Introduction to Social Choice

Lirong Xia

Fall, 2016

Keep in mind

- ➤ Good science
 - What question does it answer?
- Good engineering
 - What problem does it solve?

Last class

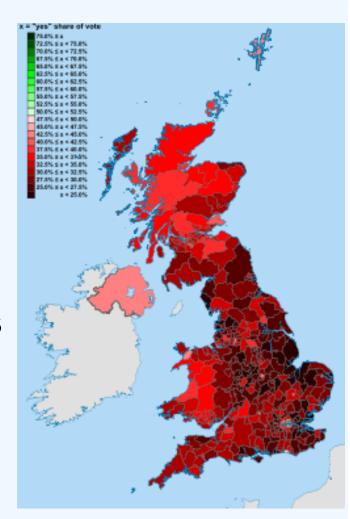
- ➤ How to model agents' preferences?
- ➤Order theory
 - linear orders
 - weak orders
 - partial orders
- ➤ Utility theory
 - preferences over lotteries
 - risk attitudes: aversion, neutrality, seeking

Today

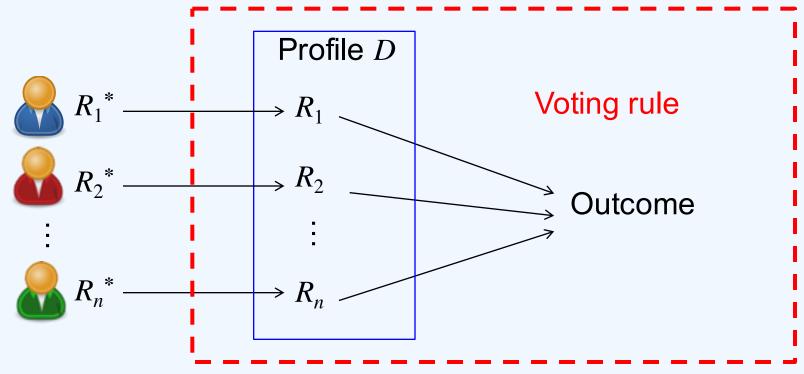
- ➤ Q: What problem does it solve?
- ➤ A: Aggregating agents' preferences and make a joint decision by voting

Change the world: 2011 UK Referendum

- The second nationwide referendum in UK history
 - The first was in 1975
- Member of Parliament election:
 - Plurality rule → Alternative vote rule
- > 68% No vs. 32% Yes
- > In 10/440 districts more voters said yes
 - 6 in London, Oxford, Cambridge, Edinburgh Central, and Glasgow Kelvin
- Why change?
- ➤ Why failed?
- ➤ Which voting rule is the best?



Social choice: Voting

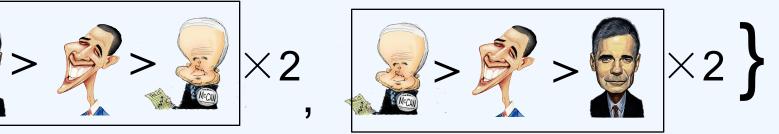


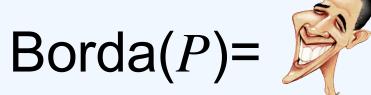
- Agents: *n* voters, *N*={1,...,*n*}
- Alternatives: m candidates, $A = \{a_1, \dots, a_m\}$ or $\{a, b, c, d, \dots\}$
- Outcomes:
 - winners (alternatives): O=A. Social choice function
 - rankings over alternatives: O=Rankings(A). Social welfare function
- Preferences: R_i^* and R_i are full rankings over A
- Voting rule: a function that maps each profile to an outcome

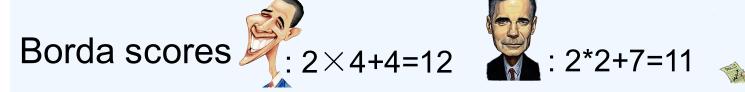
Popular voting rules

(a.k.a. what people have done in the past two centuries)

The Borda rule





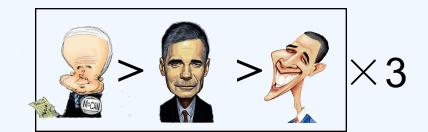


Positional scoring rules

- \triangleright Characterized by a score vector $s_1,...,s_m$ in non-increasing order
- For each vote R, the alternative ranked in the i-th position gets s_i points
- > The alternative with the most total points is the winner
- Special cases
 - Borda: score vector (*m*-1, *m*-2, ...,0) [French academy of science 1784-1800, Slovenia, Naru]
 - *k*-approval: score vector (1...1, 0...0)

- Plurality: score vector (1, 0...0) [UK, US]
- Veto: score vector (1...1, 0)

Example



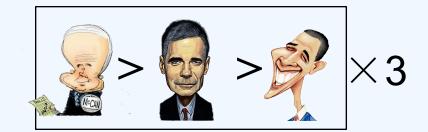
Borda

Plurality with runoff

- > The election has two rounds
 - First round, all alternatives except the two with the highest plurality scores drop out
 - Second round, the alternative preferred by more voters wins
- > [used in France, Iran, North Carolina State]

Example: Plurality with runoff

$$P=\{$$



➤ First round: drops out➤ Second round: defeats

Single transferable vote (STV)

- ➤ Also called instant run-off voting or alternative vote
- \triangleright The election has m-1 rounds, in each round,
 - The alternative with the lowest plurality score drops out, and is removed from all votes
 - The last-remaining alternative is the winner
- [used in Australia and Ireland]

$a > b > c \gg dl$	d > a > b > c	c > d > a > b	b > c > d > a
10	7	6	3

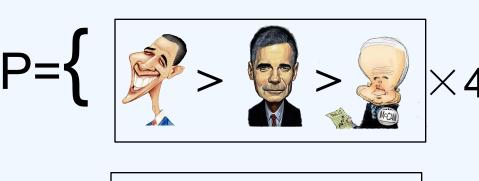
Other multi-round voting rules

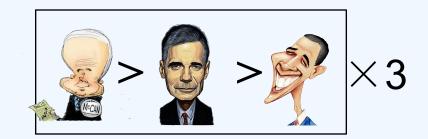
- > Baldwin's rule
 - Borda+STV: in each round we eliminate one alternative with the lowest Borda score
 - break ties when necessary
- ➤ Nanson's rule
 - Borda with multiple runoff: in each round we eliminate all alternatives whose Borda scores are below the average
 - [Marquette, Michigan, U. of Melbourne, U. of Adelaide]

The Copeland rule

- ➤ The Copeland score of an alternative is its total "pairwise wins"
 - the number of positive outgoing edges in the WMG
- ➤ The winner is the alternative with the highest Copeland score
- >WMG-based

Example: Copeland





Copeland score:

: 2

: 1

0

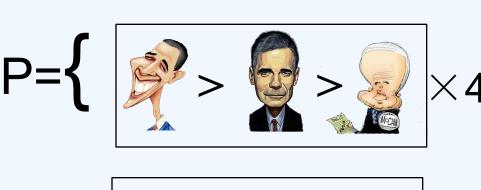
The maximin rule

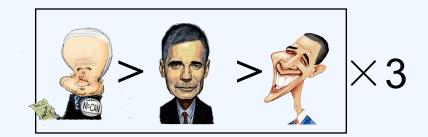
- > A.k.a. Simpson or minimax
- > The maximin score of an alternative a is

$$MS_P(a)=\min_b (\#\{a>b \text{ in } P\}-\#\{b>a \text{ in } P\})$$

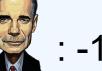
- the smallest pairwise defeats
- ➤ The winner is the alternative with the highest maximin score
- > WMG-based

Example: maximin





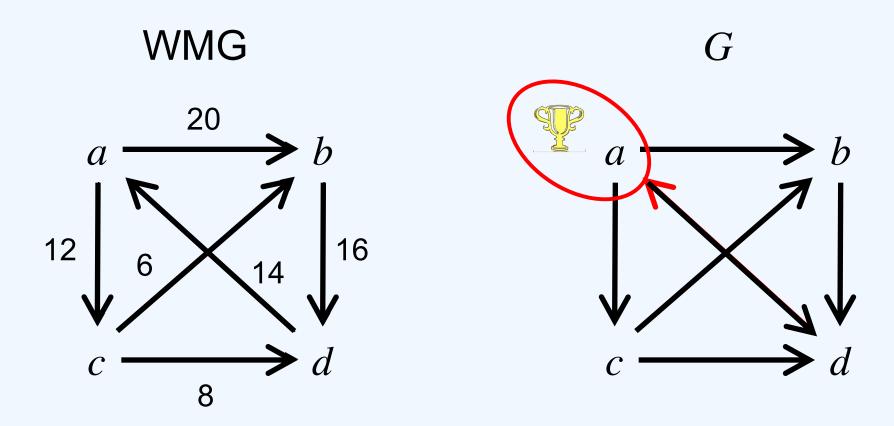
Maximin score:



Ranked pairs

- ➤ Given the WMG
- ➤ Starting with an empty graph *G*, adding edges to *G* in multiple rounds
 - In each round, choose the remaining edge with the highest weight
 - Add it to G if this does not introduce cycles
 - Otherwise discard it
- The alternative at the top of G is the winner

Example: ranked pairs

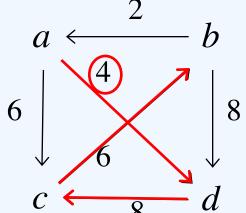


Q1: Is there always an alternative at the "top" of *G*?

Q2: Does it suffice to only consider positive edges?

The Schulze Rule

- > In the WMG of a profile, the strength
 - of a path is the smallest weight on its edges
 - of a pair of alternatives (a,b), denoted by S(a,b), is the largest strength of paths from a to b
- ➤ The Schulze winners are the alternatives *a* such that
 - for all alternatives a', $S(a, a') \ge S(a', a)$
 - S(a,b)=S(a,c) S(a,b)=A S(a,b)=S(a,c) S(a,b)=S(a,c) S(a,b)=S(a,c)
 - The (unique) winner is a



Ranked pairs and Schulze

- ➤ Ranked pairs [Tideman 1987] and Schulze [Schulze 1997]
 - Both satisfy anonymity, Condorcet consistency, monotonicity, immunity to clones, etc
 - Neither satisfy participation and consistency (these are not compatible with Condorcet consistency)
- ➤ Schulze rule has been used in elections at Wikimedia Foundation, the Pirate Party of Sweden and Germany, the Debian project, and the Gento Project

The Bucklin Rule

- > An alternative a's Bucklin score
 - smallest k such that for the majority of agents, a is ranked within top k
- ➤ Simplified Bucklin
 - Winners are the agents with the smallest Bucklin score

Kemeny's rule

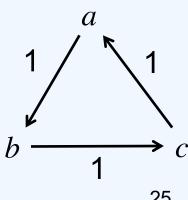
- > Kendall tau distance
 - K(*R*,*W*)= # {different pairwise comparisons}

$$K(b>c>a,a>b>c)=$$

- \succ Kemeny(D)=argmin $_W$ K(D,W)=argmin $_W$ $\Sigma_{R \in D}$ K(R,W)
- ➤ For single winner, choose the top-ranked alternative in Kemeny(D)
- [reveals the truth]

Weighted majority graph

- ➤ Given a profile P, the weighted majority graph WMG(P) is a weighted directed complete graph (V,E,w) where
 - \bullet V = A
 - for every pair of alternatives (a, b)
 - $w(a \rightarrow b) = \#\{a > b \text{ in } P\} \#\{b > a \text{ in } P\}$
 - $w(a \rightarrow b) = -w(b \rightarrow a)$
- WMG (only showing positive edges) might be cyclic
 - Condorcet cycle: { a>b>c, b>c>a, c>a>b}



Example: WMG

26

WMG-based voting rules

 \triangleright A voting rule r is based on weighted majority graph, if for any profiles P_1 , P_2 ,

$$[\mathsf{WMG}(P_1) = \mathsf{WMG}(P_2)] \Longrightarrow [r(P_1) = r(P_2)]$$

- WMG-based rules can be redefined as a function that maps {WMGs} to {outcomes}
- Example: Borda is WMG-based
 - Proof: the Borda winner is the alternative with the highest sum over outgoing edges.

Voting with Prefpy

- > Implemented
 - All positional scoring rules
 - Bucklin, Copeland, maximin
 - not well-tested for weak orders
- > Project ideas
 - implementation of STV, ranked pairs, Kemeny
 - all are NP-hard to compute
 - extends all rules to weak orders

Popular criteria for voting rules

(a.k.a. what people have done in the past 60 years)

How to evaluate and compare voting rules?

- > No single numerical criteria
 - Utilitarian: the joint decision should maximize the total happiness of the agents
 - Egalitarian: the joint decision should maximize the worst agent's happiness
- Axioms: properties that a "good" voting rules should satisfy
 - measures various aspects of preference aggregation

Fairness axioms

- > Anonymity: names of the voters do not matter
 - Fairness for the voters
- Non-dictatorship: there is no dictator, whose top-ranked alternative is always the winner, no matter what the other votes are
 - Fairness for the voters
- Neutrality: names of the alternatives do not matter
 - Fairness for the alternatives

A truth-revealing axiom

- Condorcet consistency: Given a profile, if there exists a Condorcet winner, then it must win
 - The Condorcet winner beats all other alternatives in pairwise comparisons
 - The Condorcet winner only has positive outgoing edges in the WMG
- > Why this is truth-revealing?
 - why Condorcet winner is the truth?

The Condorcet Jury theorem [Condorcet 1785]

> Given

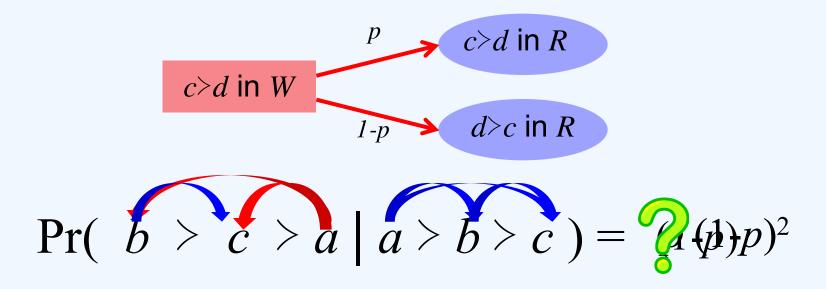
- two alternatives $\{a,b\}$. a: liable, b: not liable
- 0.5<*p*<1,

Suppose

- given the ground truth (a or b), each voter's preference is generated i.i.d., such that
 - w/p p, the same as the ground truth
 - w/p 1-p, different from the ground truth
- \triangleright Then, as $n \rightarrow \infty$, the probability for the majority of agents' preferences is the ground truth goes to 1
- "lays, among other things, the foundations of the ideology of the democratic regime" (Paroush 1998)

Condorcet's model [Condorcet 1785]

Given a "ground truth" ranking W and p>1/2,
 generate each pairwise comparison in R
 independently as follows (suppose c>d in W)



Its MLE is Kemeny's rule [Young JEP-95]

Truth revealing

Extended Condorcet Jury theorem

- > Given
 - A ground truth ranking W
 - 0.5<*p*<1,
- > Suppose
 - each agent's preferences are generated i.i.d. according to Condorcet's model
- \triangleright Then, as $n \rightarrow \infty$, with probability that $\rightarrow 1$
 - the randomly generated profile has a Condorcet winner
 - The Condorcet winner is ranked at the top of W
- ➤ If r satisfies Condorcet criterion, then as $n \rightarrow \infty$, r will reveal the "correct" winner with probability that $\rightarrow 1$.

Other axioms

- \triangleright Pareto optimality: For any profile D, there is no alternative c such that every voter prefers c to r(D)
- ightharpoonup Consistency: For any profiles D_1 and D_2 , if $r(D_1)=r(D_2)$, then $r(D_1 \cup D_2)=r(D_1)$
- \triangleright Monotonicity: For any profile D_1 ,
 - if we obtain D_2 by only raising the position of $r(D_1)$ in one vote,
 - then $r(D_1)=r(D_2)$
 - In other words, raising the position of the winner won't hurt it

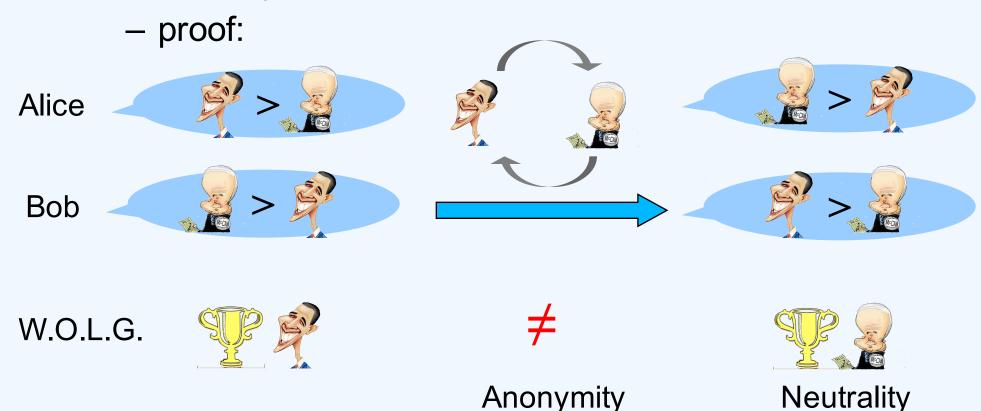
Which axiom is more important?

	Condorcet criterion	Consistency	Anonymity/neutrality, non-dictatorship, monotonicity
Plurality	Ν	Υ	Υ
STV (alternative vote)	Υ	N	Υ

- Some axioms are not compatible with others
- Which rule do you prefer?

An easy fact

 Theorem. For voting rules that selects a single winner, anonymity is not compatible with neutrality



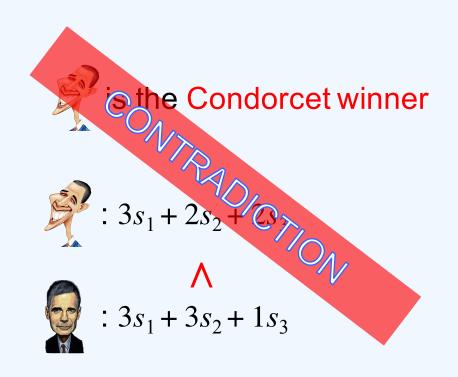
Another easy fact [Fishburn APSR-74]

➤ Theorem. No positional scoring rule satisfies Condorcet criterion:

• suppose $s_1 > s_2 > s_3$

3 Voters

2 Voters



Arrow's impossibility theorem

- Recall: a social welfare function outputs a ranking over alternatives
- Arrow's impossibility theorem. No social welfare function satisfies the following four axioms
 - Non-dictatorship
 - Universal domain: agents can report any ranking
 - Unanimity: if a>b in all votes in D, then a>b in r(D)
 - Independence of irrelevant alternatives (IIA): for two profiles D_1 = $(R_1,...,R_n)$ and D_2 = $(R_1',...,R_n')$ and any pair of alternatives a and b
 - if for all voter j, the pairwise comparison between a and b in R_j is the same as that in R_j '
 - then the pairwise comparison between a and b are the same in $r(D_1)$ as in $r(D_2)$

Other Not-So-Easy facts

- Gibbard-Satterthwaite theorem
 - Later in the "hard to manipulate" class
- Axiomatic characterization
 - Template: A voting rule satisfies axioms A1, A2, A2 ⇔ if it is rule X
 - If you believe in A1 A2 A3 are the most desirable properties then X is optimal
 - (unrestricted domain+unanimity+IIA) ⇔ dictatorships [Arrow]
 - (anonymity+neutrality+consistency+continuity) ⇔ positional scoring rules [Young SIAMAM-75]
 - (neutrality+consistency+Condorcet consistency) ⇔ Kemeny
 [Young&Levenglick SIAMAM-78]

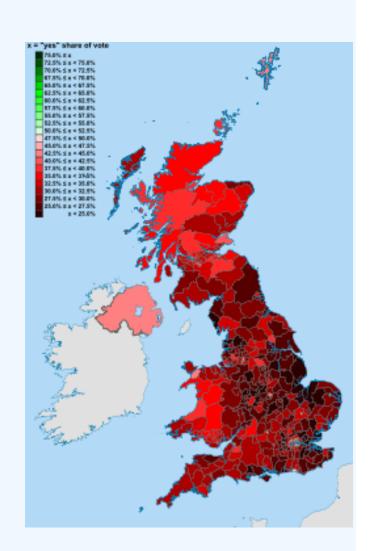
Remembered all of these?

Impressive! Now try a slightly larger tip of the iceberg at wiki

Change the world: 2011 UK Referendum

- ➤ The second nationwide referendum in UK history
 - The first was in 1975
- ➤ Member of Parliament election:

 Plurality rule → Alternative vote rule
- >68% No vs. 32% Yes
- > Why people want to change?
- ➤ Why it was not successful?
- > Which voting rule is the best?



Wrap up

Voting rules

- positional scoring rules
- multi-round elimination rules
- WMG-based rules
- A Ground-truth revealing rule (Kemeny's rule)
- > Criteria (axioms) for "good" rules
 - Fairness axioms
 - A ground-truth-revealing axiom (Condorcet consistency)
 - Other axioms

> Evaluation

- impossibility theorems
- Axiomatic characterization