## Matching

## Lirong Xia

## (8) Rensselaer

Fall, 2016

## Nobel prize in Economics 2013



Alvin E. Roth


Lloyd Shapley

- "for the theory of stable allocations and the practice of market design."


## Two-sided one-one matching



Applications: student/hospital, National Resident Matching Program

## Formal setting

- Two groups: $B$ and $G$
- Preferences:
- members in $B$ : full ranking over $G \cup$ \{nobody\}
- members in $G$ : full ranking over $B \cup$ \{nobody\}
- Outcomes: a matching $\mathrm{M}: B \cup G \rightarrow B \cup G \cup\{$ nobody $\}$
$-\mathrm{M}(B) \subseteq G \cup\{$ nobody $\}$
$-\mathrm{M}(G) \subseteq B \cup\{$ nobody $\}$
- $[\mathrm{M}(a)=\mathrm{M}(b) \neq$ nobody $] \Rightarrow[a=b]$
$-[\mathrm{M}(a)=b] \Rightarrow[\mathrm{M}(b)=a]$


## Example of a matching



## Good matching?

- Does a matching always exist?
- apparently yes
- Which matching is the best?
- utilitarian: maximizes "total satisfaction"
- egalitarian: maximizes minimum satisfaction
- but how to define utility?


## Stable matchings

- Given a matching $\mathrm{M},(b, g)$ is a blocking pair if
$-g>_{b} \mathrm{M}(b)$
$-b>{ }_{g} \mathrm{M}(g)$
- ignore the condition for nobody
- A matching is stable, if there is no blocking pair
- no (boy,girl) pair wants to deviate from their currently matches


## Example

Boys

$\left\{\begin{array}{l}\because= \\ \text { Kyle }\end{array}>\mathrm{N}\right.$
$\underbrace{\infty}_{\text {Renny }}: \rightarrow \gg N$
Eric $: N \ggg \gg$

Girls


-8®…

## A stable matching



## An unstable matching

Boys

Stan

Blocking pair: (

## Does a stable matching always exist?

- Yes: Gale-Shapley's deferred acceptance algorithm (DA)
- Men-proposing DA: each girl starts with being matched to "nobody"
- each boy proposes to his top-ranked girl (or "nobody") who has not rejected him before
- each girl rejects all but her most-preferred proposal
- until no boy can make more proposals
- In the algorithm
- Boys are getting worse
- Girls are getting better


## Men-proposing DA (on blackboard)

Boys


Kenny $: \rightarrow \gg+\infty$
2: NO O

Girls


08\%en

- $8=\cdots$


## Round 1



## Round 2



# Women-proposing DA (on blackboard) 

Boys


Kenny $: \rightarrow \gg+\infty$
2: NO O

Girls

-8\%en

- \% \%


## Round 1



## Round 2



## Round 3



# Women-proposing DA with slightly different preferences 

Boys


9:0.0.0
8: NO O

Girls


- 0 -8.…
- -8.


## Round 1



## Round 2



## Round 3



## Round 4



## Round 5



Properties of men-proposing DA

- Can be computed efficiently
- Outputs a stable matching
- The "best" stable matching for boys, called men-optimal matching
- and the worst stable matching for girls
- Strategy-proof for boys


## The men-optimal matching

- For each boy $b$, let $g_{b}$ denote his most favorable girl matched to him in any stable matching
- A matching is men-optimal if each boy $b$ is matched to $g_{b}$
- Seems too strong, but...


## Men-proposing DA is men-optimal

- Theorem. The output of men-proposing DA is menoptimal
- Proof: by contradiction
- suppose $b$ is the first boy not matched to $g \neq g_{b}$ in the execution of DA,
- let M be an arbitrary matching where $b$ is matched to $g_{b}$
- Suppose $b$ ' is the boy whom $g_{b}$ chose to reject $b$, and $\mathrm{M}\left(b^{\prime}\right)=g^{\prime}$
- $g^{\prime}>_{b^{\prime}} g_{b}$, which means that $g^{\prime}$ rejected $b^{\prime}$ in a previous round


DA


M

## Strategy-proofness for boys

- Theorem. Truth-reporting is a dominant strategy for boys in men-proposing DA


## No matching mechanism is strategy-proof and stable

- Proof.

Boys


륭:0

Girls


- If $(S, W)$ and $(K, R)$ then S : $>\mathrm{N}>$
- If $(S, R)$ and $(K, W)$ then



## Recap: two-sided 1-1 matching

- Men-proposing deferred acceptance algorithm (DA)
- outputs the men-optimal stable matching
- runs in polynomial time
- strategy-proof on men's side


## Next class: Fair division

- Indivisible goods: one-sided 1-1 or 1many matching (papers, apartments, etc.)
- Divisible goods: cake cutting

