Introduction to mechanism design
Game theory: predicting the outcome with strategic agents

- Games and solution concepts
 - general framework: NE
 - normal-form games: mixed/pure-strategy NE
 - extensive-form games: subgame-perfect NE
Election game of strategic voters

Alice
Strategic vote

Bob
Strategic vote

Carol
Strategic vote
Game theory is predictive

• How to design the “rule of the game”?
 – so that when agents are strategic, we can achieve a designated outcome w.r.t. their true preferences?
 – “reverse” game theory

• Example: design a social choice mechanism \(f \) so that
 – for every true preference profile \(D^* \)
 – \(\text{OutcomeOfGame}(f, D^*) = \text{Plurality}(D^*) \)
Today’s schedule: mechanism design

- Mechanism design: Nobel prize in economics 2007

 Leonid Hurwicz 1917-2008
 Eric Maskin
 Roger Myerson

- VCG Mechanism: Vickrey won Nobel prize in economics 1996

 William Vickrey 1914-1996
A game and a solution concept implement a function f^*, if
- for every true preference profile D^*
- $f^*(D^*) = \text{OutcomeOfGame}(f, D^*)$

f^* is defined for the true preferences
A non-trivial truthful DRM

- Auction for one indivisible item
- n bidders
- Outcomes: { (allocation, payment) }
- Preferences: represented by a quasi-linear utility function
 - every bidder j has a private value v_j for the item. Her utility is
 - $v_j - \text{payment}_j$, if she gets the item
 - 0, if she does not get the item
 - suffices to only report a bid (rather than a total preorder)
- Vickrey auction (second price auction)
 - allocate the item to the agent with the highest bid
 - charge her the second highest bid
Example

- Kyle: $10
- Stan: $70
- Eric: $100

$70

$70
A general workflow of mechanism design

1. Choose a target function f^* to implement

2. Model the situation as a game

3. Choose a solution concept SC

4. Design f such that the game and SC implements f^*

- Pareto optimal outcome
- utilitarian optimal
- egalitarian optimal
- allocation + payments
- etc

- dominant-strategy NE
- mixed-strategy NE
- SPNE
- etc

- normal form
- extensive form
- etc
• Agents (players): $N=\{1,\ldots,n\}$
• Outcomes: O
• Preferences (private): total preorders over O
• Message space (c.f. strategy space): S_j for agent j
• Mechanism: $f : \Pi_j S_j \to O$
Frameworks of social choice, game theory, mechanism design

• Agents = players: $N=\{1,\ldots,n\}$

• Outcomes: O

• True preference space: P_j for agent j
 – consists of total preorders over O
 – sometimes represented by utility functions

• Message space = reported preference space = strategy space: S_j for agent j

• Mechanism: $f: \prod_j S_j \rightarrow O$
Step 1: choose a target function
(social choice mechanism w.r.t. truth preferences)

- Nontrivial, later after revelation principle
Step 2: specify the game

- Agents: often obvious
- Outcomes: need to design
 - require domain expertise, beyond mechanism design
- Preferences: often obvious given the outcome space
 - usually by utility functions
- Message space: need to design
Step 3: choose a solution concept

- If the solution concept is too weak (general)
 - equilibrium selection
 - e.g. mixed-strategy NE

- If the solution concept is too strong (specific)
 - unlikely to exist an implementation
 - e.g. SPNE

- We will focus on dominant-strategy NE for the rest of today
Step 4: Design a mechanism
Direct-revelation mechanisms (DRMs)

• A special mechanism where for agent j, $S_j = P_j$
 – true preference space = reported preference space

• A DRM f is truthful (incentive compatible) w.r.t. a solution concept SC (e.g. NE), if
 – In SC, $R_j = R_j^*$
 – i.e. everyone reports her true preferences
 – A truthful DRM implements itself!

• Examples of truthful DRMs
 – always outputs outcome “a”
 – dictatorship
A non-trivial truthful DRM

• Auction for one indivisible item
• \(n \) bidders
• Outcomes: \{ (allocation, payment) \}
• Preferences: represented by a quasi-linear utility function
 – every bidder \(j \) has a private value \(v_j \) for the item. Her utility is
 • \(v_j \) - payment\(_j\), if she gets the item
 • 0, if she does not get the item
 – suffices to only report a bid (rather than a total preorder)
• Vickrey auction (second price auction)
 – allocate the item to the agent with the highest bid
 – charge her the second highest bid
Example

Kyle: $10
Stan: $70
Eric: $100

$70

$10
$70
$100
Indirect mechanisms (IM)

• No restriction on S_j
 – includes all DRMs
 – If $S_j \neq P_j$ for some agent j, then truthfulness is not defined
 – not clear what a “truthful” agent will do under IM

• Example
 – Second-price auction where agents are required to report an integer bid
Another example

- English auction

 "arguably the most common form of auction in use today" ---wikipedia

- Every bidder can announce a higher price

- The last-standing bidder is the winner

- Implements Vickrey (second price) auction
Truthful DRM vs. IM: usability

• Truthful DRM: f^* is implemented for truthful and strategic agents
 – Truthfulness:
 • if an agent is truthful, she reports her true preferences
 • if an agent is strategic (as indicated by the solution concept), she still reports her true preferences
 – Communication: can be a lot
 – Privacy: no

• Indirect Mechanisms
 – Truthfulness: no
 – Communication: can be little
 – Privacy: may preserve privacy
Truthful DRM vs. IM: easiness of design

• Implementation w.r.t. DSNE

• Truthful DRM:
 – f itself!
 – only needs to check the incentive conditions,
 i.e. for every j, R'_j,
 • for every R_{-j}: $f(R_j^*, R_{-j}) \geq_j f(R'_j, R_{-j})$
 • the inequality is strict for some R_{-j}

• Indirect Mechanisms
 – Hard to even define the message space
Truthful DRM vs. IM: implementability

- Can IMs implement more social choice mechanisms than truthful DRMs?
 - depends on the solution concept

- Implementability
 - the set of social choice mechanisms that can be implemented (by the game + mechanism + solution concept)
Revelation principle

- **Revelation principle.** Any social choice mechanism f^* implemented by a mechanism w.r.t. DSNE can be implemented by a truthful DRM (itself) w.r.t. DSNE
 - truthful DRMs is as powerful as IMs in implementability w.r.t. DSNE
 - If the solution concept is DSNE, then designing a truthful DRM implication is equivalent to checking that agents are truthful under f^*
- has a Bayesian-Nash Equilibrium version
Proof

• \(DS_j(R_j^*) \): the dominant strategy of agent \(j \)

• Prove that \(f^* \) is a truthful DRM that implements itself
 – **truthfulness**: suppose on the contrary that \(f^* \) is not truthful
 – W.l.o.g. suppose \(f^*(R_1, R_{-1}^*) >_1 f^*(R_1^*, R_{-1}^*) \)
 – \(DS_1(R_1^*) \) is not a dominant strategy
 • compared to \(DS_1(R_1) \), given \(DS_2(R_2^*), \ldots, DS_n(R_n^*) \)

\[\begin{align*}
 R_1^* & \rightarrow DS_1(R_1^*) \\
 R_2^* & \rightarrow DS_2(R_2^*) \\
 \vdots & \quad \vdots \\
 R_n^* & \rightarrow DS_n(R_n^*) \\
\end{align*} \]
Interpreting the revelation principle

- It is a powerful, useful, and negative result
- **Powerful**: applies to any mechanism design problem
- **Useful**: only need to check if truth-reporting is the dominant strategy in f^*
- **Negative**: If any agent has incentive to lie under f^*, then f^* cannot be implemented by any mechanism w.r.t. DSNE
Step 1: Choosing the function to implement (w.r.t. DSNE)
Mechanism design with money

- Modeling situations with monetary transfers
- Set of alternatives: A
 - e.g. allocations of goods
- Outcomes: \{ (alternative, payments) \}
- Preferences: represented by a quasi-linear utility function
 - every agent j has a private value $v_j^*(a)$ for every $a \in A$. Her utility is
 \[
 u_j^*(a, p) = v_j^*(a) - p_j
 \]
 - It suffices to report a value function v_j
Can we adjust the payments to maximize social welfare?

- Social welfare of a
 - $\text{SCW}(a) = \sum_j v_j^*(a)$

- Can any $(\text{argmax}_a \text{SCW}(a)$, payments) be implemented w.r.t. DSNE?
The Vickrey-Clarke-Groves mechanism (VCG)

- The Vickrey-Clarke-Groves mechanism (VCG) is defined by
 - Alternative in outcome: \(a^* = \text{argmax}_a \text{SCW}(a) \)
 - Payments in outcome: for agent \(j \)
 \[
 p_j = \max_a \sum_{i \neq j} v_i(a) - \sum_{i \neq j} v_i(a^*)
 \]
 - negative externality of agent \(j \) of its presence on other agents
- Truthful, efficient
- A special case of Groves mechanism
Example: one item auction

- Alternatives = (give to K, give to S, give to E)
- \(a^* \)
- \(p_1 = 100 - 100 = 0 \)
- \(p_2 = 100 - 100 = 0 \)
- \(p_3 = 70 - 0 = 70 \)
Wrap up

- Mechanism design:
 - the social choice mechanism f^*
 - the game and the mechanism to implement f^*
- The revelation principle: implementation w.r.t. DSNE = checking incentive conditions
- VCG mechanism: a generic truthful and efficient mechanism for mechanism design with money
Looking forward

• The end of “pure economics” classes
 – Social choice: 1972 (Arrow), 1998 (Sen)
 – Game theory: 1994 (Nash, Selten and Harsanyi), 2005 (Schelling and Aumann)
 – Mechanism design: 2007 (Hurwicz, Maskin and Myerson)
 – Auctions: 1996 (Vickrey)

• The next class: introduction to computation
 – Linear programming
 – Basic computational complexity theory

• Then
 – Computation + Social choice

• HW1 is due on Friday before class
NE of the plurality election game

• Players: \{ YOU, Bob, Carol\}, \(n=3 \)
• Outcomes: \(O = \{ \text{YOU}, \text{Bob}, \text{Carol} \} \)
• Strategies: \(S_j = \text{Rankings}(O) \)
• Preferences: \text{Rankings}(O)
• Mechanism: the plurality rule
Proof (1)

- Given
 - f^* implemented by f' w.r.t. DSNE
- Construct a DRM f that "simulates" the strategic behavior of the agents under f', $DS_j(u_j)$

\[f(u_1, \ldots, u_n) = f'(DS_1(u_1), \ldots, DS_n(u_n)) \]