Computational social choice The easy-to-compute axiom

Lirong Xia

Fall, 2016

Last class: linear programming and computation

- Linear programming
 - variables are positive real numbers
 - all constraints are linear, the objective is linear
 - in P
- ➤ (Mixed) Integer programming
 - (Some) All variables are integer
 - NP-hard
- Basic computation
 - Big O
 - Polynomial-time reduction

Today's schedule

Computational social choice: the easy-tocompute axiom

- voting rules that can be computed in P
 - satisfies the axiom
- Kemeny: a full proof of NP-hardness
- IP formulation of Kemeny

How a reduction works?

- Polynomial-time reduction: convert an instance of A to an instance of another decision problem B in polynomial-time
 - so that answer to A is "yes" if and only if the answer to B is "yes"

If you can do this for all instances of A, then it proves that B is HARDER than A w.r.t. polynomial-time reduction

NP-hard and NP-complete problems

> NP-hard problems

- the decision problems "harder" than any problem in NP
- for any problem A in NP there exits a P-time reduction from A
- NP-complete problems
 - · the decision problems in NP that are NP-hard
 - the "hardest" problems in NP

How to prove a problem is NP-hard

- How to put an elephant in a fridge
 - Step 1. open the door
 - Step 2. put the elephant in
 - Step 3. close the door

- ➤ To prove a decision problem B is NP-hard
 - Step 1. find a problem A to reduce from
 - Step 2. prove that A is NP-hard
 - Step 3. find a p-time reduction from A to B
- ➤ To prove B is NP-complete
 - prove B is NP-hard
 - prove B is in NP (find a p-time verification for any correct answer)

The first known NP-complete problem

≻3SAT

- Input: a logical formula F in conjunction normal form (CNF) where each clause has exactly 3 literals
 - $\mathsf{F} = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3 \lor x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4)$
- Answer: Is F satisfiable?
- >3SAT is NP-complete (Cook-Levin theorem)

Kemeny's rule

- Kendall tau distance
 - K(R,W)= # {different pairwise comparisons}

K(
$$b > c > a$$
, $a > b > c$) = 2

 \succ Kemeny(P)=argmin_WK(P,W)

 $= \operatorname{argmin}_{W} \Sigma_{V \in P} K(V, W)$

For single winner, choose the top-ranked alternative in Kemeny(P)

Profile P

a > b > c > d	b > a > c > d	d > a > b > c	c > d > b > a
1	1	2	2

WMG

K(*P*,*a* > *b* > *c* > *d*)=0+1+2*3+2*5=17

Computing the Kemeny winner

➢ For each linear order W (m! iter)

- for each vote *R* in *D* (*n* iter)
 - compute K(R, W)

➢ Find W[∗] with the smallest total distance

- $W^* = \operatorname{argmin}_W K(D, W) = \operatorname{argmin}_W \Sigma_{R \in D} K(R, W)$
- top-ranked alternative at *W** is the winner
- > Takes exponential O(m!n) time!

Kemeny

> Ranking $W \rightarrow$ direct acyclic complete graph G(W)

➢ Given the WMG G(P) of the input profile P
➢ K(P,W) = ∑_{a→b∈G(W)} #{V∈P: b > a in V} =∑_{a→b∈G(W)} (n+w(b→a))/2 = nm(m-1)/4 + ∑_{a→b∈G(W)} w(b→a)/2
➢ argmin_W K(P,W)=argmin_W ∑_{a→b∈G(W)} w(b→a) =argmin_W Total weight on inconsistent edges in WMG

Total weight on inconsistent edges between W and P is: 20

- Given a directed graph *G* and a number *k*
- does there exist a way to eliminate no more than k edges to obtain an acyclic graph?

J. Bartholdi III, C. Tovey, M. Trick, Voting schemes for which it can be difficult to tell who won the election, Social Choice Welfare 6 (1989)157–165.

13

Proof

The KendallDistance problem:

- Given a profile *P* and a number *k*,
- Does there exist a ranking *W* whose total Kendall distance is at most *k*?

Constructing the profile

 \blacktriangleright For any edge $a \rightarrow b \in G$, define $P_{a \rightarrow b} = \{a > b > \text{others, Reverse(others)} > a > b\}$ $a \xrightarrow{2} b$ WMG($P_{a \rightarrow b}$)= dС $P = \bigcup_{a \to b \in G} P_{a \to b}$

Vertex cover (VC)

Vertex cover (VC):

- Given a undirected graph and a natural number k.
- Does there exists a set S of no more than k vertices so that every edge has an endpoint in S
- > Example: Does there exists a vertex cover of 4?

VC is NP-complete

 $\blacktriangleright \text{Given F=} (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3 \lor x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4)$

➢ Does there exist a vertex cover of 4+2*3?

Notes

➢ More details:

http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2 001/CW/npproof.html

- ➤ A yes to B must correspond to a yes to A
 - if yes ↔ no then this proves coNP-hardness
- > The best source for NP-complete problems
 - Computers and Intractability: A Guide to the Theory of NP-Completeness
 - by M. R. Garey and D. S. Johnson
 - cited for >46k times [Google Scholar]
 - vs the "most cited book" The Structure of Scientific Revolutions 59K

The easy-to-compute axiom

A voting rule satisfies the easy-tocompute axiom if computing the winner can be done in polynomial time

- P: easy to compute
- NP-hard: hard to compute
- assuming P≠NP

The winner determination problem

 \succ Given: a voting rule *r*

Input: a preference profile P and an alternative c

• input size: *nm*log *m*

> Output: is c the winner of r under P?

Computing positional scoring rules

- If following the description of r the winner can be computed in p-time, then r satisfies the easy-to-compute axiom
- Positional scoring rule
 - For each alternative (*m* iter)
 - for each vote in *D* (*n* iter)
 - find the position of m, find the score of this position
 - Find the alternative with the largest score (*m* iter)
 - Total time O(mn+m)=O(mn)

Computing the weighted majority graph

> For each pair of alternatives c, d (m(m-1) iter)

- let *k* = 0
- for each vote $V \in P$
 - if c > d add 1 to the counter k
 - if d > c subtract 1 from k
- the weight on the edge $c \rightarrow d$ is k

Satisfiability of easy-to-compute

Rule	Complexity	
Positional scoring		
Plurality w/ runoff	P 🙂	
STV		
Copeland		
Maximin		
Ranked pairs		
Kemeny	NP-hard 🙁	
Slater		
Dodgson		

Solving Kemeny in practice

- For each pair of alternatives a, b there is a binary variable x_{ab}
 - $> x_{ab} = 1$ if a > b in W
 - $> x_{ab} = 0$ if b > a in W
- $\succ \max \Sigma_{a,b} w(a \rightarrow b) x_{ab}$
 - s.t. for all $a, b, x_{ab}+x_{ba}=1$ No edges in both directions for all $a, b, c, x_{ab}+x_{bc}+x_{ca}\leq 2$ No cycle of 3 vertices
- Do we need to worry about cycles of >3 vertices? Next homework

Advanced computational techniques

- > Approximation
- Randomization
- Fixed-parameter analysis