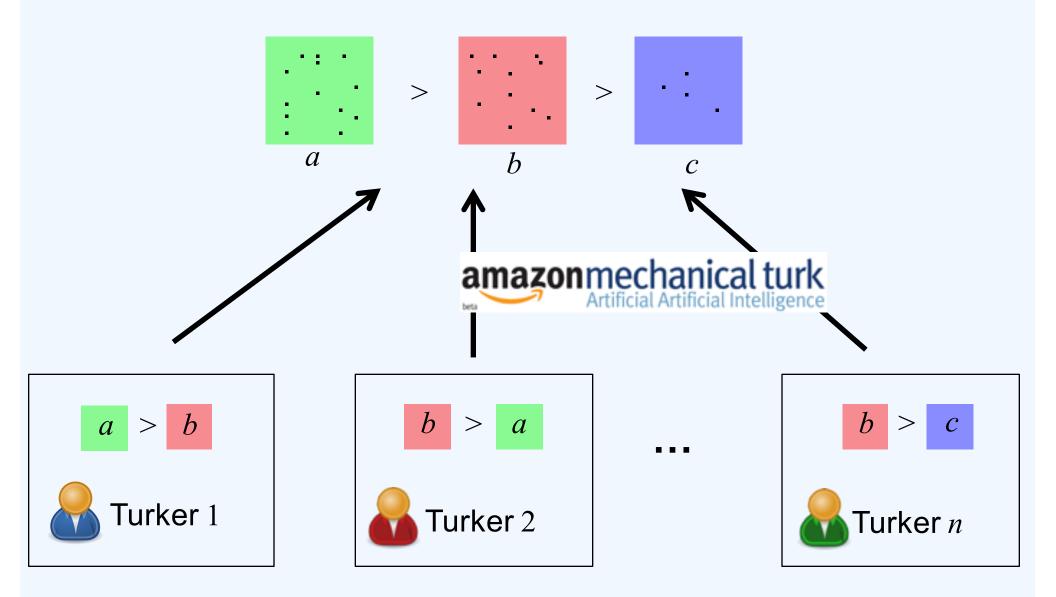
## Computational social processes

Lirong Xia



Fall, 2016

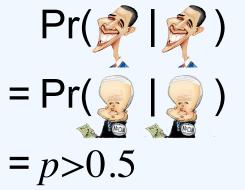
### Example: Crowdsourcing



### The Condorcet Jury theorem [Condorcet 1785]

The Condorcet Jury theorem.

- Given
  - two alternatives  $\{O, M\}$ .
  - 0.5<*p*<1,
- Suppose



- each agent's preferences is generated i.i.d., such that
- w/p p, the same as the ground truth
- w/p 1-p, different from the ground truth
- Then, as  $n \rightarrow \infty$ , the majority of agents' preferences converges in probability to the ground truth

## Today's schedule

- Parametric ranking models
  - Distance-based models
    - Mallows
    - Condorcet
  - Random utility models
    - Plackett-Luce
- Decision making
  - MLE
  - Bayesian

## Parametric ranking models

- A statistical model has three parts
  - A parameter space: Θ
  - -A sample space:  $S = Rankings(A)^n$ 
    - *A* = the set of alternatives, n=#voters
    - assuming votes are i.i.d.
  - A set of probability distributions over S: {Pr<sub> $\theta$ </sub> (*s*) for each *s*  $\in$  Rankings(*A*) and  $\theta \in \Theta$ }

## Example

- Condorcet's model for two alternatives
- Parameter space  $\Theta = \{ \mathfrak{P}, \mathfrak{P} \}$
- Sample space  $S = \{ \mathcal{P}, \mathcal{P} \}^n$
- Probability distributions, i.i.d.

$$Pr(p | p)$$
$$= Pr(p | p)$$
$$= p > 0.5$$

## Mallows' model [Mallows-1957]

- Fixed dispersion  $\varphi$  <1
- Parameter space

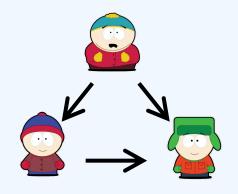
- all full rankings over candidates

Sample space

- i.i.d. generated full rankings

• Probabilities:

 $\Pr_W(V) \propto \varphi^{\operatorname{Kendall}(V,W)}$ 

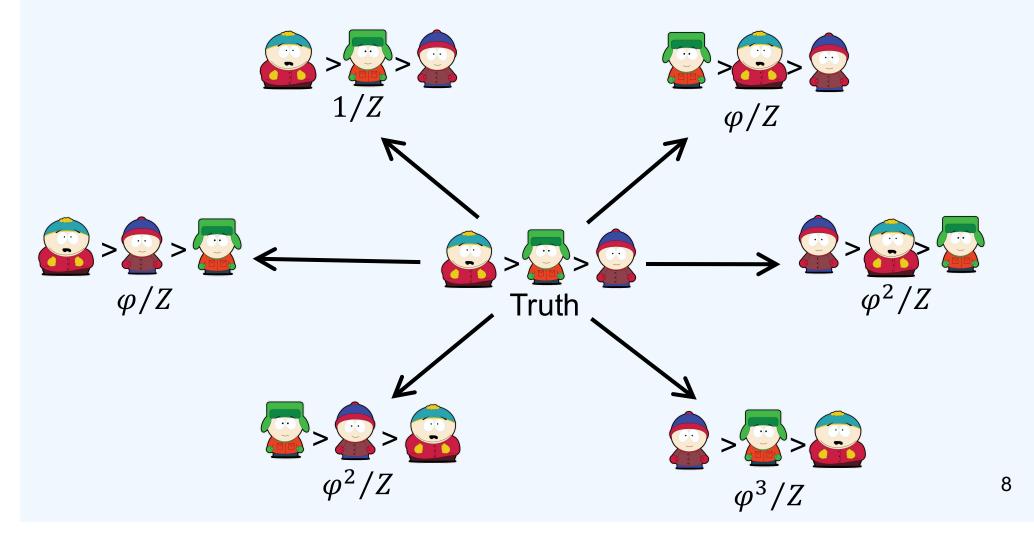






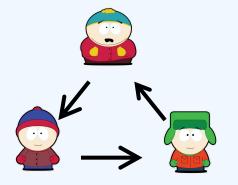


• Probabilities:  $Z = 1 + 2\varphi + 2\varphi^2 + \varphi^3$ 



### Condorcet's model [Condorcet-1785, Young-1988, ES UAI-14, APX NIPS-14]

- Fixed dispersion  $\varphi$  <1
- Parameter space



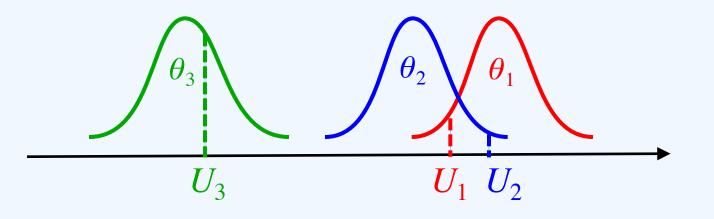
- all binary relations over candidates
- Sample space
  - i.i.d. generated binary relations
- Probabilities:

 $\Pr_W(V) \propto \varphi^{\operatorname{Kendall}(V,W)}$ 

### Random utility model (RUM) [Thurstone 27]

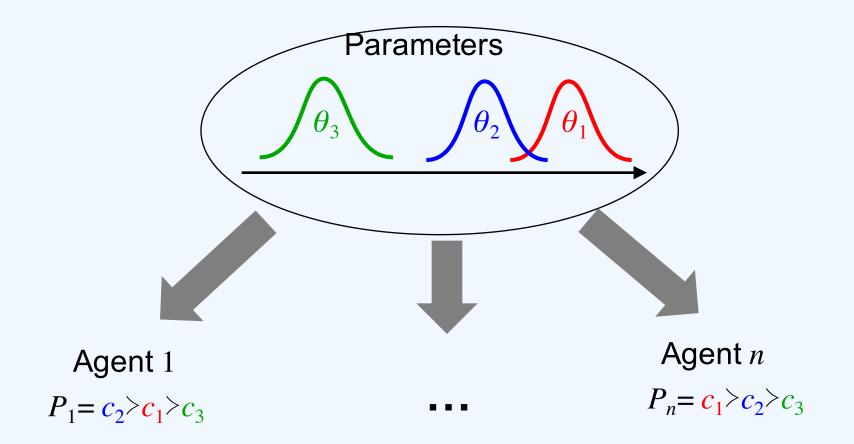
- Continuous parameters:  $\Theta = (\theta_1, \dots, \theta_m)$ 
  - *m*: number of alternatives
  - Each alternative is modeled by a utility distribution  $\mu_i$
  - $\theta_i$ : a vector that parameterizes  $\mu_i$
- An agent's latent utility  $U_i$  for alternative  $c_i$  is generated independently according to  $\mu_i(U_i)$
- Agents rank alternatives according to their perceived utilities

$$-\Pr(c_{2} > c_{1} > c_{3} | \theta_{1}, \theta_{2}, \theta_{3}) = \Pr_{U_{i} \sim \mu_{i}}(U_{2} > U_{1} > U_{3})$$



## Generating a preference-profile

• Pr(Data  $|\theta_1, \theta_2, \theta_3$ ) =  $\prod_{V \in \text{Data}} \Pr(V | \theta_1, \theta_2, \theta_3)$ 



## Plackett-Luce model

•  $\mu_i$ 's are Gumbel distributions

- A.k.a. the Plackett-Luce (P-L) model [ВМ 60, Yellott 77]

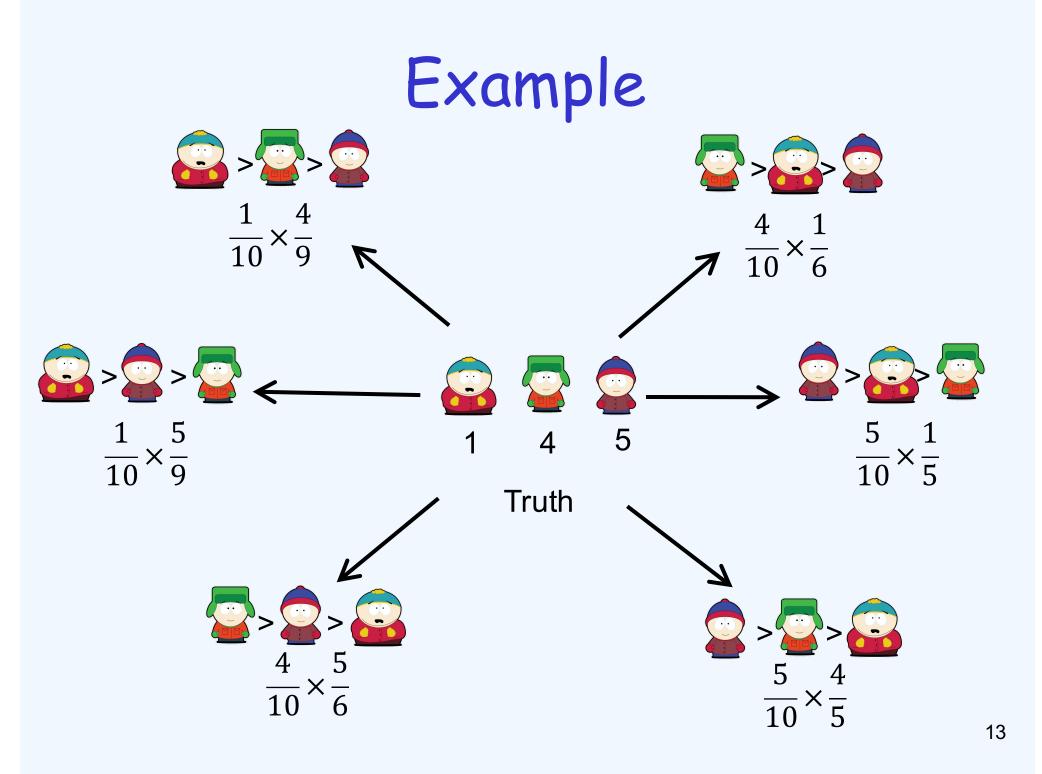
• Alternative parameterization  $\lambda_1, \ldots, \lambda_m$ 

$$\Pr(c_1 \succ c_2 \succ \cdots \succ c_m \mid \lambda_1 \cdots \lambda_m) = \frac{\lambda_1}{\lambda_1 + \cdots + \lambda_m} \times \frac{\lambda_2}{\lambda_2 + \cdots + \lambda_m} \times \cdots \times \frac{\lambda_{m-1}}{\lambda_{m-1} + \lambda_m}$$

 $c_2$  is the predered to  $c_2, \ldots, c_m$ 

#### 🙂 Pros:

- Computationally tractable
  - Analytical solution to the likelihood function
    - The only RUM that was known to be tractable
  - Widely applied in Economics [McFadden 74], learning to rank [Liu 11], and analyzing elections [GM 06,07,08,09]
- Cons: may not be the best model



# RUM with normal distributions

- $\mu_i$ 's are normal distributions
  - Thurstone's Case V [Thurstone 27]
- 🙂 Pros:
  - Intuitive
  - Flexible

Cons: believed to be computationally intractable

– No analytical solution for the likelihood function  $\Pr(P \mid \Theta)$  is known

## Model selection

- Compare RUMs with Normal distributions and PL for
  - log-likelihood: log  $Pr(D|\Theta)$
  - predictive log-likelihood: E log  $Pr(D_{test}|\Theta)$
  - Akaike information criterion (AIC): 2k- $2\log Pr(D|\Theta)$
  - Bayesian information criterion (BIC):  $k\log n-2\log \Pr(D|\Theta)$
- Tested on an election dataset
  - 9 alternatives, randomly chosen 50 voters

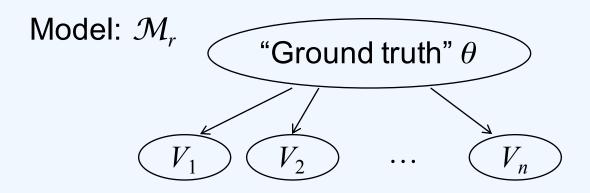
| Value(Normal)<br>- Value(PL) | LL         | Pred. LL   | AIC         | BIC         |
|------------------------------|------------|------------|-------------|-------------|
|                              | 44.8(15.8) | 87.4(30.5) | -79.6(31.6) | -50.5(31.6) |

Red: statistically significant with 95% confidence

Project: model fitness for election data

## Decision making

### Maximum likelihood estimators (MLE)



- For any profile  $P = (V_1, \ldots, V_n)$ ,
  - The likelihood of  $\theta$  is  $L(\theta, P) = \Pr_{\theta}(P) = \prod_{V \in P} \Pr_{\theta}(V)$
  - The MLE mechanism MLE(P)=argmax<sub> $\theta$ </sub> $L(\theta, P)$
  - Decision space = Parameter space

## Bayesian approach

- Given a profile  $P = (V_1, ..., V_n)$ , and a prior distribution  $\pi$  over  $\Theta$
- Step 1: calculate the posterior probability over
  Θ using Bayes' rule

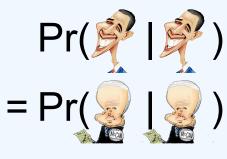
 $-\Pr(\theta|P) \propto \pi(\theta) \Pr_{\theta}(P)$ 

- Step 2: make a decision based on the posterior distribution
  - Maximum a posteriori (MAP) estimation
  - $-\mathsf{MAP}(P) = \operatorname{argmax}_{\theta} \mathsf{Pr}(\theta | P)$
  - Technically equivalent to MLE when  $\pi$  is uniform

- $Pr(M|P) \propto 0.8 L(M) = 0.8 \times 0.4^{10} 0.6^{8}$
- $Pr(O|P) \propto 0.2 L(O) = 0.2 \times 0.6^{10} 0.4^{8}$
- MAP: prior O:0.2, M:0.8
- L(O)>L(M), O wins
- $L(M) = Pr_M(O)^6 Pr_M(M)^4 = 0.4^{10} 0.6^8$
- MLE -  $L(O)=Pr_O(O)^6 Pr_O(M)^4 = 0.6^{10} 0.4^8$
- Data P = {10@ 2+8@ 2 }



Example



= 0.6

## Decision making under uncertainty

- You have a biased coin: head w/p p
  - You observe 10 heads, 4 tails
  - Do you think the next two tosses will be two heads in a row?
  - MLE-based approach
    - there is an unknown but fixed ground truth

$$-p = 10/14 = 0.714$$

- Pr(2heads|p=0.714)=(0.714)<sup>2</sup>=0.51>0.5

- Yes!

Bayesian

- the ground truth is captured by a belief distribution
- Compute Pr(p|Data) assuming uniform prior
- Compute
  Pr(2heads|Data)=0.485<0</li>
  .5

- No!

Credit: Panos Ipeirotis & Roy Radner

## Statistical decision theory

- Given
  - statistical model:  $\Theta$ , S, Pr<sub> $\theta$ </sub> (s)
  - decision space: D
  - loss function:  $L(\theta, d) \in \mathbb{R}$
- Make a good decision based on data
  - decision function f: data $\rightarrow$ D
  - Bayesian expected lost:
    - $EL_B(data, d) = E_{\theta|data}L(\theta, d)$
  - Frequentist expected lost:
    - $\mathsf{EL}_{\mathsf{F}}(\theta, f) = \mathsf{E}_{\mathsf{data}|\theta}\mathsf{L}(\theta, f(\mathsf{data}))$
  - Evaluated w.r.t. the objective ground truth

## IMDb Top 250 movies

"Complex voter weighting system"

Claimed to be accurate

➤a "true Bayesian estimate"

Claimed to be fair



## **Different Voice**

• Q: "This is *unfair*!"

 "That film / show has received awards, great reviews, commendations and deserves a much higher vote!"

 IMDB: "...only votes cast by IMDb users are counted. We do not delete or alter individual votes"

> IMDb Votes/Ratings Top Frequently Asked Questions http://www.imdb.com/help/show\_leaf?votestopfaq

## Fairness of Bayesian estimators

Theorem: Strict Condorcet

No Bayesian estimator satisfies strict Condorcet criterion

• Theorem: Neutrality

Neutral Bayesian estimators

= Bayesian estimators of "neutral" models