Hypothesis testing and statistical decision theory

Lirong Xia

Fall, 2016

Schedule

- Hypothesis testing
- Statistical decision theory
 - a more general framework for statistical inference
 - try to explain the scene behind tests
- Two applications of the minimax theorem
 - Yao's minimax principle
 - Finding a minimax rule in statistical decision theory

An example

- The average GRE quantitative score of
 - RPI graduate students vs.
 - national average: 558(139)
- Randomly sample some GRE Q scores of RPI graduate students and make a decision based on these

Simplified problem: one sample location test

- You have a random variable X
 - you know
 - the shape of X: normal
 - the standard deviation of X: 1
 - you don't know
 - the mean of X

The null and alternative hypothesis

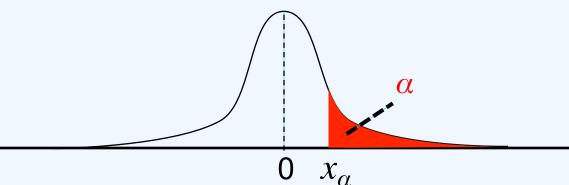
- Given a statistical model
 - parameter space: Θ
 - sample space: S
 - $Pr(s|\theta)$
- H₁: the alternative hypothesis
 - $H_1 \subseteq \Theta$
 - the set of parameters you think contain the ground truth
- H₀: the null hypothesis
 - $H_0 \subseteq \Theta$
 - $H_0 \cap H_1 = \varnothing$
 - the set of parameters you want to test (and ideally reject)
- Output of the test
 - reject the null: suppose the ground truth is in H_0 , it is unlikely that we see what we observe in the data
 - retain the null: we don't have enough evidence to reject the null

One sample location test

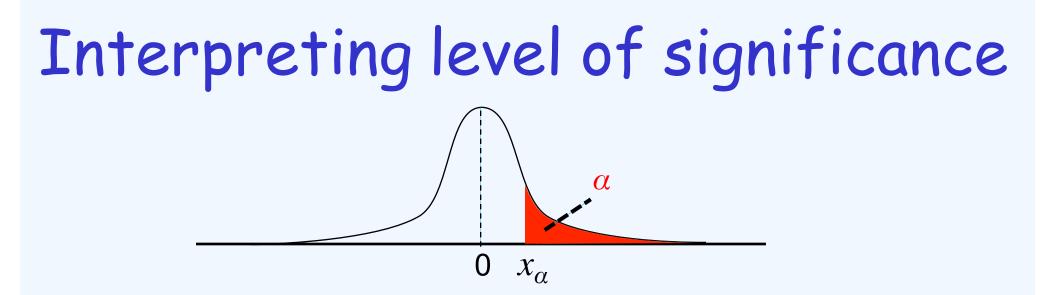
- Combination 1 (one-sided, right tail)
 - H₁: mean>0
 - H₀: mean=0 (why not mean<0?)
- Combination 2 (one-sided, left tail)
 - H_1 : mean<0
 - $H_0: mean=0$
- Combination 3 (two-sided)
 - H₁: mean≠0
 - $H_0: mean=0$
- A hypothesis test is a mapping $f: S \rightarrow \{reject, retain\}$

One-sided Z-test

- H₁: mean>0
- H₀: mean=0
- Parameterized by a number $0 < \alpha < 1$
 - is called the level of significance
- Let x_{α} be such that $Pr(X>x_{\alpha}|H_0)=\alpha$
 - x_{α} is called the critical value



- Output reject, if
 - $x > x_{\alpha}$, or $Pr(X > x | H_0) < \alpha$
 - Pr(X>x|H₀) is called the p-value
- Output retain, if
 - − $x \le x_{\alpha}$, or p-value ≥ α



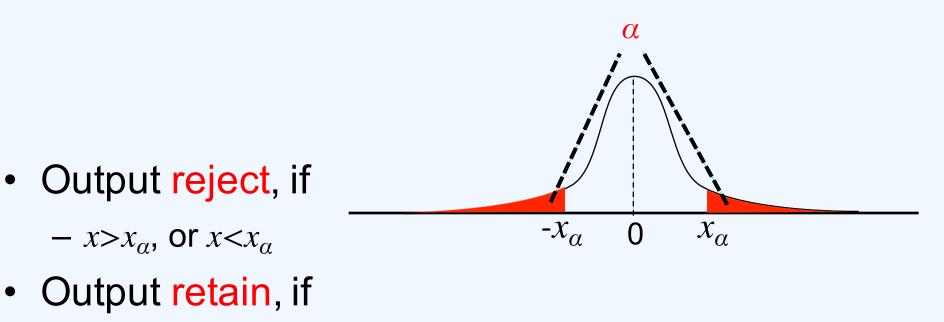
- Popular values of α :
 - -5%: x_{α} = 1.645 std (somewhat confident)

-1%: x_{α} = 2.33 std (very confident)

- α is the probability that given mean=0, a randomly generated data will leads to "reject"
 - Type I error

Two-sided Z-test

- H₁: mean≠0
- H₀: mean=0
- Parameterized by a number $0 < \alpha < 1$
- Let x_{α} be such that $2\Pr(X>x_{\alpha}|H_0)=\alpha$



Evaluation of hypothesis tests

- What is a "correct" answer given by a test?
 - when the ground truth is in H_0 , retain the null (\approx saying that the ground truth is in H_0)
 - when the ground truth is in H₁, reject the null
 (≈saying that the ground truth is in H₁)
 - only consider cases where $\theta\!\in\!H_0\cup H_1$
- Two types of errors
 - Type I: wrongly reject H₀, false alarm
 - Type II: wrongly retain H_0 , fail to raise the alarm
 - Which is more serious?

Type I and Type II errors

		Output	
		Retain	Reject
Ground truth in	H _o	size: 1-α	Type I: α
	H ₁	Туре II: <mark>β</mark>	power: 1-β

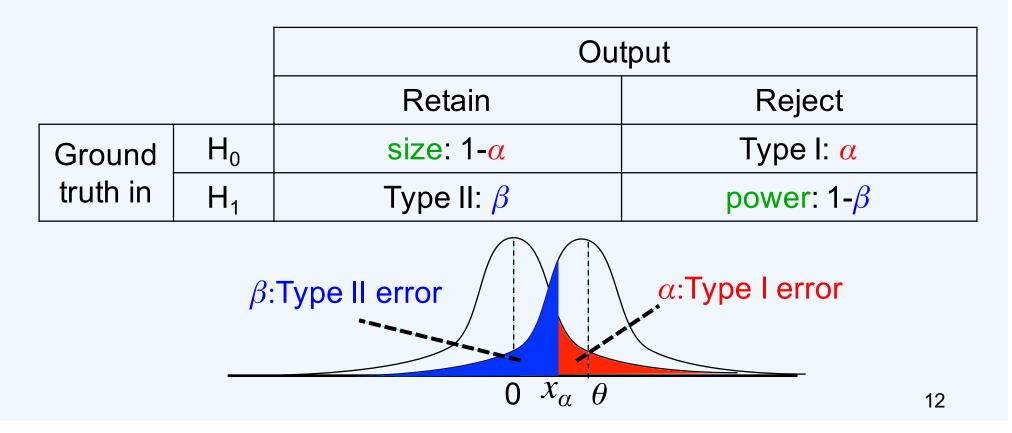
• Type I: the max error rate for all $\theta \in H_0$

 α =sup_{$\theta \in H_0$}Pr(false alarm| θ)

- Type II: the error rate given $\theta \in H_1$
- Is it possible to design a test where $\alpha = \beta = 0$?
 - usually impossible, needs a tradeoff

Illustration

- One-sided Z-test
 - we can freely control Type I error
 - for Type II, fix some $\theta \! \in \! \mathbf{H}_1$



Type II: β

Black: One-sided

Z-test

Another test

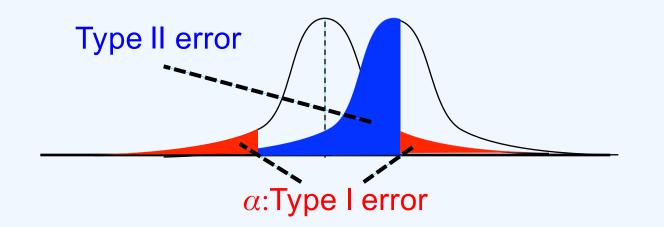
Type I: a

Using two-sided Z-test for one-sided hypothesis

 α :Type I error

Errors for one-sided Z-test

Type II error



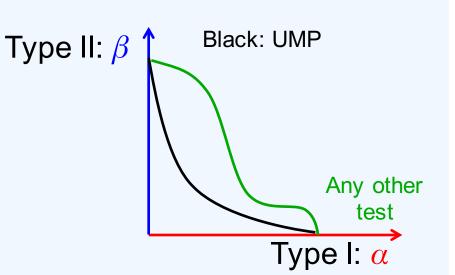
Using one-sided Z-test for a set-valued null hypothesis

- H_0 : mean ≤ 0 (vs. mean = 0)
- H₁: mean>0
- $\sup_{\theta \le 0} \Pr(\text{false alarm}|\theta) = \Pr(\text{false alarm}|\theta)$
 - Type I error is the same
- Type II error is also the same for any $\theta > 0$
- Any better tests?

Optimal hypothesis tests

- A hypothesis test *f* is uniformly most powerful (UMP), if
 - for any other test *f*' with the same
 Type I error
 - for any $\theta \in H_1$,

Type II error of f < Type II error of f'



- Corollary of Karlin-Rubin theorem: One-sided Z-test is a UMP for H₀:≤0 and H₁:>0
 - generally no UMP for two-sided tests

Template of other tests

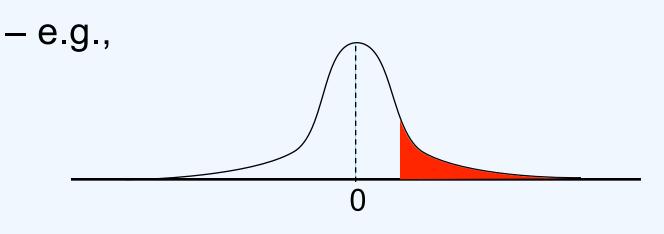
• Tell you the H_0 and H_1 used in the test

- e.g., H₀:mean≤0 and H₁:mean>0

 Tell you the test statistic, which is a function from data to a scalar

- e.g., compute the mean of the data

• For any given α , specify a region of test statistic that will leads to the rejection of H₀



How to do test for your problem?

- Step 1: look for a type of test that fits your problem (from e.g. wiki)
- Step 2: choose H₀ and H₁
- Step 3: choose level of significance α
- Step 4: run the test

Statistical decision theory

- Given
 - statistical model: Θ , S, Pr(s| θ)
 - decision space: D
 - -loss function: $L(\theta, d) \in \mathbb{R}$
- We want to make a decision based on observed generated data

- decision function $f: data \rightarrow D$

Hypothesis testing as a decision problem

- D={reject, retain}
- L(θ, reject)=
 - 0, if $\theta \in H_1$
 - 1, if $\theta \in H_0$ (type I error)
- L(θ, retain)=
 - 0, if $\theta \! \in \! \mathsf{H}_{0}$
 - -1, if $\theta \in H_1$ (type II error)

Bayesian expected loss

• Given data and the decision d

 $- EL_B(data, d) = E_{\theta|data}L(\theta, d)$

 Compute a decision that minimized EL for a given the data

Frequentist expected loss

- Given the ground truth θ and the decision function f

 $- \mathsf{EL}_{\mathsf{F}}(\theta, f) = \mathsf{E}_{\mathsf{data}|\theta} \mathsf{L}(\theta, f(\mathsf{data}))$

- Compute a decision function with small EL for all possible ground truth
 - c.f. uniformly most powerful test: for all $\theta \in H_1$, the UMP test always has the lowest expected loss (Type II error)
- A minimax decision rule f is $\operatorname{argmin}_f \max_{\theta} EL_F(\theta, f)$
 - most robust against unknown parameter

Two interesting applications of game theory

The Minimax theorem

- For any simultaneous-move two player zero-sum game
- The value of a player's mixed strategy *s* is her worst-case utility against against the other player
 - Value(s)=min_{s'} U(s,s')
 - $-s_1$ is a mixed strategy for player 1 with maximum value
 - $-s_2$ is a mixed strategy for player 2 with maximum value
- Theorem Value(s₁)=-Value(s₂) [von Neumann]
 - (s_1, s_2) is an NE
 - for any s_1 ' and s_2 ', Value $(s_1') \leq \text{Value}(s_1) = -\text{Value}(s_2) \leq -$ Value (s_2')
 - to prove that s_1^* is minimax, it suffices to find s_2^* with Value (s_1^*) =-Value (s_2^*)

App1: Yao's minimax principle

- Question: how to prove a randomized algorithm A is (asymptotically) fastest?
 - Step 1: analyze the running time of A
 - Step 2: show that any other randomized algorithm runs slower for some input
 - but how to choose such a worst-case input for all other algorithms?
- Theorem [Yao 77] For any randomized algorithm A
 - the worst-case expected running time of A

is more than

- for any distribution over all inputs, the expected running time of the fastest deterministic algorithm against this distribution
- Example. You designed a $O(n^2)$ randomized algorithm, to prove that no other randomized algorithm is faster, you can
 - find a distribution π over all inputs (of size *n*)
 - show that the expected running time of any deterministic algorithm on π is more than $O(n^2)$

Proof

- Two players: you, Nature
- Pure strategies
 - You: deterministic algorithms
 - Nature: inputs
- Payoff
 - You: negative expected running time
 - Nature: expected running time
- For any randomized algorithm A
 - largest expected running time on some input
 - is more than the expected running time of your best (mixed) strategy
 - =the expected running time of Nature's best (mixed) strategy
 - is more than the smallest expected running time of any deterministic algorithm on any distribution over inputs

App2: finding a minimax rule?

- Guess a least favorable distribution π over the parameters
 - $\operatorname{let} f_{\pi} \operatorname{denote} \operatorname{its} \operatorname{Bayesian} \operatorname{decision} \operatorname{rule}$
 - Proposition. f_{π} minimizes the expected loss among all rules, i.e. f_{π} =argmin_f E_{$\theta \sim \pi$}EL_F(θ, f)
- Theorem. If for all θ , $EL_F(\theta, f_{\pi})$ are the same, then f_{π} is minimax

Proof

- Two players: you, Nature
- Pure strategies
 - You: deterministic decision rules
 - Nature: the parameter
- Payoff
 - You: negative frequentist loss, want to minimize the max frequentist loss
 - Nature: frequentist loss $EL_F(\theta, f) = E_{data|\theta}L(\theta, f(data))$, want to maximize the minimum frequentist loss
- Nee to prove that f_{π} is minimax
 - suffices to show that there exists a mixed strategy π^* for Nature
 - π^* is a distribution over Θ
 - such that
 - for all rule f and all parameter θ , $EL_F(\pi^*, f) \ge EL_F(\theta, f_{\pi})$
 - the equation holds for $\pi^* = \pi QED$

Recap

- Problem: make a decision based on randomly generated data
- Z-test
 - null/alternative hypothesis
 - level of significance
 - reject/retain
- Statistical decision theory framework
 - Bayesian expected loss
 - Frequentist expected loss
- Two applications of the minimax theorem