Introduction to Social Choice

Lirong Xia

Rensselaer

Fall, 2016
Keep in mind

- Good science
 - What question does it answer?

- Good engineering
 - What problem does it solve?
Last class

How to model agents’ preferences?

Order theory

- linear orders
- weak orders
- partial orders

Utility theory

- preferences over lotteries
- risk attitudes: aversion, neutrality, seeking
Today

➢ Q: What problem does it solve?
➢ A: Aggregating agents’ preferences and make a joint decision by voting
Change the world: 2011 UK Referendum

- The second nationwide referendum in UK history
 - The first was in 1975
- Member of Parliament election:
 - Plurality rule ➔ Alternative vote rule
- 68% No vs. 32% Yes
- In 10/440 districts more voters said yes
 - 6 in London, Oxford, Cambridge, Edinburgh Central, and Glasgow Kelvin
- Why change?
- Why failed?
- Which voting rule is the best?
Social choice: Voting

Agents: \(n \) voters, \(N = \{1, \ldots, n\} \)

Alternatives: \(m \) candidates, \(A = \{a_1, \ldots, a_m\} \) or \(\{a, b, c, d, \ldots\} \)

Outcomes:
- winners (alternatives): \(O = A \). Social choice function
- rankings over alternatives: \(O = \text{Rankings}(A) \). Social welfare function

Preferences: \(R_j^* \) and \(R_j \) are full rankings over \(A \)

Voting rule: a function that maps each profile to an outcome
Popular voting rules

(a.k.a. what people have done in the past two centuries)
The Borda rule

\[P = \{ \times 4, \times 3, \times 2, \times 2 \} \]

Borda \(P \) =

Borda scores:
\[2 \times 4 + 4 = 12 \]
\[2 \times 2 + 7 = 11 \]
\[2 \times 5 = 10 \]
Positional scoring rules

- Characterized by a score vector s_1, \ldots, s_m in non-increasing order
- For each vote R, the alternative ranked in the i-th position gets s_i points
- The alternative with the most total points is the winner
- Special cases
 - Borda: score vector $(m-1, m-2, \ldots, 0)$ [French academy of science 1784-1800, Slovenia, Naru]
 - k-approval: score vector $(1\ldots1, 0\ldots0)$
 - Plurality: score vector $(1, 0\ldots0)$ [UK, US]
 - Veto: score vector $(1\ldots1, 0)$
Example

\[P = \{ \times 4, \times 3, \times 2, \times 2 \} \]

Borda

Plurality (1-approval)

Veto (2-approval)
Plurality with runoff

- The election has two rounds
 - First round, all alternatives except the two with the highest plurality scores drop out
 - Second round, the alternative preferred by more voters wins

- [used in France, Iran, North Carolina State]
Example: Plurality with runoff

\[P = \{ \begin{array}{c}
\text{First round: drops out} \\
\text{Second round: defeats} \\
\text{Different from Plurality!}
\end{array} \]
Single transferable vote (STV)

- Also called instant run-off voting or alternative vote
- The election has $m-1$ rounds, in each round,
 - The alternative with the lowest plurality score drops out, and is removed from all votes
 - The last-remaining alternative is the winner
- [used in Australia and Ireland]

<table>
<thead>
<tr>
<th>Preference</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a > b > c > d$</td>
<td>10</td>
</tr>
<tr>
<td>$d > a > b > c$</td>
<td>7</td>
</tr>
<tr>
<td>$c > d > a > b$</td>
<td>6</td>
</tr>
<tr>
<td>$b > c > d > a$</td>
<td>3</td>
</tr>
</tbody>
</table>

\[a \]
Other multi-round voting rules

➤ Baldwin’s rule
 • Borda+STV: in each round we eliminate one alternative with the lowest Borda score
 • break ties when necessary

➤ Nanson’s rule
 • Borda with multiple runoff: in each round we eliminate all alternatives whose Borda scores are below the average
 • [Marquette, Michigan, U. of Melbourne, U. of Adelaide]
The Copeland rule

- The **Copeland score** of an alternative is its total “pairwise wins”
 - the number of positive outgoing edges in the WMG
- The winner is the alternative with the highest Copeland score
- WMG-based
Example: Copeland

\[P = \{ \begin{array}{ccc} \text{\textgreater} & \text{\textgreater} & \times 4 \\ \text{\textgreater} & \text{\textgreater} & \times 3 \\ \text{\textgreater} & \text{\textgreater} & \times 2 \\ \text{\textgreater} & \text{\textgreater} & \times 2 \end{array} \} \]

Copeland score:

\[\begin{array}{ccc} \text{\textgreater} & : 2 \\ 1 & : 1 \\ \text{\textless} & : 0 \end{array} \]
The maximin rule

- A.k.a. Simpson or minimax
- The maximin score of an alternative a is
 \[MS_P(a) = \min_b (\# \{ a > b \text{ in } P \} - \# \{ b > a \text{ in } P \}) \]
 - the smallest pairwise defeats
- The winner is the alternative with the highest maximin score
- WMG-based
Example: maximin

\[P = \{ (\text{\textbf{>}} \times 4, \text{\textbf{>}} \times 3), (\text{\textbf{>}} \times 2, \text{\textbf{>}} \times 2) \} \]

Maximin score:

\[\text{\textbf{>}} : 1, \text{\textbf{>}} : -1, \text{\textbf{>}} : -1 \]
Ranked pairs

- Given the WMG
- Starting with an empty graph G, adding edges to G in multiple rounds
 - In each round, choose the remaining edge with the highest weight
 - Add it to G if this does not introduce cycles
 - Otherwise discard it
- The alternative at the top of G is the winner
Example: ranked pairs

Q1: Is there always an alternative at the “top” of G?
Q2: Does it suffice to only consider positive edges?
The Schulze Rule

- In the WMG of a profile, the strength
 - of a path is the smallest weight on its edges
 - of a pair of alternatives \((a, b)\), denoted by \(S(a, b)\), is the largest strength of paths from \(a\) to \(b\)

- The Schulze winners are the alternatives \(a\) such that
 - for all alternatives \(a'\), \(S(a, a') \geq S(a', a)\)
 - \(S(a, b) = S(a, c) = S(a, d) = 6\rightarrow c\rightarrow b = 4\)
 - \(> 2 = S(b, a) = S(c, a) = S(d, a)\)
 - The (unique) winner is \(a\)
Ranked pairs and Schulze

- Ranked pairs [Tideman 1987] and Schulze [Schulze 1997]
 - Both satisfy anonymity, Condorcet consistency, monotonicity, immunity to clones, etc
 - Neither satisfy participation and consistency (these are not compatible with Condorcet consistency)

- Schulze rule has been used in elections at Wikimedia Foundation, the Pirate Party of Sweden and Germany, the Debian project, and the Gento Project
The Bucklin Rule

- An alternative a’s Bucklin score
 - smallest k such that for the majority of agents, a is ranked within top k

- Simplified Bucklin
 - Winners are the agents with the smallest Bucklin score
Kemeny’s rule

- Kendall tau distance
 - \(K(R,W) = \# \{ \text{different pairwise comparisons} \} \)

\[
K(\begin{array}{ccc}
 b & > & c \\
 c & > & a \\
 a & > & b \\
\end{array}, \begin{array}{ccc}
 a & > & b \\
 b & > & c \\
 c & > & a \\
\end{array}) = ?
\]

- Kemeny(\(D\)) = \(\arg\min_W K(D,W) = \arg\min_W \sum_{R \in D} K(R,W) \)

- For single winner, choose the top-ranked alternative in Kemeny(\(D\))

- [reveals the truth]
Weighted majority graph

Given a profile P, the weighted majority graph $\text{WMG}(P)$ is a weighted directed complete graph (V,E,w) where

- $V = A$
- for every pair of alternatives (a, b)
 - $w(a \rightarrow b) = \#\{a > b \text{ in } P\} - \#\{b > a \text{ in } P\}$
 - $w(a \rightarrow b) = -w(b \rightarrow a)$
- WMG (only showing positive edges) might be cyclic
 - Condorcet cycle: $\{a > b > c, b > c > a, c > a > b\}$
Example: WMG

\[P = \{ \text{positive edges} \times 4, \text{positive edges} \times 2, \text{positive edges} \times 3 \} \]

\[\text{WMG}(P) = \text{(positive edges)} \]
WMG-based voting rules

- A voting rule \(r \) is based on weighted majority graph, if for any profiles \(P_1, P_2 \),

\[
[\text{WMG}(P_1) = \text{WMG}(P_2)] \implies [r(P_1) = r(P_2)]
\]

- WMG-based rules can be redefined as a function that maps \{WMGs\} to \{outcomes\}

- **Example**: Borda is WMG-based
 - Proof: the Borda winner is the alternative with the highest sum over outgoing edges.
Voting with Prefpy

Implemented
- All positional scoring rules
- Bucklin, Copeland, maximin
- not well-tested for weak orders

Project ideas
- implementation of STV, ranked pairs, Kemeny
 - all are NP-hard to compute
- extends all rules to weak orders
Popular criteria for voting rules
(a.k.a. what people have done in the past 60 years)
How to evaluate and compare voting rules?

- No single numerical criteria
 - **Utilitarian**: the joint decision should maximize the total happiness of the agents
 - **Egalitarian**: the joint decision should maximize the worst agent’s happiness

- **Axioms**: properties that a “good” voting rules should satisfy
 - measures various aspects of preference aggregation
Fairness axioms

- **Anonymity**: names of the voters do not matter
 - Fairness for the voters

- **Non-dictatorship**: there is no dictator, whose top-ranked alternative is always the winner, no matter what the other votes are
 - Fairness for the voters

- **Neutrality**: names of the alternatives do not matter
 - Fairness for the alternatives
A truth-revealing axiom

- **Condorcet consistency**: Given a profile, if there exists a Condorcet winner, then it must win
 - The Condorcet winner beats all other alternatives in pairwise comparisons
 - The Condorcet winner only has positive outgoing edges in the WMG

- Why this is truth-revealing?
 - why Condorcet winner is the truth?
The Condorcet Jury theorem

[Condorcet 1785]

Given

- two alternatives \(\{a, b\} \). \(a \): liable, \(b \): not liable
- \(0.5 < p < 1 \),

Suppose

- given the ground truth \((a\ or\ b)\), each voter’s preference is generated i.i.d., such that
 - w/p \(p \), the same as the ground truth
 - w/p \(1-p \), different from the ground truth

Then, as \(n \to \infty \), the probability for the majority of agents’ preferences is the ground truth goes to 1

“lays, among other things, the foundations of the ideology of the democratic regime” (Paroush 1998)
Condorcet’s model

[Condorcet 1785]

• Given a “ground truth” ranking W and $p > 1/2$, generate each pairwise comparison in R independently as follows (suppose $c > d$ in W)

\[
\Pr(b > c > a \mid a > b > c) = (1-p) p^2
\]

• Its MLE is Kemeny’s rule [Young JEP-95]
Truth revealing

Extended Condorcet Jury theorem

- **Given**
 - A ground truth ranking W
 - $0.5 < p < 1$

- **Suppose**
 - each agent’s preferences are generated i.i.d. according to Condorcet’s model

- Then, as $n \to \infty$, with probability that $\to 1$
 - the randomly generated profile has a Condorcet winner
 - The Condorcet winner is ranked at the top of W

- If r satisfies Condorcet criterion, then as $n \to \infty$, r will reveal the “correct” winner with probability that $\to 1$.

Other axioms

- **Pareto optimality:** For any profile D, there is no alternative c such that every voter prefers c to $r(D)$

- **Consistency:** For any profiles D_1 and D_2, if $r(D_1) = r(D_2)$, then $r(D_1 \cup D_2) = r(D_1)$

- **Monotonicity:** For any profile D_1,
 - if we obtain D_2 by only raising the position of $r(D_1)$ in one vote,
 - then $r(D_1) = r(D_2)$
 - In other words, raising the position of the winner won’t hurt it
Which axiom is more important?

<table>
<thead>
<tr>
<th></th>
<th>Condorcet criterion</th>
<th>Consistency</th>
<th>Anonymity/neutrality, non-dictatorship, monotonicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plurality</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>STV (alternative vote)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

- Some axioms are not compatible with others
- Which rule do you prefer?
An easy fact

- **Theorem.** For voting rules that selects a single winner, anonymity is not compatible with neutrality.
 - proof:

 - W.O.L.G.
 - Neutrality
 - Anonymity
Another easy fact [Fishburn APSR-74]

Theorem. No positional scoring rule satisfies Condorcet criterion:

- suppose $s_1 > s_2 > s_3$

3 Voters > >

2 Voters > >

1 Voter > >

1 Voter > >

is the Condorcet winner

CONTRADICTION

$3s_1 + 2s_2 + s_3$

$3s_1 + 3s_2 + 1s_3$
Arrow's impossibility theorem

- Recall: a social welfare function outputs a ranking over alternatives

- **Arrow's impossibility theorem.** No social welfare function satisfies the following four axioms
 - Non-dictatorship
 - Universal domain: agents can report any ranking
 - Unanimity: if \(a > b \) in all votes in \(D \), then \(a > b \) in \(r(D) \)
 - Independence of irrelevant alternatives (IIA): for two profiles \(D_1 = (R_1, \ldots, R_n) \) and \(D_2 = (R'_1, \ldots, R'_n) \) and any pair of alternatives \(a \) and \(b \)
 - if for all voter \(j \), the pairwise comparison between \(a \) and \(b \) in \(R_j \) is the same as that in \(R'_j \)
 - then the pairwise comparison between \(a \) and \(b \) are the same in \(r(D_1) \) as in \(r(D_2) \)
Other Not-So-Easy facts

- **Gibbard-Satterthwaite theorem**
 - Later in the “hard to manipulate” class

- **Axiomatic characterization**
 - Template: A voting rule satisfies axioms A1, A2, A2 if it is rule X
 - If you believe in A1 A2 A3 are the most desirable properties then X is optimal
 - (unrestricted domain+unanimity+IIA) dictatorships [Arrow]
 - (anonymity+neutrality+consistency+continuity) positional scoring rules [Young SIAMAM-75]
 - (neutrality+consistency+Condorocet consistency) Kemeny [Young&Levenglick SIAMAM-78]
Remembered all of these?

- Impressive! Now try a slightly larger tip of the iceberg at wiki
Change the world: 2011 UK Referendum

➢ The second nationwide referendum in UK history
 • The first was in 1975
➢ Member of Parliament election:
 Plurality rule ➔ Alternative vote rule
➢ 68% No vs. 32% Yes
➢ Why people want to change?
➢ Why it was not successful?
➢ Which voting rule is the best?
Wrap up

Voting rules

• positional scoring rules
• multi-round elimination rules
• WMG-based rules
• A Ground-truth revealing rule (Kemeny’s rule)

Criteria (axioms) for “good” rules

• Fairness axioms
• A ground-truth-revealing axiom (Condorcet consistency)
• Other axioms

Evaluation

• impossibility theorems
• Axiomatic characterization