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Computational social choice
The easy-to-compute axiom



Ø Linear programming
• variables are positive real numbers
• all constraints are linear, the objective is linear
• in P

Ø (Mixed) Integer programming
• (Some) All variables are integer
• NP-hard

Ø Basic computation
• Big O
• Polynomial-time reduction
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Last class: linear programming 
and computation



ØComputational social choice: the easy-to-
compute axiom
• voting rules that can be computed in P

• satisfies the axiom

• Kemeny: a full proof of NP-hardness
• IP formulation of Kemeny
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Today’s schedule



Ø Polynomial-time reduction: convert an instance of A to an 
instance of another decision problem B in polynomial-time
• so that answer to A is “yes” if and only if the answer to B is “yes”

Ø If you can do this for all instances of A, then it proves that B 
is HARDER than A w.r.t. polynomial-time reduction
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How a reduction works?

Instance of A Instance of B

Yes

No

Yes

No

P-time



Ø NP-hard problems
• the decision problems “harder” than any problem in NP
• for any problem A in NP there exits a P-time reduction from A

Ø NP-complete problems
• the decision problems in NP that are NP-hard
• the “hardest” problems in NP
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NP-hard and NP-complete problems

P NP-hard
NP

NP-C



Ø How to put an elephant in a fridge
• Step 1. open the door
• Step 2. put the elephant in
• Step 3. close the door

Ø To prove a decision problem B is NP-hard
• Step 1. find a problem A to reduce from
• Step 2. prove that A is NP-hard
• Step 3. find a p-time reduction from A to B

Ø To prove B is NP-complete
• prove B is NP-hard
• prove B is in NP (find a p-time verification for any correct 

answer)
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How to prove a problem is NP-hard



Ø3SAT
• Input: a logical formula F in conjunction 

normal form (CNF) where each clause has 
exactly 3 literals

• F = (x1∨x2∨x3)∧(¬x1∨¬x3∨x4)∧(¬x2∨x3∨¬x4)

• Answer: Is F satisfiable?

Ø3SAT is NP-complete (Cook-Levin 
theorem)
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The first known NP-complete problem



ØKendall tau distance 
• K(R,W)= # {different pairwise comparisons}

ØKemeny(P)=argminW K(P,W)

=argminW ΣV∈P K(V,W)

ØFor single winner, choose the top-ranked 
alternative in Kemeny(P)
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Kemeny’s rule

K(  b ≻ c ≻ a , a ≻ b ≻ c ) = 2



Profile P

WMG

K(P,a ≻ b ≻ c ≻ d)=0+1+2*3+2*5=17
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Example

cd

a b

2

2

2 2

2

a ≻ b ≻ c ≻ d b ≻ a ≻ c ≻ d d  ≻ a ≻ b ≻ c c ≻ d ≻ b ≻ a
1 1 2 2



ØFor each linear order W (m! iter)
• for each vote R in D (n iter)

• compute K(R,W)

ØFind W* with the smallest total distance 
• W*= argminW K(D,W)=argminWΣR∈DK(R,W)

• top-ranked alternative at W* is the winner

ØTakes exponential O(m!n) time!
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Computing the Kemeny winner



Ø Ranking W → direct acyclic complete graph G(W)

Ø Given the WMG G(P) of the input profile P
Ø K(P,W) = Σa→b∈G(W) #{ V∈P: b ≻ a in V}

=Σa→b∈G(W) (n+w(b→a))/2 
= nm(m-1)/4 + Σa→b∈G(W) w(b→a)/2

Ø argminW K(P,W)=argminW Σa→b∈G(W) w(b→a)
=argminW Total weight on inconsistent edges in WMG
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Kemeny

a ≻ b ≻ c ≻ d
ba

c d



ØTotal weight on inconsistent edges 
between W and P is: 20

12

Example
W= a ≻ b ≻ c ≻ d

ba

c d

Profile P:

a b

c d

20

16
14

12

8

6



ØReduction from feedback arc set (FAC)
• Given a directed graph G and a number k

• does there exist a way to eliminate no more 
than k edges to obtain an acyclic graph?
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Kemeny is NP-hard to compute

d

a b

c

J. Bartholdi III, C. Tovey, M. Trick, Voting schemes for which it can be difficult to tell who 
won the election, Social Choice Welfare 6 (1989) 157–165.



ØThe KendallDistance problem: 
• Given a profile P and a number k, 
• Does there exist a ranking W whose total Kendall 

distance is at most k?
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Proof

Instance of FAC Instance of KendallDistance

Yes

No

Yes

No

P-time

d

a b

c

k k’=2k+nm(m-1)/4-5
cd

a b

2

2

2 2

2WMG(P):G



ØFor any edge a→b∈G, define
ØPa→b= {a ≻ b ≻ others, Reverse(others) ≻ a ≻ b}

ØP = ∪ a→b∈G Pa→b
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Constructing the profile

d

a b

c

WMG(Pa→b)=

2



ØVertex cover (VC): 
• Given a undirected graph and a natural number k. 
• Does there exists a set S of no more than k vertices so 

that every edge has an endpoint in S

ØExample: Does there exists a vertex cover of 4? 
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Vertex cover (VC)



ØGiven F= (x1∨x2∨x3)∧(¬x1∨¬x3∨x4)∧(¬x2∨x3∨¬x4)

ØDoes there exist a vertex cover of 4+2*3?
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VC is NP-complete

x3 x2

x1

¬x1x1 ¬x2x2 ¬x3x3

¬x3 x4

¬x1

x3 ¬x4

¬x2

¬x4x4



ØMore details: 
http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2
001/CW/npproof.html

ØA yes to B must correspond to a yes to A
• if yes↔no then this proves coNP-hardness

ØThe best source for NP-complete problems
• Computers and Intractability: A Guide to the Theory of 

NP-Completeness
• by M. R. Garey and D. S. Johnson
• cited for >46k times [Google Scholar]

• vs the “most cited book” The Structure of Scientific 
Revolutions 59K 18

Notes



ØA voting rule satisfies the easy-to-
compute axiom if computing the winner 
can be done in polynomial time
• P: easy to compute

• NP-hard: hard to compute

• assuming P≠NP

19

The easy-to-compute axiom



ØGiven: a voting rule r
ØInput: a preference profile P and an 

alternative c
• input size: nmlog m

ØOutput: is c the winner of r under P?
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The winner determination problem



ØIf following the description of r the winner can 
be computed in p-time, then r satisfies the 
easy-to-compute axiom

ØPositional scoring rule
• For each alternative (m iter)

• for each vote in D (n iter)
– find the position of m, find the score of this position

• Find the alternative with the largest score (m iter)
• Total time O(mn+m)=O(mn)
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Computing positional scoring rules



ØFor each pair of alternatives c,d (m(m-1) iter)
• let k = 0

• for each vote V∈P
• if c>d add 1 to the counter k

• if d>c subtract 1 from k

• the weight on the edge c→d is k
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Computing the weighted 
majority graph
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Satisfiability of easy-to-compute

Rule Complexity
Positional scoring

P

Plurality w/ runoff
STV

Copeland
Maximin

Ranked pairs
Kemeny

NP-hardSlater
Dodgson



ØFor each pair of alternatives a, b there is a 
binary variable xab

Øxab = 1 if a>b in W
Øxab = 0 if b>a in W

Ømax Σa,bw(a→b)xab

s.t. for all a, b, xab+xba=1
for all a, b, c, xab+xbc+xca≤2

ØDo we need to worry about cycles of >3 
vertices? Next homework

24

Solving Kemeny in practice

No edges in both directions 

No cycle of 3 vertices



ØApproximation
ØRandomization

ØFixed-parameter analysis
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Advanced computational 
techniques


