Manipulation

Lirong Xia

Fall, 2016

Strategic behavior (of the agents)

- Manipulation: an agent (manipulator) casts a vote that does not represent her true preferences, to make herself better off
- A voting rule is strategy-proof if there is never a (beneficial) manipulation under this rule

Using Borda?

• Inverse the tie-breaking order?

• N>M>O \rightarrow O>M>N

Any strategy-proof voting rule?

No reasonable voting rule is strategyproof

- Gibbard-Satterthwaite Theorem [Gibbard Econometrica-73, Satterthwaite JET-75]: When there are at least three alternatives, no voting rules except dictatorships satisfy
 - non-imposition: every alternative wins for some profile
 - unrestricted domain: voters can use any linear order as their votes
 - strategy-proofness
- Axiomatic characterization for dictatorships!
- Randomized version [Gibbard Econometrica-77]

A few ways out

- Relax non-dictatorship: use a dictatorship
- Restrict the number of alternatives to 2
- Relax unrestricted domain: mainly pursued by economists
 - Single-peaked preferences:
 - Range voting: A voter submit any natural number between 0 and 10 for each alternative
 - Approval voting: A voter submit 0 or 1 for each alternative 7

Single-peaked preferences

There exists a social axis S

- linear order over the alternatives

- Each voter's preferences V are compatible with the social axis S
 - there exists a "peak" a such that
 - [b<c<a in S] implies [c>b in V]
 - [a>c>b in S] implies [c>b in V]
 - alternatives closer to the peak are more preferred

- different voters may have different peaks

Strategy-proof rules for single-peaked preferences

- The median rule
 - given a profile of "peaks"
 - choose the median in the social axis
- Theorem. The Median rule is strategy-proof.
- The median rule with phantom voters
 - parameterized by a fixed set of "peaks" of phantom voters
 - chooses the median of the peaks of the regular voters and the phantom voters
- Theorem. Any strategy-proof rule for single-peaked preferences are median rules with phantom voters
- Talk announcement: Dominik Peters 9/21 3-4pm Sage 3713

Computational thinking

- Use a voting rule that is too complicated so that nobody can easily predict the winner
 - Dodgson
 - Kemeny
 - The randomized voting rule used in Venice Republic for more than 500 years [Walsh&Xia AAMAS-12]
- We want a voting rule where
 - Winner determination is easy
 - Manipulation is hard
- The hard-to-manipulate axiom: manipulation under the given voting rule is NP-hard

Manipulation: A computational complexity perspective

- Y If it is computationally too hard for a manipulator to compute a manipulation, she is best off voting truthfully
 - Similar as in cryptography

For which common voting rules manipulation is computationally hard?

Unweighted coalitional manipulation (UCM) problem

- Given
 - The voting rule *r*
 - The non-manipulators' profile PNM
 - The number of manipulators n'
 - The alternative c preferred by the manipulators
- We are asked whether or not there exists a profile *P^M* (of the manipulators) such that *c* is the winner of *P^{NM}* ∪ *P^M* under *r*

The stunningly big table for UCM

#manipulators	One manipulator		At least two		
Copeland	P	[BTT SCW-89b]	NPC	[FHS AAMAS-08,10]	
STV	NPC	[BO SCW-91]	NPC	[BO SCW-91]	
Veto	P	[ZPR AIJ-09]	P	[ZPR AIJ-09]	
Plurality with runoff	P	[ZPR AIJ-09]	P	[ZPR AIJ-09]	
Сир	Р	[CSL JACM-07]	P	[CSL JACM-07]	
Borda	Р	[BTT SCW-89b]	NPC	[DKN+ AAAI-11] [BNW IJCAI-11]	¥ ¥
Maximin	Р	[BTT SCW-89b]	NPC	[XZP+ IJCAI-09]	
Ranked pairs	NPC	[XZP+ IJCAI-09]	NPC	[XZP+ IJCAI-09]	
Bucklin	Р	[XZP+ IJCAI-09]	P	[XZP+ IJCAI-09]	
Nanson's rule	NPC	[NWX AAA-11]	NPC	[NWX AAA-11]	
Baldwin's rule	NPC	[NWX AAA-11]	NPC	[NWX AAA-11]	

What can we conclude?

- For some common voting rules, computational complexity provides some protection against manipulation
- Is computational complexity a strong barrier?
 - NP-hardness is a worst-case concept