Computational social choice The easy-to-compute axiom

Lirong Xia

(8) Rensselaer

Fall, 2016

Last class: linear programming and computation

$>$ Linear programming

- variables are positive real numbers
- all constraints are linear, the objective is linear
- in P
$>$ (Mixed) Integer programming
- (Some) All variables are integer
- NP-hard
> Basic computation
- Big O
- Polynomial-time reduction

Today's schedule

>Computational social choice: the easy-tocompute axiom

- voting rules that can be computed in P
- satisfies the axiom
- Kemeny: a full proof of NP-hardness
- IP formulation of Kemeny

How a reduction works?

> Polynomial-time reduction: convert an instance of A to an instance of another decision problem B in polynomial-time

- so that answer to A is "yes" if and only if the answer to B is "yes"

$>$ If you can do this for all instances of A, then it proves that B is HARDER than A w.r.t. polynomial-time reduction

NP-hard and NP-complete problems

$>$ NP-hard problems

- the decision problems "harder" than any problem in NP
- for any problem A in NP there exits a P-time reduction from A
> NP-complete problems
- the decision problems in NP that are NP-hard
- the "hardest" problems in NP

How to prove a problem is NP-hard

$>$ How to put an elephant in a fridge

- Step 1. open the door
- Step 2. put the elephant in
- Step 3. close the door
$>$ To prove a decision problem B is NP-hard
- Step 1. find a problem A to reduce from
- Step 2. prove that A is NP-hard
- Step 3. find a p-time reduction from A to B
$>$ To prove B is NP-complete
- prove B is NP-hard
- prove B is in NP (find a p-time verification for any correct answer)

The first known NP-complete problem

>3SAT

- Input: a logical formula F in conjunction normal form (CNF) where each clause has exactly 3 literals
- $\mathrm{F}=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee \neg x_{4}\right)$
- Answer: Is F satisfiable?
$>$ 3SAT is NP-complete (Cook-Levin theorem)

Kemeny's rule

$>$ Kendall tau distance

- $\mathrm{K}(R, W)=$ \# \{different pairwise comparisons\}

$$
\mathrm{K}(b>c>a, a>b>c)=2
$$

$>\operatorname{Kemeny}(P)=\operatorname{argmin}_{W} \mathrm{~K}(P, W)$

$$
=\operatorname{argmin}_{W} \Sigma_{V \in P} \mathrm{~K}(V, W)
$$

$>$ For single winner, choose the top-ranked alternative in Kemeny (P)

Example

Profile P

$$
\begin{array}{c|c|c|c|}
\hline a>b>c>d & b>a>c>d & d>a>b>c & c>d>b>a \\
\hline 1 & 1 & 2 & 2 \\
\hline
\end{array}
$$

WIG

$\mathrm{K}(P, a>b>c>d)=0+1+2 * 3+2 * 5=17$

Computing the Kemeny winner

$>$ For each linear order W (m ! iter)

- for each vote R in D (n iter)
- compute $\mathrm{K}(R, W)$
$>$ Find W^{*} with the smallest total distance
- $W^{*}=\operatorname{argmin}_{W} \mathrm{~K}(D, W)=\operatorname{argmin}_{W} \Sigma_{R \in{ }_{D}} \mathrm{~K}(R, W)$
- top-ranked alternative at W^{*} is the winner
$>$ Takes exponential $O(m!n)$ time!

Kemeny

$>$ Ranking $W \rightarrow$ direct acyclic complete graph $G(W)$

$>$ Given the WMG $G(P)$ of the input profile P
$>\mathrm{K}(P, W)=\Sigma_{a \rightarrow b \in G(W)} \#\{V \in P: b>a$ in $V\}$

$$
\begin{aligned}
& =\Sigma_{a \rightarrow b \in G(W)}(n+w(b \rightarrow a)) / 2 \\
& \quad=n m(m-1) / 4+\Sigma_{a \rightarrow b \in G(W)} w(b \rightarrow a) / 2
\end{aligned}
$$

$>\operatorname{argmin}_{W} \mathrm{~K}(P, W)=\operatorname{argmin}_{W} \Sigma_{a \rightarrow b \in G(W)} w(b \rightarrow a)$
$=\operatorname{argmin}_{W}$ Total weight on inconsistent edges in WMG

Example

$$
W=a>b>c>d
$$

Profile P :

$>$ Total weight on inconsistent edges between W and P is: 20

Kemeny is NP-hard to compute >Reduction from feedback arc set (FAC)

- Given a directed graph G and a number k
- does there exist a way to eliminate no more than k edges to obtain an acyclic graph?

J. Bartholdi III, C. Tovey, M. Trick, Voting schemes for which it can be difficult to tell who won the election, Social Choice Welfare 6 (1989) 157-165.

Proof

> The KendallDistance problem:

- Given a profile P and a number k,
- Does there exist a ranking W whose total Kendall distance is at most k ?

Constructing the profile

$>$ For any edge $a \rightarrow b \in G$, define
$>P_{a \rightarrow b}=\{a>b>$ others, Reverse(others) $>a>b\}$

$$
a \xrightarrow{2} b
$$

$\operatorname{WMG}\left(P_{a \rightarrow b}\right)=$ d c
$>P=\cup_{a \rightarrow b \in G} P_{a \rightarrow b}$

Vertex cover (VC)

$>$ Vertex cover (VC):

- Given a undirected graph and a natural number k.
- Does there exists a set S of no more than k vertices so that every edge has an endpoint in S
$>$ Example: Does there exists a vertex cover of 4 ?

VC is NP-complete

\Rightarrow Given $\mathrm{F}=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee \neg x_{4}\right)$
$>$ Does there exist a vertex cover of $4+2^{*} 3$?

Notes

$>$ More details:
http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2 001/CW/npproof.html
$>$ A yes to B must correspond to a yes to A

- if yes \leftrightarrow no then this proves coNP-hardness
$>$ The best source for NP-complete problems
- Computers and Intractability: A Guide to the Theory of NP-Completeness
- by M. R. Garey and D. S. Johnson
- cited for $>46 \mathrm{k}$ times [Google Scholar]
- vs the "most cited book" The Structure of Scientific Revolutions 59K

The easy-to-compute axiom

$>$ A voting rule satisfies the easy-tocompute axiom if computing the winner can be done in polynomial time

- P: easy to compute
- NP-hard: hard to compute
- assuming $\mathrm{P} \neq \mathrm{NP}$

The winner determination problem

-Given: a voting rule r
$>$ Input: a preference profile P and an
alternative c

- input size: $n m \log m$
$>$ Output: is c the winner of r under P ?

Computing positional scoring rules

$>$ If following the description of r the winner can be computed in p-time, then r satisfies the easy-to-compute axiom
>Positional scoring rule

- For each alternative (m iter)
- for each vote in D (n iter)
- find the position of m, find the score of this position
- Find the alternative with the largest score (m iter)
- Total time $O(m n+m)=O(m n)$

Computing the weighted majority graph

$>$ For each pair of alternatives $c, d(m(m-1)$ iter $)$

- let $k=0$
- for each vote $V \in P$
- if $c>d$ add 1 to the counter k
- if $d>c$ subtract 1 from k
- the weight on the edge $c \rightarrow d$ is k

Satisfiability of easy-to-compute

Rule	Complexity
Positional scoring	P ${ }^{\circ}$
Plurality w/ runoff	
STV	
Copeland	
Maximin	
Ranked pairs	
Kemeny	NP-hard $\quad \square$
Slater	
Dodgson	

Solving Kemeny in practice

$>$ For each pair of alternatives a, b there is a binary variable $x_{a b}$
$>x_{a b}=1$ if $a>b$ in W
$>x_{a b}=0$ if $b>a$ in W
$>\max \quad \sum_{a, b} w(a \rightarrow b) x_{a b}$
s.t. for all $a, b, x_{a b}+x_{b a}=1$

No edges in both directions for all $a, b, c, x_{a b}+x_{b c}+x_{c a} \leq 2 \quad$ No cycle of 3 vertices
$>$ Do we need to worry about cycles of >3 vertices? Next homework

Advanced computational techniques

>Approximation
>Randomization
>Fixed-parameter analysis

