Manipulation

Lirong Xia

(\$) Rensselaer

Fall, 2016

Manipulation under plurality rule (lexicographic tie-breaking)

Strategic behavior (of the
agents)

- Manipulation: an agent (manipulator) casts a vote that does not represent her true preferences, to make herself better off
- A voting rule is strategy-proof if there is never a (beneficial) manipulation under this rule

Using Borda?

- Inverse the tie-breaking order?

Using STV?

- $\mathrm{N}>\mathrm{M}>\mathrm{O} \rightarrow \mathrm{O}>\mathrm{M}>\mathrm{N}$

Any strategy-proof voting rule?

-. No reasonable voting rule is strategyproof

- Gibbard-Satterthwaite Theorem [Gibbard Econometrica-73, Satterthwaite JET-75]: When there are at least three alternatives, no voting rules except dictatorships satisfy
- non-imposition: every alternative wins for some profile
- unrestricted domain: voters can use any linear order as their votes
- strategy-proofness
- Axiomatic characterization for dictatorships!
- Randomized version [Gibbard Econometrica-77]

A few ways out

- Relax non-dictatorship: use a dictatorship
- Restrict the number of alternatives to 2
- Relax unrestricted domain: mainly pursued by economists
- Single-peaked preferences:
- Range voting: A voter submit any natural number between 0 and 10 for each alternative
- Approval voting: A voter submit 0 or 1 for each alternative

Single-peaked preferences

- There exists a social axis S
- linear order over the alternatives
- Each voter's preferences V are compatible with the social axis S
- there exists a "peak" a such that
- [$b<c<a$ in S] implies [$c>b$ in V]
- [a>c>b in S] implies [c>b in V]
- alternatives closer to the peak are more preferred
- different voters may have different peaks

Examples

rank
Single-peaked preferences

Strategy-proof rules for single-peaked preferences

- The median rule
- given a profile of "peaks"
- choose the median in the social axis
- Theorem. The Median rule is strategy-proof.
- The median rule with phantom voters
- parameterized by a fixed set of "peaks" of phantom voters
- chooses the median of the peaks of the regular voters and the phantom voters
- Theorem. Any strategy-proof rule for single-peaked preferences are median rules with phantom voters
- Talk announcement: Dominik Peters 9/21 3-4pm Sage 3713

Computational thinking

- Use a voting rule that is too complicated so that nobody can easily predict the winner
- Dodgson
- Kemeny
- The randomized voting rule used in Venice Republic for more than 500 years [Walsh\&Xia AAMAS-12]
- We want a voting rule where
- Winner determination is easy
- Manipulation is hard
- The hard-to-manipulate axiom: manipulation under the given voting rule is NP-hard

Example 3: Venetian election

 (1268-1797)

- Round 2:

- Round 3 :

> Approval like

Manipulation: A computational complexity perspective
 - ${ }_{\text {er }}$ - If it is computationally too hard for a

 manipulator to compute a manipulation, she is best off voting truthfully- Similar as in cryptography
(? For which common voting rules manipulation is computationally hard?

Unweighted coalitional manipulation (UCM) problem

- Given
- The voting rule r
- The non-manipulators' profile $P^{N M}$
- The number of manipulators n,
- The alternative c preferred by the manipulators
- We are asked whether or not there exists a profile P^{M} (of the manipulators) such that c is the winner of $P^{N M} \cup P^{M}$ under r

The stunningly big table for UCM

\#manipulators	One manipulator	At least two
Copeland	P [BTT SCW-89b]	NPC [FHS AAMAS-08,10]
STV	NPC [BO SCW-91]	NPC [BO SCW-91]
Veto	P [ZPR AIJ-09]	P [ZPR AIJ-09]
Plurality with runoff	P [ZPR AIJ-09]	P [ZPR AIJ-09]
Cup	P [CSL JACM-07]	P [CSL JACM-07]
Borda	P [BTT SCW-89b]	NPC [DKN+ AAAI-11] [BNW IJCAI-11]
Maximin	P [BTT SCW-89b]	NPC [XZP+ IJCAI-09]
Ranked pairs	NPC [XZP+ IJCAI-09]	NPC [XZP+ IJCAI-09]
Bucklin	P [XZP+ IJCAI-09]	P [XZP+ IJCAI-09]
Nanson's rule	NPC [NWX AAA-11]	NPC [NWX AAA-11]
Baldwin's rule	NPC [NWX AAA-11]	NPC [NWX AAA-11]

What can we conclude?

- For some common voting rules, computational complexity provides some protection against manipulation
- Is computational complexity a strong barrier?
- NP-hardness is a worst-case concept

