Introduction to Social Choice

Lirong Xia

(4) Rensselaer

Fall, 2016

Keep in mind

>Good science

- What question does it answer?
$>$ Good engineering
- What problem does it solve?

Last class

$>$ How to model agents' preferences?
$>$ Order theory

- linear orders
- weak orders
- partial orders
$>$ Utility theory
- preferences over lotteries
- risk attitudes: aversion, neutrality, seeking

Today

$>$ Q: What problem does it solve?
$>$ A: Aggregating agents' preferences and make a joint decision by voting

Change the world: 2011 UK Referendum

$>$ The second nationwide referendum in UK history

- The first was in 1975
> Member of Parliament election:
Plurality rule \rightarrow Alternative vote rule
$>68 \%$ No vs. 32% Yes
$>$ In 10/440 districts more voters said yes
- 6 in London, Oxford, Cambridge, Edinburgh Central, and Glasgow Kelvin
> Why change?
> Why failed?
> Which voting rule is the best?

Social choice: Voting

- Agents: n voters, $N=\{1, \ldots, n\}$
- Alternatives: m candidates, $A=\left\{a_{1}, \ldots, a_{m}\right\}$ or $\{a, b, c, d, \ldots\}$
- Outcomes:
- winners (alternatives): $O=A$. Social choice function
- rankings over alternatives: $O=$ Rankings (A). Social welfare function
- Preferences: R_{j}^{*} and R_{j} are full rankings over A
- Voting rule: a function that maps each profile to an outcome

Popular voting rules

(a.k.a. what people have done in the past two centuries)

The Borda rule

Borda $(P)=$

Borda scores \&: $2 \times 4+4=12$

Positional scoring rules

$>$ Characterized by a score vector s_{1}, \ldots, s_{m} in nonincreasing order
$>$ For each vote R, the alternative ranked in the i-th position gets s_{i} points
$>$ The alternative with the most total points is the winner
> Special cases

- Borda: score vector ($m-1, m-2, \ldots, 0$) [French academy of science 1784-1800, Slovenia, Naru]
- k-approval: score vector ($1 \ldots 1,0 \ldots 0$)

- Plurality: score vector ($1,0 \ldots 0$) [UK, US]
- Veto: score vector (1...1, 0)

Example

Borda

Plurality
(1- approval)

Veto
(2-approval)

Plurality with runoff

$>$ The election has two rounds

- First round, all alternatives except the two with the highest plurality scores drop out
- Second round, the alternative preferred by more voters wins
$>$ [used in France, Iran, North Carolina State]

Example: Plurality with runoff

$$
\left.G>\xi^{2}>2, G>G^{2}>2\right\}
$$

$>$ First round: drops out
>Second round:

Different from Plurality!

Single transferable vote (STV)

$>$ Also called instant run-off voting or alternative vote
$>$ The election has $m-1$ rounds, in each round,

- The alternative with the lowest plurality score drops out, and is removed from all votes
- The last-remaining alternative is the winner
$>$ [used in Australia and Ireland]

$a>b>c>d$	$d l>a>b>c$	$c>d>a>b$	$b>c>d>a$
10	7	6	3
a			

Other multi-round voting rules

- Baldwin's rule
- Borda+STV: in each round we eliminate one alternative with the lowest Borda score
- break ties when necessary
$>$ Nanson's rule
- Borda with multiple runoff: in each round we eliminate all alternatives whose Borda scores are below the average
- [Marquette, Michigan, U. of Melbourne, U. of Adelaide]

The Copeland rule

>The Copeland score of an alternative is its total "pairwise wins"

- the number of positive outgoing edges in the WMG
$>$ The winner is the alternative with the highest Copeland score
>WMG-based

Example: Copeland

Copeland score:

The maximin rule

$>$ A.k.a. Simpson or minimax
$>$ The maximin score of an alternative a is

$$
\mathrm{MS}_{P}(a)=\min _{b}(\#\{a>b \text { in } P\}-\#\{b>a \text { in } P\})
$$

- the smallest pairwise defeats
$>$ The winner is the alternative with the highest maximin score
$>$ WMG-based

Example: maximin

Maximin score:

Ranked pairs

$>$ Given the WMG
$>$ Starting with an empty graph G, adding edges to G in multiple rounds

- In each round, choose the remaining edge with the highest weight
- Add it to G if this does not introduce cycles
- Otherwise discard it
$>$ The alternative at the top of G is the winner

Example: ranked pairs

WMG

Q1: Is there always an alternative at the "top" of G ?
Q2: Does it suffice to only consider positive edges?

The Schulze Rule

$>$ In the WMG of a profile, the strength

- of a path is the smallest weight on its edges
- of a pair of alternatives (a, b), denoted by $\mathrm{S}(a, b)$, is the largest strength of paths from a to b
> The Schulze winners are the alternatives a such that
- for all alternatives $a^{\prime}, \mathrm{S}\left(a, a^{\prime}\right) \geq \mathrm{S}\left(a^{\prime}, a\right)$

$>2=\mathrm{S}(b, a)=\mathrm{S}(c, a)=\mathrm{S}(d, a)$

- The (unique) winner is a

Ranked pairs and Schulze

> Ranked pairs [Tideman 1987] and Schulze [Schulze 1997]

- Both satisfy anonymity, Condorcet consistency, monotonicity, immunity to clones, etc
- Neither satisfy participation and consistency (these are not compatible with Condorcet consistency)
$>$ Schulze rule has been used in elections at Wikimedia Foundation, the Pirate Party of Sweden and Germany, the Debian project, and the Gento Project

The Bucklin Rule

\Rightarrow An alternative a 's Bucklin score

- smallest k such that for the majority of agents, a is ranked within top k
$>$ Simplified Bucklin
- Winners are the agents with the smallest Bucklin score

Kemeny's rule

$>$ Kendall tau distance

- $\mathrm{K}(R, W)=\#$ different pairwise comparisons\}

$>\operatorname{Kemeny}(D)=\operatorname{argmin}_{W} \mathrm{~K}(D, W)=\operatorname{argmin}_{W} \Sigma_{R \in D} \mathrm{~K}(R, W)$
$>$ For single winner, choose the top-ranked alternative in Kemeny (D)
$>$ [reveals the truth]

Weighted majority graph

$>$ Given a profile P, the weighted majority graph WMG (P) is a weighted directed complete graph (V, E, w) where

- $V=A$
- for every pair of alternatives (a, b)
- $w(a \rightarrow b)=\#\{a>b$ in $P\}-\#\{b>a$ in $P\}$
- $w(a \rightarrow b)=-w(b \rightarrow a)$
- WMG (only showing positive edges\} might be cyclic
- Condorcet cycle: $\{a>b>c, b>c>a, c>a>b\}$

Example: WMG

$\mathrm{WMG}(P)=$

WMG-based voting rules

$>$ A voting rule r is based on weighted majority graph, if for any profiles P_{1}, P_{2}, $\left[\operatorname{WMG}\left(P_{1}\right)=\mathrm{WMG}\left(P_{2}\right)\right] \Rightarrow\left[r\left(P_{1}\right)=r\left(P_{2}\right)\right]$
$>$ WMG-based rules can be redefined as a function that maps \{WMGs\} to \{outcomes\}
> Example: Borda is WMG-based

- Proof: the Borda winner is the alternative with the highest sum over outgoing edges.

Voting with Prefpy

$>$ Implemented

- All positional scoring rules
- Bucklin, Copeland, maximin
- not well-tested for weak orders
$>$ Project ideas
- implementation of STV, ranked pairs, Kemeny
- all are NP-hard to compute
- extends all rules to weak orders

Popular criteria for voting rules

(a.k.a. what people have done in the past 60 years)

How to evaluate and compare voting rules?

$>$ No single numerical criteria

- Utilitarian: the joint decision should maximize the total happiness of the agents
- Egalitarian: the joint decision should maximize the worst agent's happiness
$>$ Axioms: properties that a "good" voting rules should satisfy
- measures various aspects of preference aggregation

Fairness axioms

$>$ Anonymity: names of the voters do not matter

- Fairness for the voters
$>$ Non-dictatorship: there is no dictator, whose top-ranked alternative is always the winner, no matter what the other votes are
- Fairness for the voters
$>$ Neutrality: names of the alternatives do not matter
- Fairness for the alternatives

A truth-revealing axiom

> Condorcet consistency: Given a profile, if there exists a Condorcet winner, then it must win

- The Condorcet winner beats all other alternatives in pairwise comparisons
- The Condorcet winner only has positive outgoing edges in the WMG
$>$ Why this is truth-revealing?
- why Condorcet winner is the truth?

The Condorcet Jury theorem [Condorcet 1785]

> Given

- two alternatives $\{a, b\}$. a : liable, b : not liable
- $0.5<p<1$,
$>$ Suppose
- given the ground truth (a or b), each voter's preference is generated i.i.d., such that
- w/p p, the same as the ground truth
- w/p 1-p, different from the ground truth
$>$ Then, as $n \rightarrow \infty$, the probability for the majority of agents' preferences is the ground truth goes to 1
$>$ "lays, among other things, the foundations of the ideology of the democratic regime" (Paroush 1998)

Condorcet's model [Condorcet 1785]

- Given a "ground truth" ranking W and $p>1 / 2$, generate each pairwise comparison in R independently as follows (suppose $c>d$ in W)

$$
\left.\operatorname{Pr}(b>c>a \mid a>b>c)=Q_{0}(p)+p\right)^{2}
$$

- Its MLE is Kemeny's rule [Young JEP-95]

Truth revealing

Extended Condorcet Jury theorem

> Given

- A ground truth ranking W
- $0.5<p<1$,
$>$ Suppose
- each agent's preferences are generated i.i.d. according to Condorcet's model
$>$ Then, as $n \rightarrow \infty$, with probability that $\rightarrow 1$
- the randomly generated profile has a Condorcet winner
- The Condorcet winner is ranked at the top of W
$>$ If r satisfies Condorcet criterion, then as $n \rightarrow \infty, r$ will reveal the "correct" winner with probability that $\rightarrow 1$.

Other axioms

$>$ Pareto optimality: For any profile D, there is no alternative c such that every voter prefers c to $r(D)$
$>$ Consistency: For any profiles D_{1} and D_{2}, if $r\left(D_{1}\right)=r\left(D_{2}\right)$, then $r\left(D_{1} \cup D_{2}\right)=r\left(D_{1}\right)$
$>$ Monotonicity: For any profile D_{1},

- if we obtain D_{2} by only raising the position of $r\left(D_{1}\right)$ in one vote,
- then $r\left(D_{1}\right)=r\left(D_{2}\right)$
- In other words, raising the position of the winner won't hurt it

Which axiom is more important?

Clurality	Condorcet criterion	Consistency	Anonymity/neutrality, non-dictatorship, monotonicity
STV (alternative vote)	N	Y	Y

- Some axioms are not compatible with others -Which rule do you prefer?

An easy fact

- Theorem. For voting rules that selects a single winner, anonymity is not compatible with neutrality
- proof:

W.O.L.G.

\neq
Anonymity

Neutrality

Another easy fact [Fishburn APSR-74]

>Theorem. No positional scoring rule satisfies Condorcet criterion:

- suppose $s_{1}>s_{2}>s_{3}$

3 Voters

2 Voters

1 Voter

1 Voter

Arrow's impossibility theorem

> Recall: a social welfare function outputs a ranking over alternatives
>Arrow's impossibility theorem. No social welfare function satisfies the following four axioms

- Non-dictatorship
- Universal domain: agents can report any ranking
- Unanimity: if $a>\mathrm{b}$ in all votes in D, then $a>\mathrm{b}$ in $r(D)$
- Independence of irrelevant alternatives (IIA): for two profiles $D_{1}=$ $\left(R_{1}, \ldots, R_{n}\right)$ and $D_{2}=\left(R_{1}{ }^{\prime}, \ldots, R_{n}{ }^{\prime}\right)$ and any pair of alternatives a and b
- if for all voter j, the pairwise comparison between a and b in R_{j} is the same as that in $R_{j}{ }^{\prime}$
- then the pairwise comparison between a and b are the same in $r\left(D_{1}\right)$ as in $r\left(D_{2}\right)$

Other Not-So-Easy facts

- Gibbard-Satterthwaite theorem
- Later in the "hard to manipulate" class
- Axiomatic characterization
- Template: A voting rule satisfies axioms A1, A2, A2 \Leftrightarrow if it is rule X
- If you believe in A1 A2 A3 are the most desirable properties then X is optimal
- (unrestricted domain+unanimity+IIA) \Leftrightarrow dictatorships [Arrow]
- (anonymity+neutrality+consistency+continuity) \Leftrightarrow positional scoring rules [Young SIAMAM-75]
- (neutrality+consistency+Condorcet consistency) \Leftrightarrow Kemeny [Young\&Levenglick SIAMAM-78]

Remembered all of these?

>Impressive! Now try a slightly larger tip of the iceberg at wiki

Change the world: 2011 UK Referendum

> The second nationwide referendum in UK history

- The first was in 1975
> Member of Parliament election:
Plurality rule \rightarrow Alternative vote rule
$>68 \%$ No vs. 32% Yes
> Why people want to change?
$>$ Why it was not successful?
- Which voting rule is the best?

Wrap up

> Voting rules

- positional scoring rules
- multi-round elimination rules
- WMG-based rules
- A Ground-truth revealing rule (Kemeny's rule)
$>$ Criteria (axioms) for "good" rules
- Fairness axioms
- A ground-truth-revealing axiom (Condorcet consistency)
- Other axioms
> Evaluation
- impossibility theorems
- Axiomatic characterization

