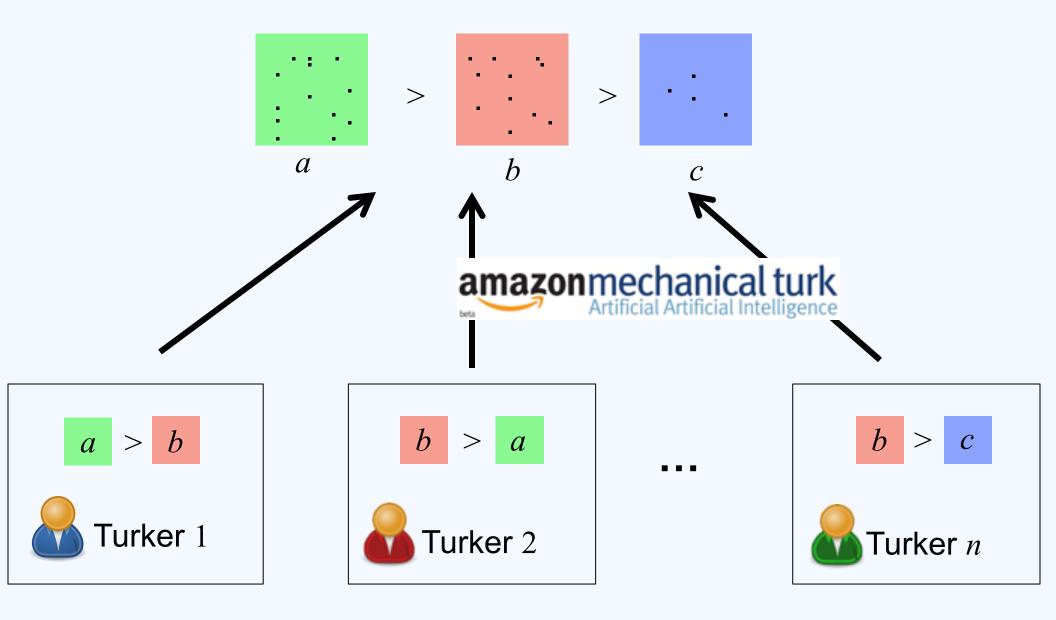
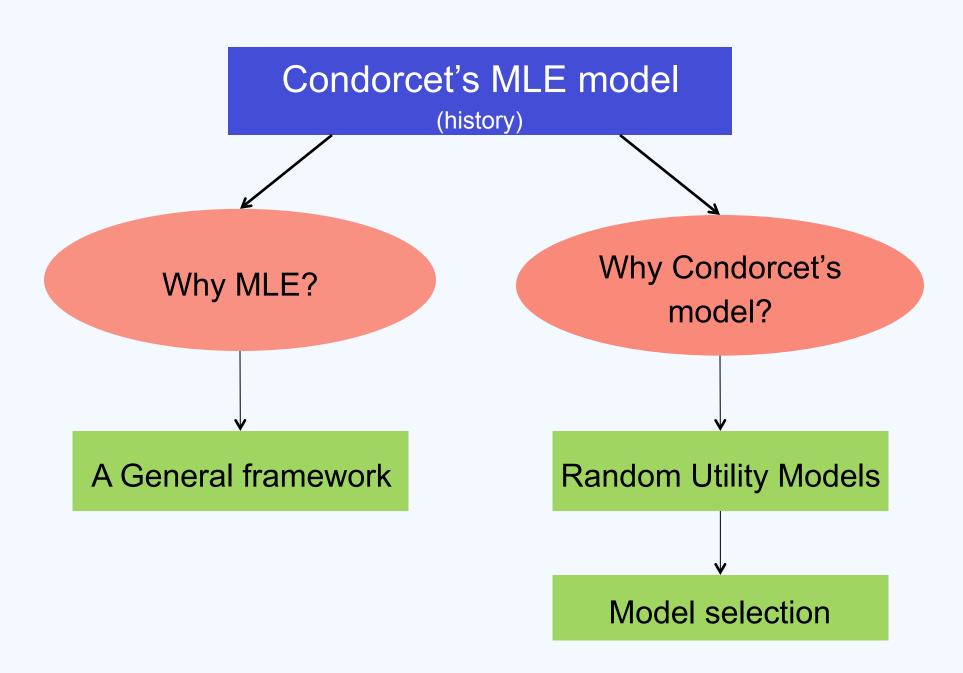
#### Announcement


- Report your preferences over papers in a week via email! Then
  - meeting 1: before making slides
  - meeting 2: after making the slides
- Start to think about the topic for project

#### Last class: manipulation


- Various "undesirable" behavior
  - manipulation
  - bribery
  - control



#### Example: Crowdsourcing

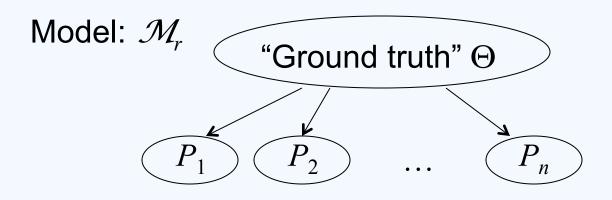


#### Outline: statistical approaches



## The Condorcet Jury theorem [Condorcet 1785]

#### The Condorcet Jury theorem.


- Given
  - two alternatives  $\{a,b\}$ .
  - 0.5<*p*<1,
- Suppose
  - each agent's preferences is generated i.i.d., such that
  - w/p p, the same as the ground truth
  - w/p 1-p, different from the ground truth
- Then, as  $n \rightarrow \infty$ , the majority of agents' preferences converges in probability to the ground truth

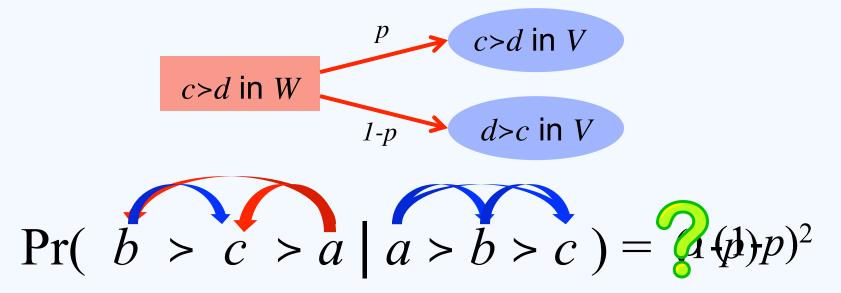
#### Parametric ranking models

- Composed of three parts
  - A parameter space: Θ
  - A sample space:  $S = Rankings(C)^n$ 
    - *C* = the set of alternatives, n=#voters
    - assuming votes are i.i.d.
  - A set of probability distributions over S:

 $\{\Pr(s|\theta) \text{ for each } s \in \text{Rankings}(C) \text{ and } \theta \in \Theta\}$ 

### Maximum likelihood estimator (MLE) mechanism




- For any profile  $D=(P_1,\ldots,P_n)$ ,
  - The likelihood of Θ is  $L(\Theta|D)$ =Pr( $D|\Theta$ )= $\prod_{P \in D}$  Pr( $P|\Theta$ )
  - The MLE mechanism  $MLE(D) = \operatorname{argmax}_{\Theta} L(\Theta|D)$
  - Decision space = Parameter space

# Condorcet's MLE approach [Condorcet 1785]

- Use a statistical model to explain the data (preference profile)
  - Condorcet's model
- Use likelihood inference to make a decision
  - Decision space = Parameter space
  - not necessarily MLE

### Condorcet's model [Condorcet 1785]

- Parameterized by an opinion (simple directed graphs)
- Given a "ground truth" opinion W and p>1/2, generate each pairwise comparison in V independently as follows (suppose c > d in W)



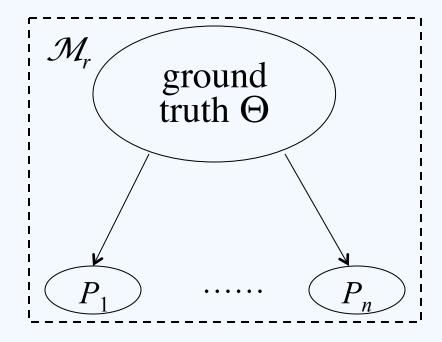
MLE ranking is the Kemeny rule [Young APSR-88]

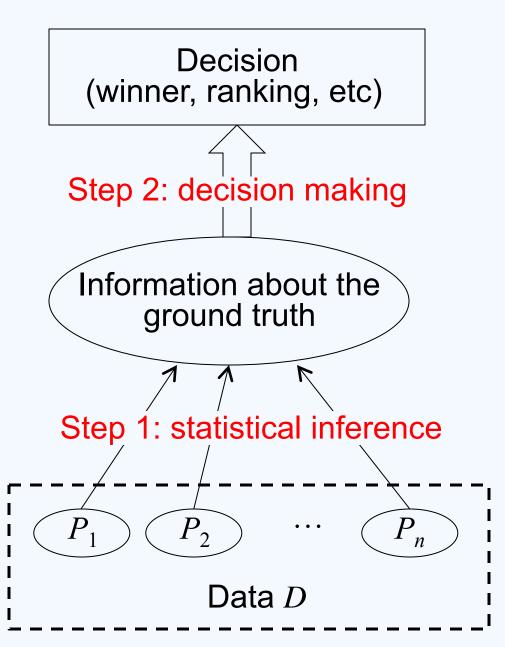
# Condorcet's model for more than 2 alternatives [Young 1988]

- Not very clear in Young's paper, email Lirong for a working note that proofs this according to Young's calculations
  - message 1: Condorcet's model is different from the Mallows model
  - message 2: Kemeny is not an MLE of Condorcet (but it is an MLE of Mallows)
- Fix 0.5<p<1, parameter space: all binary relations over the alternatives
  - may contain cycles
- Sample space: each vote is a all binary relations over the alternatives
- Probabilities: given a ground truth binary relation
  - comparison between a and b is generated i.i.d. and is the same as the comparison between a and b in the ground truth with probability p
- Also studied in [ES UAI-14]

#### Mallows model [Mallows 1957]

- Fix φ<1, parameter space</li>
  - all full rankings over alternatives
  - different from Condorcet's model
- Sample space
  - i.i.d. generated full rankings over alternatives
  - different from Condorcet's model
- Probabilities: given a ground truth ranking W, generate a ranking V w.p.
  - $-\Pr(V|W) \propto \varphi^{\operatorname{Kendall}(V,W)}$


#### Statistical decision theory

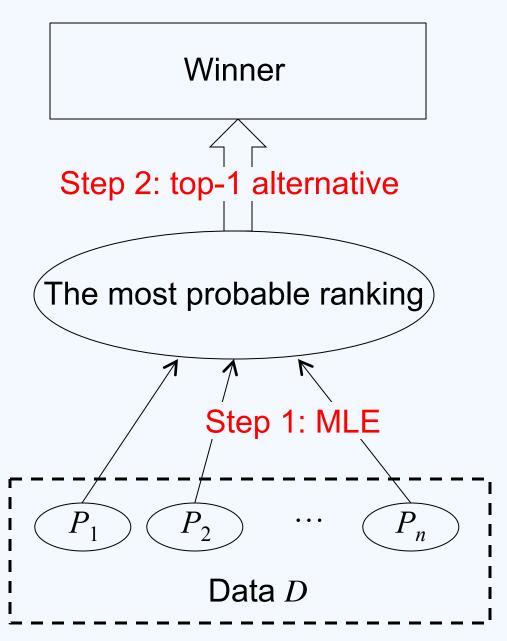

#### Given

- statistical model:  $\Theta$ , S,  $Pr(s|\theta)$
- decision space: D
- − loss function:  $L(\theta, d) \in \mathbb{R}$
- Make a good decision based on data
  - decision function f: data→D
  - Bayesian expected lost:
    - $\mathsf{EL}_\mathsf{B}(\mathsf{data}, d) = \mathsf{E}_{\theta | \mathsf{data}} \mathsf{L}(\theta, d)$
  - Frequentist expected lost:
    - $\mathsf{EL}_{\mathsf{F}}(\theta, f) = \mathsf{E}_{\mathsf{data}|\theta} \mathsf{L}(\theta, f(\mathsf{data}))$
  - Evaluated w.r.t. the objective ground truth
    - different from the approaches evaluated w.r.t. agents' subjective utilities [BCH+ EC-12]

#### Statistical decision framework

Given  $\mathcal{M}_r$ 






### Example: Kemeny

 $\mathcal{M}_r$  = Condorcet' model

Step 1: MLE

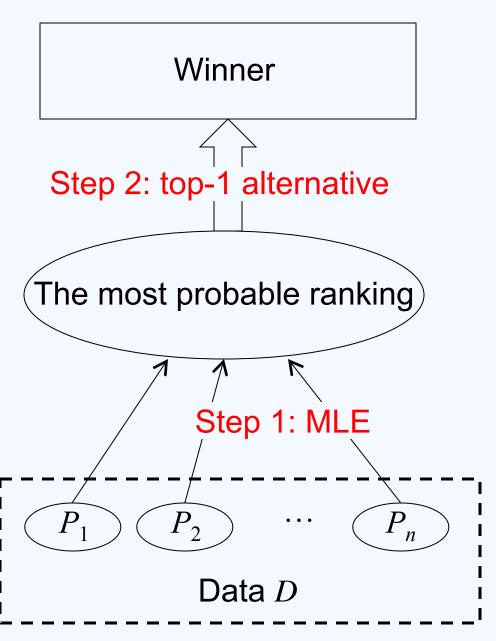
Step 2: top-alternative



#### Frequentist vs. Bayesian in general

- You have a biased coin: head w/p p
  - You observe 10 heads, 4 tails

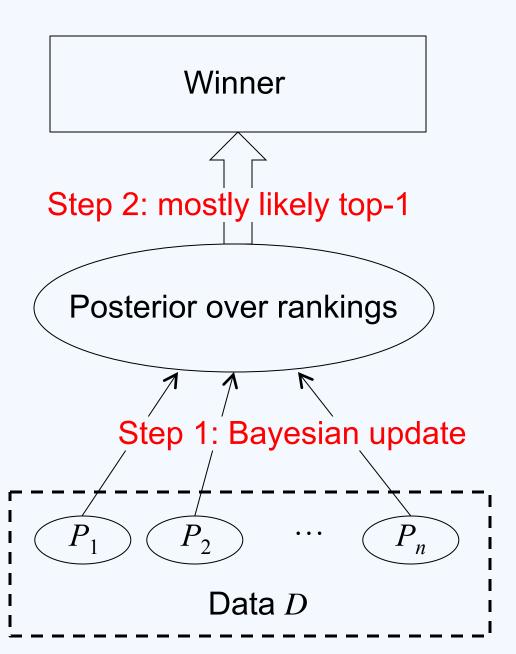
Credit: Panos Ipeirotis & Roy Radner


- Do you think the next two tosses will be two heads in a row?
- Frequentist
  - there is an unknown
     but fixed ground truth
  - -p = 10/14 = 0.714
  - Pr(2heads|p=0.714)= $(0.714)^2=0.51>0.5$
  - Yes!

- Bayesian
  - the ground truth is captured by a belief distribution
  - Compute Pr(p|Data)assuming uniform prior
  - Compute Pr(2heads|Data)=0.485<0.5</li>
  - No!

#### Classical Kemeny [Fishburn-77]

 $\mathcal{M}_r$  = Condorcet' model

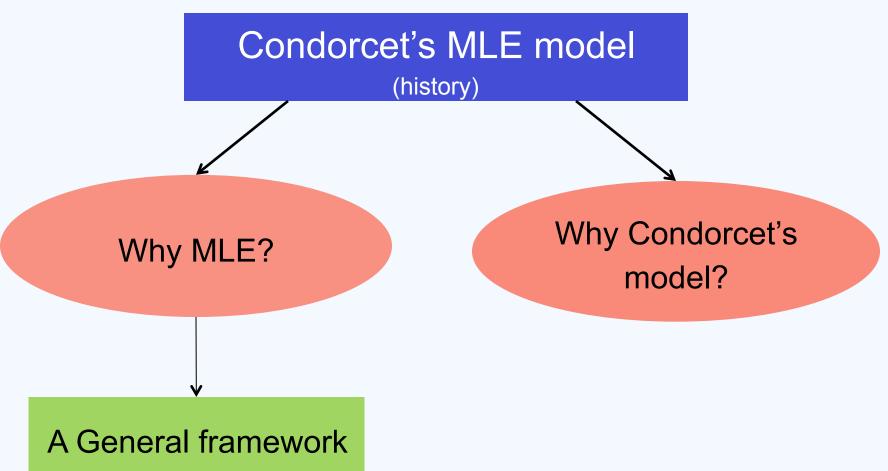

This is the Kemeny rule (for single winner)!



### Example: Bayesian

 $\mathcal{M}_r$  = Condorcet' model

This is a new rule!




#### Classical Kemeny vs. Bayesian

|                                 | Anonymity,<br>neutrality,<br>monotonicity | Consistency | Condorcet | Easy to compute |
|---------------------------------|-------------------------------------------|-------------|-----------|-----------------|
| Kemeny<br>(Fishburn<br>version) | Y                                         | N           | Y         | Ν               |
| Bayesian                        |                                           |             | N         | Y               |

Lots of open questions! New paper (one of discussion papers)

# Outline: statistical approaches



### Classical voting rules as MLEs [Conitzer&Sandholm UAI-05]

- When the outcomes are winning alternatives
  - MLE rules must satisfy consistency: if  $r(D_1) \cap r(D_2) \neq \phi$ , then  $r(D_1 \cup D_2) = r(D_1) \cap r(D_2)$
  - All classical voting rules except positional scoring rules are NOT MLEs
- Positional scoring rules are MLEs
- This is NOT a coincidence!
  - All MLE rules that outputs winners satisfy anonymity and consistency
  - Positional scoring rules are the only voting rules that satisfy anonymity, neutrality, and consistency! [Young SIAMAM-75]

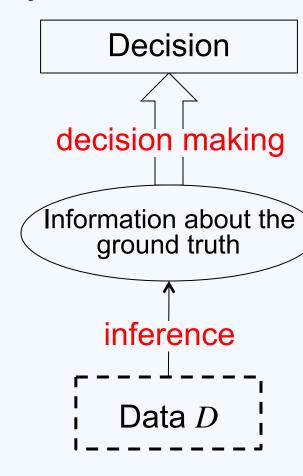
### Classical voting rules as MLEs [Conitzer&Sandholm UAI-05]

- When the outcomes are winning rankings
  - MLE rules must satisfy reinforcement (the counterpart of consistency for rankings)
  - All classical voting rules except positional scoring rules and Kemeny are NOT MLEs
- This is not (completely) a coincidence!
  - Kemeny is the only preference function (that outputs rankings) that satisfies neutrality, reinforcement, and Condorcet consistency [Young&Levenglick SIAMAM-78]

#### Are we happy?

- Condorcet's model
  - not very natural
  - computationally hard
- Other classic voting rules
  - most are not MLEs
  - models are not very natural either
  - approximately compute the MLE

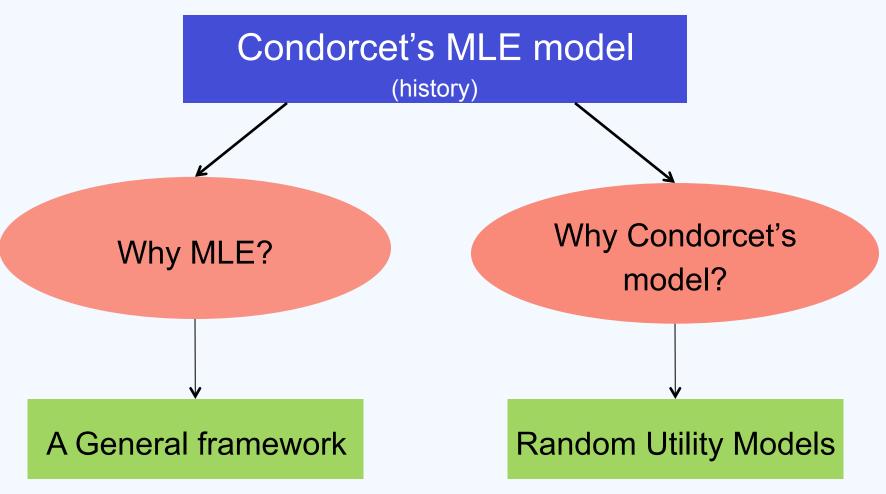



# New mechanisms via the statistical decision framework



Model selection

– How can we evaluate fitness?


Frequentist or Bayesian?



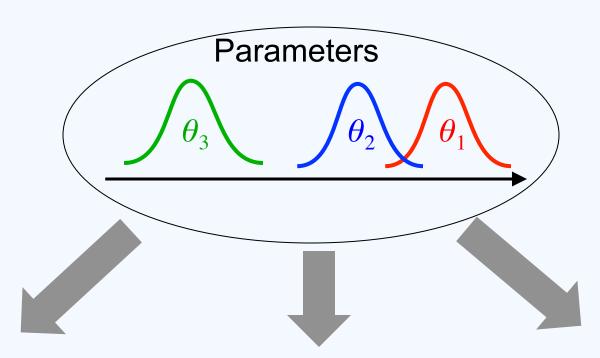


– How can we compute MLE efficiently?

# Outline: statistical approaches



## Random utility model (RUM) [Thurstone 27]


- Continuous parameters:  $\Theta = (\theta_1, ..., \theta_m)$ 
  - m: number of alternatives
  - Each alternative is modeled by a utility distribution  $\mu_i$
  - $\theta_i$ : a vector that parameterizes  $\mu_i$
- An agent's perceived utility  $U_i$  for alternative  $c_i$  is generated independently according to  $\mu_i(U_i)$
- Agents rank alternatives according to their perceived utilities

$$-\Pr(c_2>c_1>c_3|\theta_1,\theta_2,\theta_3)=\Pr_{U_i\sim\mu_i}(U_2>U_1>U_3)$$



#### Generating a preferenceprofile

• Pr(Data  $|\theta_1, \theta_2, \theta_3$ ) =  $\prod_{R \in \text{Data}} \text{Pr}(R | \theta_1, \theta_2, \theta_3)$ 



Agent 1

$$P_1 = c_2 > c_1 > c_3$$

Agent *n* 

$$P_n = c_1 > c_2 > c_3$$

# RUMs with Gumbel distributions

- $\mu_i$ 's are Gumbel distributions
  - A.k.a. the Plackett-Luce (P-L) model [вм 60, Yellott 77]
- Equivalently, there exist positive numbers  $\lambda_1, \dots, \lambda_m$

$$\Pr(c_1 \succ c_2 \succ \cdots \succ c_m \mid \lambda_1 \cdots \lambda_m) = \frac{\lambda_1}{\lambda_1 + \cdots + \lambda_m} \times \frac{\lambda_2}{\lambda_2 + \cdots + \lambda_m} \times \cdots \times \frac{\lambda_{m-1}}{\lambda_{m-1} + \lambda_m}$$



 $c_1$  is the top pareoeximate  $\{c_{m},..,c_m\}$ 

- Computationally tractable
  - Analytical solution to the likelihood function
    - The only RUM that was known to be tractable
  - Widely applied in Economics [McFadden 74], learning to rank [Liu 11], and analyzing elections [GM 06,07,08,09]
- ••

Cons: does not seem to fit very well

# RUM with normal distributions

- $\mu_i$ 's are normal distributions
  - Thurstone's Case V [Thurstone 27]



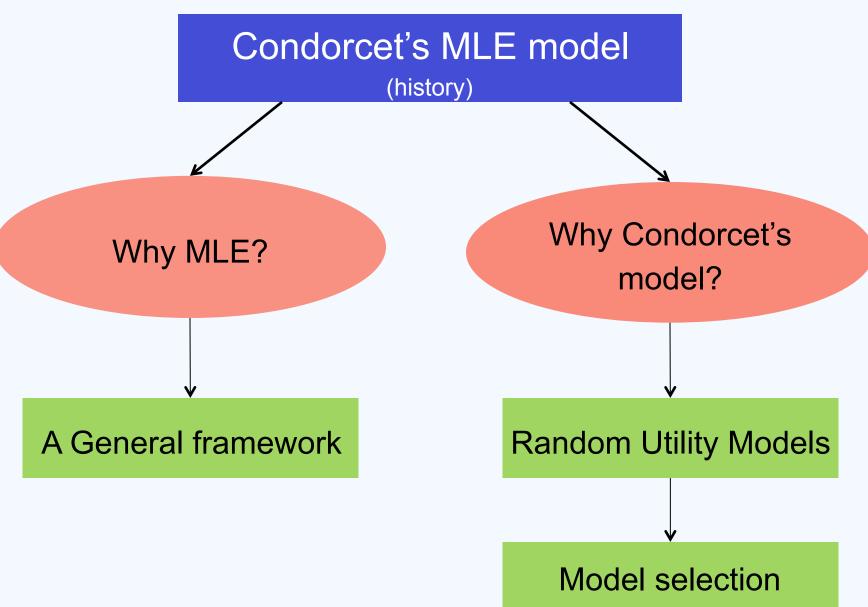
- Intuitive
- Flexible
- Cons: believed to be computationally intractable
  - No analytical solution for the likelihood function  $Pr(P \mid \Theta)$  is known

$$\Pr(c_1 \succ \cdots \succ c_m \mid \Theta) = \int_{-\infty}^{\infty} \int_{U_m}^{\infty} \cdots \int_{U_2}^{\infty} \mu_m(U_m) \mu_{m-1}(U_{m-1}) \cdots \mu_1(U_1) dU_1 \cdots dU_{m-1} dU_m$$

 $U_m$ : from  $-\infty$  to  $\infty$ 

 $U_{m ext{-}1}$ : from  $U_m$  to  $\infty$ 

 $U_1$ : from  $U_2$  to  $\infty$ 


## MC-EM algorithm for RUMs [APX NIPS-12]

- Utility distributions  $\mu_l$ 's belong to the exponential family (EF)
  - Includes normal, Gamma, exponential, Binomial, Gumbel, etc.
- In each iteration t
- E-step, for any set of parameters  $\Theta$ 
  - Computes the expected log likelihood (ELL)

$$ELL(\Theta| \ Data, \Theta^t) = f(\Theta|, g(Data, \Theta^t))$$
 Approximately computed by Gibbs sampling

- M-step
  - Choose  $\Theta^{t+1} = \operatorname{argmax}_{\Theta} ELL(\Theta| Data, \Theta^t)$
- Until  $|\Pr(D|\Theta^t)-\Pr(D|\Theta^{t+1})| < \varepsilon$

# Outline: statistical approaches



#### Model selection

- Compare RUMs with Normal distributions and PL for
  - log-likelihood: log  $Pr(D|\Theta)$
  - predictive log-likelihood: E log  $Pr(D_{test}|\Theta)$
  - Akaike information criterion (AIC): 2k-2log Pr( $D|\Theta$ )
  - Bayesian information criterion (BIC):  $k \log n$ -2 $\log \Pr(D|\Theta)$
- Tested on an election dataset
  - 9 alternatives, randomly chosen 50 voters

| Value(Normal) | LL         | Pred. LL   | AIC         | BIC         |
|---------------|------------|------------|-------------|-------------|
| - Value(PL)   | 44.8(15.8) | 87.4(30.5) | -79.6(31.6) | -50.5(31.6) |

Red: statistically significant with 95% confidence

Project: model fitness for election data