Computational Social Processes

Lirong Xia

Fall, 2016

Logistics

- Register now!
- Final grade calculation revote
 - call for nominations
 - Winner: Midterm 30%; Project 40%
 - Midterm 20%; Project 50%
 - Midterm 35%; Final 35%
- Project ideas online
- Homeworks
 - must do it yourself
 - must acknowledge discussions
- O tolerance on cheating and plagiarism
 - Homework and exams: 0 if caught
 - Participation: 0 if caught
 - Project: 0 if caught

Last class

- Braess' paradox
 - Incentive matters in system design
- Social choice problems
 - voting
 - auction
 - school match
 - resource allocation
- > The Borda rule

Social choice problems

- Agents
- Alternatives
- Outcomes
- Preferences (true and reported)
- Social choice mechanism

Today: Preferences

> How to model agents' preferences?

> Order theory

- linear orders: rankings without ties
- weak orders: rankings with ties
- partial orders: allowing incomparable alternatives
 - top-k order: ranking over top-k alternatives
- > Utility theory
 - preferences over lotteries

Mathematical definition

- Given a set of alternatives A
- A binary relation R is a subset of A×A
 - (a,b) ∈R means "a is preferred to b"
 - Also write a>_Rb
- Example
 - A = {O, M, N}
 - R = {(O,M), (O,N), (M,N)}
- Graphical representation
 - Vertices are A
 - There is an edge $a \rightarrow b$ if and only if (a,b) $\in R$

Linear orders

- Linear orders (rankings without ties): binary relations that satisfies
 - Antisymmetry (no ties): a>_Rb and b>_Ra implies a=b
 - Transitivity: $a_{R}b$ and $b_{R}c$ implies $a_{R}c$
 - Totality: for all a,b, one of a>_Rb or b>_Ra must hold

Weak orders

Weak orders (rankings with ties): binary relations that satisfies

- Transitivity: $a >_R b$ and $b >_R c$ implies $a >_R c$
- Totality: for all a,b, one of a>_Rb or b>_Ra must hold
- Not requiring antisymmetry

Weak orders: Tiers

> Any weak order R can be represented as tiers

- $A = T_1 \cup T_2 \cup \ldots \cup T_q$
- alternatives within each tier is tied: for all a,b in T_i, a>_Rb and b>_Ra
- Strict preferences across tiers: for all i<j, a in T_i and b in T_i, one of a>_Rb and b[≯]_Ra

Partial orders

Partial orders: binary relations that satisfies

- Antisymmetry (no ties): a>_Rb and b>_Ra implies a=b
- Transitivity: $a >_R b$ and $b >_R c$ implies $a >_R c$
- Reflexivity: for all a, a>_Ra
- Top-k orders
 - k≤m
 - linear order over k alternatives
 - nothing else

Prefpy@Github

https://github.com/PrefPy/prefpy/

- Class Preferences in Preference.py
 - wmgMap: the binary relation
 - containsTie: check if it is a weak order
 - getRankMap: stores the tiers of alternatives
 - getOrderVector: list of alternatives in tiers
 - Not allowing partial orders for now

Poll

- What is the most general type of preferences OPRA is using?
 - rank the three choices
- Office hours

Utility theory

Preferences over lotteries

➢Option 1 vs. Option 2

- Option 1: \$0@50%+\$30@50%
- Option 2: \$5 for sure
- ≻Option 3 vs. Option 4
 - Option 3: \$0@50%+\$30M@50%
 - Option 4: \$5M for sure

Lotteries

- > There are *m* objects. Obj= $\{o_1, \ldots, o_m\}$
- Lot(Obj): all lotteries (distributions) over Obj
- In general, an agent's preferences can be modeled by a weak order (ranking with ties) over Lot(Obj)
 - But there are infinitely many outcomes

Utility theory

• Utility function: u: Obj $\rightarrow \mathbb{R}$

For any $p \in Lot(Obj)$

•
$$u(p) = \sum_{o \in \mathsf{Obj}} p(o)u(o)$$

 $\succ u$ represents a weak order over Lot(Obj)

• $p_1 > p_2$ if and only if $u(p_1) > u(p_2)$

 $\succ u(\text{Option 1}) = u(0) \times 50\% + u(30) \times 50\% = 5.5$

- $\succ u$ (Option 2) = u(5)×100%=3
- $\succ u(\text{Option 3}) = u(0) \times 50\% + u(30M) \times 50\% = 75.5$
- $\succ u(\text{Option 4}) = u(5M) \times 100\% = 100$

Risk aversion

- Concave utility curve
- > Lottery:
 - W₀=10, W₁=90
 - W=W₀@50%+W₁@50%
 - E(W) = 50
- Certainty equivalent
 - money equally desirable to the lottery
 - Suppose CE = 40

Risk premium

- minimum compensation to take the risk
- max amount to avoid the risk

Example: house insurance

Utility	0	990	1000
Money	0	900K	1M

19

- Your house is worth 1M
 - 1% chance of fire
- Option 1: not doing anything
 - 1%@0+99%1M
 - Expected monetary loss 1K
- Option 2: buy an insurance of 100K
 - 100%@900K
- ➢ CE of option 1: 900K
- Risk premium: 100K
- Why is the insurance company willing to provide option 1?

Risk attitudes

➢ Risk neutral (line)

Risk seeking (convex)

RP

CE E(W)

W

20

credit: wikipedia

Ŵ1

Recap

> How to model agents' preferences?

> Order theory

- linear orders: rankings without ties
- weak orders: rankings with ties
- partial orders: allowing incomparable alternatives
 - top-k order: ranking over top-k alternatives
- > Utility theory
 - preferences over lotteries

Next class

- Social choice
 - many voting rules

Why different from MOOC (e.g. coursera)

≻Credits

➤ More interaction

- Do feel free to interrupt with questions
- Hands-on research experience
- ➢No similar course online
- ➤I will be back to school eventually...

Change the world: 2011 UK Referendum

- The second nationwide referendum in UK history
 - The first was in 1975
- > Member of Parliament election:
 - Plurality rule → Alternative vote rule
- ≻68% No vs. 32% Yes
- > Why people want to change?
- > Why it was not successful?
- ≻ Can we do better?

Example2: Multiple referenda

In California, voters voted on 11 binary issues (

- 2¹¹=2048 combinations in total
- 5/11 are about budget and taxes

- Prop.30 Increase sales and some income tax for education
- Prop.38 Increase income tax on almost everyone for education

Why this is social choice?

- Agents: voters
- >Alternatives: $2^{11}=2048$ combinations of $2^{11}=2048$
- >Outcomes: combinations
- Preferences (vote): Top-ranked combination
- Mechanisms: issue-by-issue voting
- ➢ More in the "combinatorial voting" class
- ➤Goal: democracy