|\Theta$)
 - Bayesian information criterion (BIC): $k \log n$ -2 $\log \Pr(D|\Theta)$
- Tested on an election dataset
 - 9 alternatives, randomly chosen 50 voters

Value(Normal)	LL	Pred. LL	AIC	BIC
- Value(PL)	44.8(15.8)	87.4(30.5)	-79.6(31.6)	-50.5(31.6)

Red: statistically significant with 95% confidence

Project: model fitness for election data