Computational Social Processes

Lirong Xia
(1) Rensselaer

Fall, 2016

Logistics

> Register now!
> Final grade calculation revote

- call for nominations
- Winner: Midterm 30\%; Project 40\%
- Midterm 20\%; Project 50\%
- Midterm 35\%; Final 35\%
$>$ Project ideas online
> Homeworks
- must do it yourself
- must acknowledge discussions
>0 tolerance on cheating and plagiarism
- Homework and exams: 0 if caught
- Participation: 0 if caught
- Project: 0 if caught

Last class

> Braess' paradox

- Incentive matters in system design

Social choice problems

- voting
- auction
- school match
- resource allocation
> The Borda rule

Social choice problems

- Agents
- Alternatives
- Outcomes
- Preferences (true and reported)
- Social choice mechanism

Today: Preferences

$>$ How to model agents' preferences?
$>$ Order theory

- linear orders: rankings without ties
- weak orders: rankings with ties
- partial orders: allowing incomparable alternatives
- top-k order: ranking over top-k alternatives
$>$ Utility theory
- preferences over lotteries

Mathematical definition

> Given a set of alternatives A
$>A$ binary relation R is a subset of $A \times A$

- $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ means "a is preferred to b "
- Also write $a>_{R} b$
> Example
- $A=\{O, M, N\}$
- $R=\{(\mathrm{O}, \mathrm{M}),(\mathrm{O}, \mathrm{N}),(\mathrm{M}, \mathrm{N})\}$
$>$ Graphical representation

- Vertices are A
- There is an edge $a \rightarrow b$ if and only if $(a, b) \in R$

Linear orders

> Linear orders (rankings without ties): binary relations that satisfies

- Antisymmetry (no ties): $a>_{R} b$ and $b>_{R} a$ implies $a=b$
- Transitivity: $a>_{R} b$ and $b>_{R} c$ implies $a>_{R} C$
- Totality: for all a, b, one of $a>_{R} b$ or $b>_{R} a$ must hold

Yes

no,
Antisymmetry

no,
transitivity

totality

Weak orders

$>$ Weak orders (rankings with ties): binary relations that satisfies

- Transitivity: $a>_{R} b$ and $b>_{R} c$ implies $a>_{R} C$
- Totality: for all a, b, one of $a>_{R} b$ or $b>_{R} a$ must hold
- Not requiring antisymmetry

Yes

Yes

Weak orders: Tiers

$>$ Any weak order R can be represented as tiers

- $A=T_{1} \cup T_{2} \cup \ldots \cup T_{q}$
- alternatives within each tier is tied: for all a, b in T_{i}, $a>_{R} b$ and $b>{ }_{R} a$
- Strict preferences across tiers: for all $i<j, a$ in T_{i} and b in T_{j}, one of $a>_{R} b$ and $b>_{R} a$

$$
\begin{aligned}
& \mathrm{T}_{1}:\{\mathrm{O}, \mathrm{M}\} \\
& \mathrm{T}_{2}:\{\mathrm{N}\}
\end{aligned}
$$

Partial orders

$>$ Partial orders: binary relations that satisfies

- Antisymmetry (no ties): $a>_{R} b$ and $b>_{R} a$ implies $a=b$
- Transitivity: $a>_{R} b$ and $b>_{R} c$ implies $a>{ }_{R} c$
- Reflexivity: for all $a, a>_{R} a$
> Top-k orders
- k $\leq m$
- linear order over k alternatives
- nothing else

Prefpy@Github

> https://github.com/PrefPy/prefpy/
Class Preferences in Preference.py

- wmgMap: the binary relation
- containsTie: check if it is a weak order
- getRankMap: stores the tiers of alternatives
- getOrderVector: list of alternatives in tiers
- Not allowing partial orders for now

Poll

$>$ What is the most general type of preferences OPRA is using?

- rank the three choices
$>$ Office hours

Utility theory

Preferences over lotteries

>Option 1 vs. Option 2

- Option 1: \$0@50\%+\$30@50\%
- Option 2: $\$ 5$ for sure
>Option 3 vs. Option 4
- Option 3: \$0@50\%+\$30M@50\%
- Option 4: \$5M for sure

Lotteries

$>$ There are m objects. Obj $=\left\{o_{1}, \ldots, o_{m}\right\}$
$>$ Lot(Obj): all lotteries (distributions) over Obj
$>$ In general, an agent's preferences can be modeled by a weak order (ranking with ties) over Lot(Obj)

- But there are infinitely many outcomes

Utility theory

- Utility function: $u: \mathrm{Obj} \rightarrow \mathbb{R}$
$>$ For any $p \in \operatorname{Lot}(\mathrm{Obj})$
- $u(p)=\sum_{o \in \mathrm{Obj}} p(o) u(o)$
$>u$ represents a weak order over Lot(Obj)
- $p_{1}>p_{2}$ if and only if $u\left(p_{1}\right)>u\left(p_{2}\right)$

Example

Utility	1	3	10	100	150
Money	0	5	30	5 M	30 M

$>u($ Option 1$)=u(0) \times 50 \%+u(30) \times 50 \%=5.5$
$>u($ Option 2$)=u(5) \times 100 \%=3$
$>u($ Option 3$)=u(0) \times 50 \%+u(30 \mathrm{M}) \times 50 \%=75.5$
$>u($ Option 4$)=u(5 \mathrm{M}) \times 100 \%=100$

Risk aversion

\rightarrow Concave utility curve
$>$ Lottery:

- $\mathrm{W}_{0}=10, \mathrm{~W}_{1}=90$
- $W=W_{0} @ 50 \%+W_{1} @ 50 \%$
- $\mathrm{E}(\mathrm{W})=50$
$>$ Certainty equivalent
- money equally desirable to the lottery
- Suppose CE = 40

> Risk premium
- minimum compensation to take the risk
- max amount to avoid the risk
- $\mathrm{RP}=10$

Example: house insurance

Utility	0	990	1000
Money	0	900 K	1 M

> Your house is worth 1 M

- 1% chance of fire
> Option 1: not doing anything
- 1\%@0+99\%1M
- Expected monetary loss 1 K
> Option 2: buy an insurance of 100 K
- 100\%@900K
> CE of option 1: 900K
> Risk premium: 100K
$>$ Why is the insurance company willing to provide option 1 ?

Risk attitudes

$>$ Risk averse (concave)

$>$ Risk neutral (line)

$>$ Risk seeking (convex)

Recap

$>$ How to model agents' preferences?
$>$ Order theory

- linear orders: rankings without ties
- weak orders: rankings with ties
- partial orders: allowing incomparable alternatives
- top-k order: ranking over top-k alternatives
$>$ Utility theory
- preferences over lotteries

Next class

> Social choice

- many voting rules

Why different from MOOC (e.g. coursera)

$>$ Credits
$>$ More interaction

- Do feel free to interrupt with questions
>Hands-on research experience
$>$ No similar course online
$>$ I will be back to school eventually...

Change the world: 2011 UK Referendum

> The second nationwide referendum in UK history

- The first was in 1975
> Member of Parliament election:
Plurality rule \rightarrow Alternative vote rule
$>68 \%$ No vs. 32\% Yes
> Why people want to change?
>Why it was not successful?
$>$ Can we do better?

Example2: Multiple referenda

$>$ In California, voters voted on 11 binary issues (1 に

- $2^{11}=2048$ combinations in total
- 5/11 are about budget and taxes

- Prop. 30 Increase sales and some income tax for education
- Prop. 38 Increase income tax on almost everyone for education

Why this is social choice?

$>$ Agents: voters
$>$ Alternatives: $2^{11}=2048$ combinations of
$>$ Outcomes: combinations
$>$ Preferences (vote): Top-ranked combination
$>$ Mechanisms: issue-by-issue voting
$>$ More in the "combinatorial voting" class
$>$ Goal: democracy

