Computational Social Processes

Lirong Xia
(1) Rensselaer

Fall, 2016

This class

$>$ Economics: decision making by multiple actors, each with individual preferences, capabilities, and information, and motivated to act in regard to these preferences.
$>$ Computer science: study of representation and processing of information for the purpose of specific calculation tasks.

Tragedy of the commons:

 Braess' Paradox>2000 travelers from 1 to 4

$>$ Centralized goal: minimize max delay

- $10001 \rightarrow 2 \rightarrow 4 ; 10001 \rightarrow 3 \rightarrow 4$;
- minimax delay: 35 min
$>$ No one wants to deviate

Tragedy of the commons: Braess' Paradox

>2000 travelers from 1 to 4

$>$ Centralized goal: minimize max delay

- $10001 \rightarrow 2 \rightarrow 4 ; 10001 \rightarrow 3 \rightarrow 4$;
- minimax delay: 35 min

Tragedy of the commons: Braess' Paradox

> 2000 travelers from 1 to 4

$>$ No one wants $1 \rightarrow 3 \rightarrow 4$

- $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is always better
$>$ No one wants $1 \rightarrow 2 \rightarrow 4$
- $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is always better
$>$ Everyone goes $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, delay is 40 min each
$>$ Paradox: worse than the system without $2 \rightarrow 3$

Example 2: Auctions

Google
coffee shop in new york|

Web Images Videos Shopping News More Vearch tools

Freshly Brewed Coffee
Ad cafe.example-business.com
Always perfectly brewed coffee. The perfect way to start your day.

Start your morning with Only Fresh Coffee
www.onlyfreshcoffee.com/ v
Only Fresh Coffee has been family-owned and operated since 1986. We're dedicated to serving the freshest coffee, brewed from beans we roast ourselves. Drop by our friendly neighborhood store and enjoy a cup today.

Local Fresh Coffee

www.localfreshcoffee.com/ *

$>2^{\text {nd }}$ price auction

- highest bid wins
- charged the $2^{\text {nd }}$ highest price

Example 3: Political elections

Goal of the course

$>$ How to analyze the outcome?

- Social choice, game theory
>How to incentivize people?
- Mechanism design
$>$ Economics + Computation
- Incentives + computational thinking

Brief schedule

$>$ Social choice
$>$ Game theory
$>$ Auctions
$>$ Mechanism design
$>$ Other topics

- recommender systems
- peer prediction

Course info

> Textbook: none
> TA: none
> Office hours: TBD
> Final grades: participation 10\%, Homeworks 20%, others TBD

- Option1: Mid 35\%; Final 35\%
- Option2: Mid 20\%; Final 20\%; Project 30\%
- Option3: Mid 20\%; No final; Project 50\%
- Project: research projects, max 3 members per team
- http://opra.cs.rpi.edu:8000/polls/98/

Social choice

"social choice is a theoretical framework for analysis of combining individual
preferences, interests, or welfares to reach a collective decision or social welfare in some sense."
---Wikipedia Aug 26, 2013

Social choice problems

- Agents
- Alternatives
- Outcomes
- Preferences (true and reported)
- Social choice mechanism

Example 3: Political elections

Why this is social choice?

>Agents: \{Alice, Bob, Carol\}
$>$ Alternatives: \{ E, 2, 约\}
$>$ Outcomes: winners (alternatives)
>Preferences (vote): rankings over alternatives
>Mechanisms: voting rules

A very brief history of social choice

Ancient Greece: $4^{\text {th }}$ C. B.C.

$13^{\text {th }} \mathrm{C} .:$

French revolution: $18^{\text {th }} \mathrm{C}$.

Modern: $20^{\text {th }} \mathrm{C}$.

The Borda voting rule

$>$ Input: profile of rankings over alternatives
$>$ Output: a single winner

- For each vote R, the alternative ranked in the i-th position gets $m-i$ points
- The alternative with most total points is the winner
- Use some tie-breaking mechanism whenever there is a tie

Example of Borda

Total scores : $2+2+0=4$

Other voting rules?

$>$ Many other voting rules beyond Borda will be discussed in the next class
$>$ Which one is the best?

- Hard to compare. Criteria will be discussed in the next class

Example2: Crowdsourcing

Why this is social choice?

>Agents: Turkers
$>$ Alternatives: $\{a, b, c\}$
$>$ Outcomes: rankings over the pictures
>Preferences: pairwise comparisons
$>$ Mechanisms: Maximum likelihood estimator
$>$ More in the "statistical approaches" class
$>$ Goal: truth

Example3: School choice

Eric

Why this is social choice?

$>$ Agents: students and schools
$>$ Alternatives: students and schools
$>$ Outcomes: matchings between students and schools
>Preferences:

- Students: rankings over schools
- Schools: rankings over students
$>$ Mechanisms: Stable matching (Nobel Prize 2012)
$>$ More in the "matching" class

Example: Resource allocation

$6>5>4>3>2>1$

Why this is social choice?

>Agents: $\{0$ \}
$>$ Alternatives: $\left\{\begin{array}{llllllll}\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & 5 & 6\end{array}\right\}$
$>$ Outcomes: allocations of papers to students
$>$ Preferences: rankings over papers
$>$ Mechanisms: sequential allocation
$>$ More in the "fair division" class

Sequential allocation

$>$ Given

- n students' preferences over $2 n$ papers, and
- an order O over the students
$>\mathrm{SA}_{O}$ has $2 n$ rounds
- In the first n rounds,
- for each $t=1$ to n, the t-th student in O selects her most preferred paper that is available
- In the next n rounds,
- for each $t=n$ to 1 , the t-th student in O selects her most preferred paper that is available

Example

Stan

$$
1>2>3>4>5>6
$$

$$
1>6>2>3>5>4
$$

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
81	06	35	-	${ }^{2}$	

Is it a good mechanism?

$>$ Sounds good

- Efficient: if we have different preferences, then we will all (almost) get what we want
- Fair: (l $^{\text {st }}$ pick, last pick), ($2^{\text {nd }}$ pick, $2^{\text {nd }}$ to last pick)...
>How can we formalize these arguments?

Next class

$>$ Social choice
$>$ Before next class

- Sign up on piazza
- Sign up on OPRA

Why different from MOOC (e.g. coursera)

$>$ Credits
$>$ More interaction

- Do feel free to interrupt with questions
>Hands-on research experience
$>$ No similar course online
$>$ I will be back to school eventually...

Change the world: 2011 UK Referendum

> The second nationwide referendum in UK history

- The first was in 1975
> Member of Parliament election:
Plurality rule \rightarrow Alternative vote rule
$>68 \%$ No vs. 32\% Yes
> Why people want to change?
>Why it was not successful?
$>$ Can we do better?

Example2: Multiple referenda

$>$ In California, voters voted on 11 binary issues (1 に

- $2^{11}=2048$ combinations in total
- 5/11 are about budget and taxes

- Prop. 30 Increase sales and some income tax for education
- Prop. 38 Increase income tax on almost everyone for education

Why this is social choice?

$>$ Agents: voters
$>$ Alternatives: $2^{11}=2048$ combinations of
$>$ Outcomes: combinations
$>$ Preferences (vote): Top-ranked combination
$>$ Mechanisms: issue-by-issue voting
$>$ More in the "combinatorial voting" class
$>$ Goal: democracy

