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The Condorcet Jury theorem. 
• Given

– two alternatives {O,M}. 
– 0.5<p<1, 

• Suppose
– each agent’s preferences is generated i.i.d., such that
– w/p p, the same as the ground truth
– w/p 1-p, different from the ground truth

• Then, as n→∞, the majority of agents’ preferences 
converges in probability to the ground truth
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The Condorcet Jury theorem 
[Condorcet 1785]

Pr(     |     )

= Pr(     |     )

= p>0.5



• Parametric ranking models
– Distance-based models

• Mallows
• Condorcet

– Random utility models
• Plackett-Luce

• Decision making
– MLE
– Bayesian
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Today’s schedule



• A statistical model has three parts
– A parameter space: Θ

– A sample space: S = Rankings(A)n

• A = the set of alternatives, n=#voters

• assuming votes are i.i.d.

– A set of probability distributions over S: 

{Prθ (s) for each s∈Rankings(A) and θ∈Θ}
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Parametric ranking models



• Condorcet’s model for two alternatives
• Parameter space Θ={     ,     }

• Sample space S = {     ,     }n

• Probability distributions, i.i.d.

6

Example

Pr(     |     )

= Pr(     |     )

= p>0.5



• Fixed dispersion 𝜑	<1 
• Parameter space

– all full rankings over candidates

• Sample space
– i.i.d. generated full rankings

• Probabilities:

PrW(V)∝ 𝜑 Kendall(V,W)
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Mallows’ model [Mallows-1957]



• Probabilities: 𝑍 = 1 + 2𝜑 + 2𝜑( +𝜑)
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Example: Mallows for
Kyle StanEric
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• Fixed dispersion 𝜑	<1 
• Parameter space

– all binary relations over candidates

• Sample space
– i.i.d. generated binary relations

• Probabilities:

PrW(V)∝ 𝜑 Kendall(V,W)
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Condorcet’s model 
[Condorcet-1785, Young-1988, ES UAI-14, APX NIPS-14]



• Continuous parameters: Θ=(θ1,…, θm)
– m: number of alternatives
– Each alternative is modeled by a utility distribution μi

– θi: a vector that parameterizes μi

• An agent’s latent utility Ui for alternative ci is generated 
independently according to μi(Ui)

• Agents rank alternatives according to their perceived utilities

– Pr(c2≻c1≻c3|θ1, θ2, θ3) = PrUi ∼ μi (U2>U1>U3)
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Random utility model (RUM)
[Thurstone 27]

U1 U2U3

θ3 θ2 θ1



• Pr(Data |θ1, θ2, θ3) = ∏V∈DataPr(V |θ1, θ2, θ3)
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Generating a preference-profile

Parameters

P1= c2≻c1≻c3
Pn= c1≻c2≻c3…

Agent 1 Agent n

θ3 θ2 θ1



• μi’s are Gumbel distributions
– A.k.a. the Plackett-Luce (P-L) model [BM 60, Yellott 77]

• Alternative parameterization λ1,…,λm

• Pros: 
– Computationally tractable

• Analytical solution to the likelihood function
– The only RUM that was known to be tractable

• Widely applied in Economics [McFadden 74], learning to rank [Liu 11],
and analyzing elections [GM 06,07,08,09]

• Cons: may not be the best model

Pr(c1  c2  cm | λ1λm ) =
λ1

λ1 ++λm
×

λ2
λ2 ++λm

××
λm−1

λm−1 +λm
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Plackett-Luce model

c1 is the top choice in { c1,…,cm }c2 is the top choice in { c2,…,cm }cm-1 is preferred to cm
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Example
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• μi’s are normal distributions
– Thurstone’s Case V [Thurstone 27]

• Pros:
– Intuitive
– Flexible

• Cons: believed to be computationally intractable
– No analytical solution for the likelihood function Pr(P | 
Θ) is known
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RUM with normal 
distributions

Pr(c1  cm |Θ) =  µm (Um )µm−1(Um−1)µ1(U1)dU1U2

∞

∫ 
Um

∞

∫ dUm−1 dUm−∞

∞

∫

Um: from -∞ to ∞ Um-1: from Um to ∞ … U1: from U2 to ∞
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Model selection

Value(Normal)
- Value(PL)

LL Pred. LL AIC BIC
44.8(15.8) 87.4(30.5) -79.6(31.6) -50.5(31.6) 

• Compare RUMs with Normal distributions and PL for
– log-likelihood: log Pr(D|Θ)
– predictive log-likelihood: E log Pr(Dtest|Θ)
– Akaike information criterion (AIC): 2k-2log Pr(D|Θ)
– Bayesian information criterion (BIC): klog n-2log Pr(D|Θ)

• Tested on an election dataset
– 9 alternatives, randomly chosen 50 voters

Red: statistically significant with 95% confidence

Project: model fitness for election data
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Decision making



Maximum likelihood estimators (MLE)

• For any profile P=(V1,…,Vn),
– The likelihood of θ is L(θ,P)=Prθ(P)=∏V∈P Prθ (V)

– The MLE mechanism
MLE(P)=argmaxθL(θ,P)

– Decision space = Parameter space

“Ground truth” θ

V1 V2 Vn…
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Model: Mr



• Given a profile P=(V1,…,Vn), and a prior 
distribution 𝜋 over Θ

• Step 1: calculate the posterior probability over 
Θ using Bayes’ rule
– Pr(θ|P) ∝ 𝜋(θ) Prθ(P)

• Step 2: make a decision based on the 
posterior distribution
– Maximum a posteriori (MAP) estimation
– MAP(P)=argmaxθPr(θ|P)
– Technically equivalent to MLE when 𝜋 is uniform
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Bayesian approach
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Example• Θ={     ,     }
• S = {     ,     }n

• Probability distributions:
• Data P = {10@     + 8@      }
• MLE

– L(O)=PrO(O)6 PrO(M)4 = 0.610 0.48

– L(M)=PrM(O)6 PrM(M)4 = 0.410 0.68

– L(O)>L(M), O wins

• MAP: prior O:0.2, M:0.8
– Pr(O|P) ∝0.2 L(O) = 0.2 × 0.610 0.48

– Pr(M|P) ∝0.8 L(M) = 0.8 × 0.410 0.68

– Pr(M|P)> Pr(O|P), M wins

Pr(     |     )

= Pr(     |     )

= 0.6



• MLE-based approach
– there is an unknown 

but fixed ground truth

– p = 10/14=0.714

– Pr(2heads|p=0.714) 
=(0.714)2=0.51>0.5

– Yes!
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Decision making under uncertainty

• Bayesian
– the ground truth is 

captured by a belief 
distribution

– Compute Pr(p|Data) 
assuming uniform prior

– Compute 
Pr(2heads|Data)=0.485<0
.5

– No!

Credit: Panos Ipeirotis
& Roy Radner

• You have a biased coin: head w/p p
– You observe 10 heads, 4 tails

– Do you think the next two tosses will be two heads in a row?



• Given
– statistical model: Θ, S, Prθ (s)
– decision space: D
– loss function: L(θ, d)∈ℝ

• Make a good decision based on data
– decision function f : data⟶D
– Bayesian expected lost: 

• ELB(data, d) = Eθ|dataL(θ,d)

– Frequentist expected lost: 
• ELF(θ, f ) = Edata|θL(θ,f(data))

– Evaluated w.r.t. the objective ground truth 21

Statistical decision theory
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Top 250 movies
Ø“Complex voter weighting system”

• Claimed to be accurate
Øa “true Bayesian estimate”

• Claimed to be fair



• Q: “This is unfair ! ”
– “That film / show has received awards, great reviews, 

commendations and deserves a much higher vote!”

• IMDB: “…only votes cast by IMDb users are 
counted. We do not delete or alter individual 
votes”
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Different Voice

IMDb Votes/Ratings Top Frequently Asked Questions
http://www.imdb.com/help/show_leaf?votestopfaq



• Theorem: Strict Condorcet
No Bayesian estimator satisfies strict 

Condorcet criterion

• Theorem: Neutrality
Neutral Bayesian estimators 

= Bayesian estimators of “neutral” models
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Fairness of Bayesian estimators


