Matching

Lirong Xia

Fall, 2016

Nobel prize in Economics 2013

Alvin E. Roth

Lloyd Shapley

 "for the theory of stable allocations and the practice of market design."

Two-sided one-one matching

Boys Girls Wend Rebecca

Applications: student/hospital, National Resident Matching Program

Formal setting

- Two groups: *B* and *G*
- Preferences:
 - members in *B*: full ranking over $G \cup \{nobody\}$
 - members in G: full ranking over $B \cup \{nobody\}$
- Outcomes: a matching M: $B \cup G \rightarrow B \cup G \cup \{nobody\}$
 - $\mathsf{M}(B) \subseteq G \cup \{\mathsf{nobody}\}$
 - $\mathsf{M}(G) \subseteq B \cup \{\mathsf{nobody}\}$
 - [M(a)=M(b)≠nobody] \Rightarrow [a=b]
 - $[\mathsf{M}(a)=b] \Rightarrow [\mathsf{M}(b)=a]$

Example of a matching

Good matching?

- Does a matching always exist?
 apparently yes
- Which matching is the best?
 - utilitarian: maximizes "total satisfaction"
 - egalitarian: maximizes minimum satisfaction
 - but how to define utility?

Stable matchings

- Given a matching M, (b,g) is a blocking pair if
 - $-g >_b \mathsf{M}(b)$
 - $-b>_{g}\mathsf{M}(g)$
 - ignore the condition for nobody
- A matching is stable, if there is no blocking pair
 - no (boy,girl) pair wants to deviate from their currently matches

Example

Rebecca

A stable matching

no link = matched to "nobody"

An unstable matching

Does a stable matching always exist?

- Yes: Gale-Shapley's deferred acceptance algorithm (DA)
- Men-proposing DA: each girl starts with being matched to "nobody"
 - each boy proposes to his top-ranked girl (or "nobody") who has not rejected him before
 - each girl rejects all but her most-preferred proposal
 - until no boy can make more proposals
- In the algorithm
 - Boys are getting worse
 - Girls are getting better

Men-proposing DA (on blackboard)

Women-proposing DA (on blackboard)

Women-proposing DA with slightly different preferences

Boys

 $\sum_{\text{Stan}} : \bigotimes_{i \in \mathbb{N}} > \bigotimes_{i \in \mathbb{N}} > \bigotimes_{i \in \mathbb{N}} > N$

Properties of men-proposing DA

- Can be computed efficiently
- Outputs a stable matching
 - The "best" stable matching for boys, called men-optimal matching
 - and the worst stable matching for girls
- Strategy-proof for boys

The men-optimal matching

- For each boy b, let gb denote his most favorable girl matched to him in any stable matching
- A matching is men-optimal if each boy b is matched to g_b
- Seems too strong, but...

Men-proposing DA is men-optimal

- Theorem. The output of men-proposing DA is menoptimal
- Proof: by contradiction
 - suppose *b* is the first boy not matched to $g \neq g_b$ in the execution of DA,
 - let M be an arbitrary matching where b is matched to g_b
 - Suppose b' is the boy whom gb chose to reject b, and M(b')=g'
 - $g' >_{b'} g_{b}$, which means that g' rejected b' in a previous round g' $b' \checkmark g_{b}$ $b' \checkmark g$ $b' \checkmark g$ DA M27

Strategy-proofness for boys

 Theorem. Truth-reporting is a dominant strategy for boys in men-proposing DA

No matching mechanism is strategy-proof and stable

- If (S,W) and (K,R) then
 Second Second
- If (S,R) and (K,W) then 2: 2 N > 0

Recap: two-sided 1-1 matching

- Men-proposing deferred acceptance algorithm (DA)
 - outputs the men-optimal stable matching
 - runs in polynomial time
 - strategy-proof on men's side

Next class: Fair division

- Indivisible goods: one-sided 1-1 or 1many matching (papers, apartments, etc.)
- Divisible goods: cake cutting