Fair division

Lirong Xia

Fall, 2016

Last class: two-sided 1-1 stable matching

- Men-proposing deferred acceptance algorithm (DA)
 - outputs the men-optimal stable matching
 - runs in polynomial time
 - strategy-proof on men's side
- No matching mechanism is both stable and strategy-proof

Today: FAIR division

- Fairness conditions
- Allocation of indivisible goods
 - serial dictatorship
 - Top trading cycle
- Allocation of divisible goods (cake cutting)
 - discrete procedures
 - continuous procedures

Agents

Houses

Formal setting

- Agents $A = \{1, ..., n\}$
- Goods *G*: finite or infinite
- Preferences: represented by utility functions
 - − agent *j*, u_j :*G*→R
- Outcomes = Allocations
 - $-g:G \rightarrow A$
 - $-g^{-1}:A \rightarrow 2^G$
- Difference with matching in the last class
 - 1-1 vs 1-many
 - Goods do not have preferences

Efficiency criteria

- Pareto dominance: an allocation g Pareto dominates another allocation g', if
 - all agents are not worse off under g
 - some agents are strictly better off
- Pareto optimality
 - allocations that are not Pareto dominated
- Maximizes social welfare
 - utilitarian
 - egalitarian

Fairness criteria

- Given an allocation g, agent j_1 envies agent j_2 if $u_{j_1}(g^{-1}(j_2)) > u_{j_1}(g^{-1}(j_1))$
- An allocation satisfies envy-freeness, if
 - no agent envies another agent
 - c.f. stable matching
- An allocation satisfies proportionality, if

- for all j, $u_j(g^{-1}(j)) \ge u_j(G)/n$

- Envy-freeness implies proportionality
 - proportionality does not imply envy-freeness

Why not...

- Consider fairness in other social choice problems
 - voting: does not apply
 - matching: when all agents have the same preferences
 - auction: satisfied by the 2nd price auction
- Use the agent-proposing DA in resource allocation (creating random preferences for the goods)
 - stableness is no longer necessary
 - sometimes not 1-1
 - for 1-1 cases, other mechanisms may have better properties

Allocation of indivisible goods

- House allocation
 - 1 agent 1 good
- Housing market
 - 1 agent 1 good
 - each agent originally owns a good
- 1 agent multiple goods (not discussed today)

House allocation

- The same as two sided 1-1 matching except that the houses do not have preferences
- The serial dictatorship (SD) mechanism
 - given an order over the agents, w.l.o.g.

 $a_1 \rightarrow \dots \rightarrow a_n$

- in step j, let agent j choose her favorite good that is still available
- can be either centralized or distributed
- computation is easy

Characterization of SD

- Theorem. Serial dictatorships are the only deterministic mechanisms that satisfy
 - strategy-proofness
 - Pareto optimality
 - neutrality
 - non-bossy
 - An agent cannot change the assignment selected by a mechanism by changing his report without changing his own assigned item
- Random serial dictatorship

Why not agent-proposing DA

- Agent-proposing DA satisfies
 - strategy-proofness
 - Pareto optimality
- May fail neutrality

• How about non-bossy?

Agent-proposing DA when all goods have the same preferences
 = serial dictatorship

[–] No

Housing market

- Agent j initially owns h_j
- Agents cannot misreport h_j , but can misreport her preferences
- A mechanism f satisfies participation
 if no agent j prefers h_i to her currently assigned item
- An assignment is in the core
 - if no subset of agents can do better by trading the goods that they own in the beginning among themselves
 - stronger than Pareto-optimality

Example: core allocation

: h1>h2>h3, owns h3

: h3>h2>h1, owns h1

: h3>h1>h2, owns h2

Not in the core

In the core

The top trading cycles (TTC) mechanism

- Start with: agent j owns h_i
- In each round
 - built a graph where there is an edge from each available agent to the owner of her mostpreferred house
 - identify all cycles; in each cycle, let the agent j gets the house of the next agent in the cycle; these will be their final allocation
 - remove all agents in these cycles

Example

$$a_{1}:h_{2}>\dots a_{2}:h_{1}>\dots a_{3}:h_{4}>\dots a_{4}:h_{5}>\dots a_{5}:h_{3}>\dots a_{6}:h_{4}>h_{3}>h_{6}>\dots$$

$$a_{7}:h_{4}>h_{5}>h_{6}>h_{3}>h_{8}>\dots a_{8}:h_{7}>\dots a_{9}:h_{6}>h_{4}>h_{7}>h_{3}>h_{9}>\dots$$

$$a_{1} \qquad a_{4} \qquad a_{6}$$

$$a_{3} \qquad a_{4} \qquad a_{9}$$

$$a_{7} \qquad a_{8}$$

Properties of TTC

- Theorem. The TTC mechanism
 - is strategy-proof
 - is Pareto optimal
 - satisfies participation
 - selects an assignment in the core
 - · the core has a unique assignment
 - can be computed in $O(n^2)$ time
- Why not using TTC in 1-1 matching?
 - not stable
- Why not using TTC in house allocation (using random initial allocation)?
 - not neutral

DA vs SD vs TTC

- All satisfy
 - strategy-proofness
 - Pareto optimality
 - easy-to-compute
- DA
 - stableness
- SD
 - neutrality
- TTC
 - chooses the core assignment

Multi-type resource allocation

- Each good is characterized by multiple issues
 - e.g. each presentation is characterized by topic and time
- Paper allocation
 - we have used SD to allocate the topic
 - we will use SD with reverse order for time
- Potential research project

Agents

One divisible good

Allocation of one divisible good

- The set of goods is [0,1] 0_____1
- Each utility function satisfies
 - Non-negativity: $u_j(B) \ge 0$ for all $B \subseteq [0, 1]$
 - Normalization: $u_j(\emptyset) = 0$ and $u_j([0, 1]) = 1$
 - Additivity: $u_j(B \cup B') = u_j(B) + u_j(B')$ for disjoint $B, B' \subseteq [0, 1]$
 - is continuous
- Also known as cake cutting
 - discrete mechanisms: as protocols
 - continuous mechanisms: use moving knives

2 agents: cut-and-choose

- Dates back to at least the Hebrew Bible [Brams&Taylor, 1999, p. 53]
- The cut-and-choose mechanism
 - 1st step: One player cuts the cake in two pieces (which she considers to be of equal value)
 - 2nd step: the other one chooses one of the pieces (the piece she prefers)
- Cut-and-choose satisfies
 - proportionality
 - envy-freeness
 - some operational criteria
 - each agent receive a continuous piece of cake
 - the number of cuts is minimum
 - is discrete

More than 2 agents: The Banach-Knaster Last-Diminisher Procedure

- In each round
 - the first agent cut a piece
 - the piece is passed around other agents, who can
 - pass
 - cut more
 - the piece is given to the last agent who cut
- Properties
 - proportionality
 - not envy-free
 - the number of cut may not be minimum
 - is discrete

The Dubins-Spanier Procedure

- A referee moves a knife slowly from left to right
- Any agent can say "stop", cut off the piece and get it
- Properties
 - proportionality
 - not envy-free
 - minimum number of cuts (continuous pieces)
 - continuous mechanism

Envy-free procedures

- *n* = 2: cut-and-choose
- *n* = 3
 - The Selfridge-Conway Procedure
 - discrete, number of cuts is not minimum
 - The Stromquist Procedure
 - continuous, uses four simultaneous moving knives
- *n* = 4
 - no procedure produces continuous pieces is known
 - [Barbanel&Brams 04] uses a moving knife and may use up to 5 cuts
- *n* ≥ 5
 - only procedures requiring an unbounded number of cuts are known [Brams&Taylor 1995]

Recap

- Indivisible goods
 - house allocation: serial dictatorship
 - housing market: Top trading cycle (TTC)
- Divisible goods (cake cutting)
 - -n = 2: cut-and-choose
 - discrete and continuous procedures that satisfies proportionality
 - hard to design a procedure that satisfies envyfreeness

Next class: Judgment aggregation

	Action P	Action Q	Liable? (P∧Q)
Judge 1	Y	Y	Y
Judge 2	Y	N	N
Judge 3	N	Y	N
Majority	Y	Y	Ν