Fair division

Lirong Xia

(i) Rensselaer

Fall, 2016

Last class: two-sided 1-1 stable matching

Boys

Girls

- Men-proposing deferred acceptance algorithm (DA)
- outputs the men-optimal stable matching
- runs in polynomial time
- strategy-proof on men's side
- No matching mechanism is both stable and strategy-proof

Today: FAIR division

- Fairness conditions
- Allocation of indivisible goods
- serial dictatorship
- Top trading cycle
- Allocation of divisible goods (cake cutting)
- discrete procedures
- continuous procedures

Example

Agents
Houses

Formal setting

- Agents $A=\{1, \ldots, n\}$
- Goods G : finite or infinite
- Preferences: represented by utility functions
- agent $j, u_{j}: G \rightarrow \mathrm{R}$
- Outcomes = Allocations
$-g: G \rightarrow A$
$-g^{-1}: A \rightarrow 2^{G}$
- Difference with matching in the last class
- 1-1 vs 1-many
- Goods do not have preferences

Efficiency criteria

- Pareto dominance: an allocation g Pareto dominates another allocation g^{\prime}, if
- all agents are not worse off under g
- some agents are strictly better off
- Pareto optimality
- allocations that are not Pareto dominated
- Maximizes social welfare
- utilitarian
- egalitarian

Fairness criteria

- Given an allocation g, agent j_{1} envies agent j_{2} if $u_{j_{1}}\left(g^{-1}\left(j_{2}\right)\right)>u_{j_{1}}\left(g^{-1}\left(j_{1}\right)\right)$
- An allocation satisfies envy-freeness, if
- no agent envies another agent
- c.f. stable matching
- An allocation satisfies proportionality, if
- for all $j, u_{j}\left(g^{-1}(j)\right) \geq u_{j}(G) / n$
- Envy-freeness implies proportionality
- proportionality does not imply envy-freeness

Why not...

- Consider fairness in other social choice problems
- voting: does not apply
- matching: when all agents have the same preferences
- auction: satisfied by the $2^{\text {nd }}$ price auction
- Use the agent-proposing DA in resource allocation (creating random preferences for the goods)
- stableness is no longer necessary
- sometimes not 1-1
- for 1-1 cases, other mechanisms may have better properties

Allocation of indivisible goods

- House allocation
- 1 agent 1 good
- Housing market
- 1 agent 1 good
- each agent originally owns a good
- 1 agent multiple goods (not discussed today)

House allocation

- The same as two sided 1-1 matching except that the houses do not have preferences
- The serial dictatorship (SD) mechanism
- given an order over the agents, w.l.o.g. $a_{1} \rightarrow \ldots \rightarrow a_{n}$
- in step j, let agent j choose her favorite good that is still available
- can be either centralized or distributed
- computation is easy

Characterization of SD

- Theorem. Serial dictatorships are the only deterministic mechanisms that satisfy
- strategy-proofness
- Pareto optimality
- neutrality
- non-bossy
- An agent cannot change the assignment selected by a mechanism by changing his report without changing his own assigned item
- Random serial dictatorship

Why not agent-proposing DA

- Agent-proposing DA satisfies
- strategy-proofness
- Pareto optimality
- May fail neutrality

- How about non-bossy?
- No
- Agent-proposing DA when all goods have the same preferences = serial dictatorship

Housing market

- Agent j initially owns h_{j}
- Agents cannot misreport h_{j}, but can misreport her preferences
- A mechanism f satisfies participation
- if no agent j prefers h_{j} to her currently assigned item
- An assignment is in the core
- if no subset of agents can do better by trading the goods that they own in the beginning among themselves
- stronger than Pareto-optimality

Example: core allocation

Not in the core

In the core

The top trading cycles (TTC) mechanism

- Start with: agent j owns h_{j}
- In each round
- built a graph where there is an edge from each available agent to the owner of her mostpreferred house
- identify all cycles; in each cycle, let the agent j gets the house of the next agent in the cycle; these will be their final allocation
- remove all agents in these cycles

Example

$$
\begin{aligned}
& a_{1}: h_{2}>\ldots \quad a_{2}: h_{1}>\ldots \quad a_{3}: h_{4}>\ldots \text { a } a_{4}: h_{5}>\ldots \quad a_{5}: h_{3}>\ldots \quad a_{6}: h_{4}>h_{3}>h_{6}>\ldots \\
& a_{7}: h_{4}>h_{5}>h_{6}>h_{3}>h_{8}>\ldots \quad a_{8}: h_{7}>\ldots \quad a_{9}: h_{6}>h_{4}>h_{7}>h_{3}>h_{9}>\ldots
\end{aligned}
$$

Properties of TTC

- Theorem. The TTC mechanism
- is strategy-proof
- is Pareto optimal
- satisfies participation
- selects an assignment in the core
- the core has a unique assignment
- can be computed in $O\left(n^{2}\right)$ time
- Why not using TTC in 1-1 matching?
- not stable
- Why not using TTC in house allocation (using random initial allocation)?
- not neutral

DA vs SD vs TTC

- All satisfy
- strategy-proofness
- Pareto optimality
- easy-to-compute
- DA
- stableness
- SD
- neutrality
- TTC
- chooses the core assignment

Multi-type resource allocation

- Each good is characterized by multiple issues
- e.g. each presentation is characterized by topic and time
- Paper allocation
- we have used SD to allocate the topic
- we will use SD with reverse order for time
- Potential research project

Example 2

Agents
One divisible good
.

Allocation of one divisible good

- The set of goods is $[0,1]$

- Each utility function satisfies
- Non-negativity: $u_{j}(B) \geq 0$ for all $B \subseteq[0,1]$
- Normalization: $u_{j}(\varnothing)=0$ and $u_{j}([0,1])=1$
- Additivity: $u_{j}\left(B \cup B^{\prime}\right)=u_{j}(B)+u_{j}\left(B^{\prime}\right)$ for disjoint $B, B^{\prime} \subseteq$ [0, 1]
- is continuous
- Also known as cake cutting
- discrete mechanisms: as protocols

- continuous mechanisms: use moving knives

2 agents: cut-and-choose

- Dates back to at least the Hebrew Bible [Brams\&Taylor, 1999, p. 53]
- The cut-and-choose mechanism
- $1^{\text {st }}$ step: One player cuts the cake in two pieces (which she considers to be of equal value)
- $2^{\text {nd }}$ step: the other one chooses one of the pieces (the piece she prefers)
- Cut-and-choose satisfies
- proportionality
- envy-freeness
- some operational criteria
- each agent receive a continuous piece of cake
- the number of cuts is minimum
- is discrete

More than 2 agents: The BanachKnaster Last-Diminisher Procedure

- In each round
- the first agent cut a piece
- the piece is passed around other agents, who can
- pass
- cut more
- the piece is given to the last agent who cut
- Properties
- proportionality
- not envy-free
- the number of cut may not be minimum
- is discrete

The Dubins-Spanier Procedure

- A referee moves a knife slowly from left to right
- Any agent can say "stop", cut off the piece and get it
- Properties
- proportionality
- not envy-free
- minimum number of cuts (continuous pieces)
- continuous mechanism

Envy-free procedures

- $n=2$: cut-and-choose
- $n=3$
- The Selfridge-Conway Procedure
- discrete, number of cuts is not minimum
- The Stromquist Procedure
- continuous, uses four simultaneous moving knives
- $n=4$
- no procedure produces continuous pieces is known
- [Barbanel\&Brams 04] uses a moving knife and may use up to 5 cuts
- $n \geq 5$
- only procedures requiring an unbounded number of cuts are known [Brams\&Taylor 1995]

Recap

- Indivisible goods
- house allocation: serial dictatorship
- housing market: Top trading cycle (TTC)
- Divisible goods (cake cutting)
$-n=2$: cut-and-choose
- discrete and continuous procedures that satisfies proportionality
- hard to design a procedure that satisfies envyfreeness

Next class: Judgment aggregation

	Action P	Action Q	Liable? $(\mathrm{P} \wedge \mathrm{Q})$
Judge 1	Y	Y	Y
Judge 2	Y	N	N
Judge 3	N	Y	N
Majority	Y	Y	N

