# Judgment aggregation

acknowledgment: Ulle Endriss, University of Amsterdam

Lirong Xia



March 22, 2016

## Your paper presentation(s)

- Two parts
  - presentation: about 1 hour
  - discussion: 30 min
- Meet with me twice before your presentation
  - 1<sup>st</sup>: discuss content covered in your presentation
  - 2<sup>st</sup>: go over the slides or notes
- Prepare reading questions for discussion
  - technical questions
  - high-level discussions: importance, pros, cons

#### Last class: Fair division

- Indivisible goods
  - house allocation: serial dictatorship
  - housing market: Top trading cycles (TTC)
- Divisible goods (cake cutting)
  - -n = 2: cut-and-choose
  - discrete and continuous procedures that satisfies proportionality
  - hard to design a procedure that satisfies envyfreeness

#### Judgment aggregation: the doctrinal paradox

|          | Action p | Action q | Liable? (p∧q) |
|----------|----------|----------|---------------|
| Judge 1  | Y        | Y        | Y             |
| Judge 2  | Y        | N        | N             |
| Judge 3  | N        | Y        | N             |
| Majority | Y        | Y        | Ν             |

- p: valid contract
- q: the contract has been breached
- Why paradoxical?
  - issue-by-issue aggregation leads to an illogical conclusion

## Formal framework

• An agenda *A* is a finite nonempty set of propositional logic formulas closed under complementation ( $[\phi \in A] \Rightarrow [\sim \phi \in A]$ )

$$- A = \{ p, q, \sim p, \sim q, p \land q \}$$

- $A = \{ p, \sim p, p \land q, \sim p \lor \sim q \}$
- A judgment set *J* on an agenda *A* is a subset of *A* (the formulas that an agent thinks is true, in other words, accepts). *J* is
  - complete, if for all  $\phi \in A$ ,  $\phi \in J$  or  $\sim \phi \in J$
  - consistent, if *J* is satisfiable
  - S(A) is the set of all complete and consistent judgment sets
- Each agent (judge) reports a judgment set

-  $D = (J_1, \dots, J_n)$  is called a profile

An judgment aggregation (JA) procedure F is a function (S(A))<sup>n</sup>→{0,1}<sup>A</sup>

## Do we want democracy or truth?

- Most previous work took the axiomatic point of view
- Seems truth is better for many applications
  - ongoing work

## Some JA procedures

- Majority rule
  - $-F(\phi)=1$  if and only if the majority of agents accept  $\phi$
- Quota rules
  - $F(\phi)=1$  if and only if at least k% of agents accept  $\phi$
- Premise-based rules
  - apply majority rule on "premises", and then use logic reasoning to decide the rest
- Conclusion-based rules
  - ignore the premises and use majority rule on "conclusions"
- Distance-based rules
  - choose a judgment set that minimizes distance to the profile

#### Axiomatic properties

- A judgment procedure F satisfies
  - unanimity, if [for all j,  $\phi \in J_j \Rightarrow [\phi \in F(D)]$
  - anonymity, if the names of the agents do not matter
  - independence, if the decision for  $\phi$  only depends on agents' opinion on  $\phi$
  - neutrality, [for all j,  $\varphi \in J_j \Leftrightarrow \psi \in J_j$ ] $\Rightarrow$ [ $\varphi \in F(D) \Leftrightarrow \psi \in F(D)$ ]
  - systematicity, if for all  $D, D', \varphi, \psi$  [for all  $j, \varphi \in J_j$  $\Leftrightarrow \psi \in J_j$ '] $\Rightarrow [\varphi \in F(D) \Leftrightarrow \psi \in F(D')]$ 
    - =independence + neutrality
  - majority rule satisfies all of these!

## Example: Doctrinal paradox

|          | Action p | Action q | Liable? (p∧q) |
|----------|----------|----------|---------------|
| Judge 1  | Y        | Y        | Y             |
| Judge 2  | Y        | N        | Ν             |
| Judge 3  | Ν        | Y        | N             |
| Majority | Y        | Y        | Ν             |

- Agenda  $A = \{ p, \sim p, q, \sim q, p \land q, \sim p \lor \sim q \}$
- Profile D
  - $J_1$ ={p, q, p∧q}  $- J_2$ ={p, ~q, ~p∨~q}  $- J_3$ ={~p, q, ~p∨~q}
- JA Procedure F: majority

## Impossibility theorem

- Theorem. When *n*>1, no JA procedure satisfies the following conditions
  - is defined on an agenda containing {p, q,  $p \land q$ }
  - satisfies anonymity, neutrality, and independence
  - always selects a judgment set that is complete and consistent

## Proof

- Anonymity + systematicity  $\Rightarrow$  decision on  $\phi$  only depends on number of agents who accept  $\phi$
- When *n* is even

- half approve p half disapprove p

- When *n* is odd
  - -(n-1)/2 approve p and q
  - (n-3)/2 approve ~p and ~q
  - 1 approves p
  - 1 approves q
  - $# p = #q = # \sim (p \land q)$ 
    - approve all these violates consistency
    - approve none violates consistency

## Avoiding the impossibility

- Anonymity
  - dictatorship
- Neutrality
  - premise-based approaches
- Independence
  - distance-based approach

#### Premise-based approaches

- $A = A_p + A_c$ 
  - $A_p$ =premises
  - $A_c$ =conclusions
- Use the majority rule on the premises, then use logic inference for the conclusions
- Theorem. If
  - the premises are all literals
  - the conclusions only use literals in the premises
  - the number of agents is odd
- then the premise-based approach is anonymous, consistent, and complete

|          | р | q | (p∧q)             |
|----------|---|---|-------------------|
| Judge 1  | Y | Y | Y                 |
| Judge 2  | Y | N | Ν                 |
| Judge 3  | Ν | Y | Ν                 |
| Majority | Y | Y | Logic reasoning Y |

#### Distance-based approaches

- Given a distance function  $- d: \{0,1\}^A \times \{0,1\}^A \rightarrow R$
- The distance-based approach chooses argmin $_{J \in S(A)} \Sigma_{J' \in D} d(J, J')$
- Satisfies completeness and consistency
- Violates neutrality and independence
  - c.f. Kemeny

## Recap

- Doctrinal paradox
- Axiomatic properties of JA procedures
- Impossibility theorem
- Premise-based approaches
- Distance-based approaches

Hypothesis testing (definitions)

#### An example

- The average GRE quantitative score of
  - RPI graduate students vs.
  - national average: 558(139)
- Method 1: compute the average score of all RPI graduate students and compare to national average
- End of class

## Another example

- Two heuristic algorithms: which one runs faster in general?
- Method 1: compare them on all instances
- Method 2: compare them on a few "randomly" generated instances

#### Simplified problem: one sample location test

- You have a random variable X
  - you know
    - the shape of X: normal
    - the standard deviation of X: 1
  - you don't know
    - the mean of X
- After observing one sample of X (with value *x*), what can you say when comparing the mean to 0?
  - what if you see 10?
  - what if you see 2?
  - what if you see 1?

# Some quick answers

- Method 1
  - if x>1.645 then say the mean is strictly positive
- Method 2
  - if x<-1.645 then say the mean is strictly negative</li>
- Method 3
  - if x<-1.96 or x>1.96 then say the mean is nonzero
- How should we evaluate these methods?

#### The null and alternative hypothesis (Neyman-Pearson framework)

- Given a statistical model
  - parameter space: Θ
  - sample space: S
  - $Pr(s|\theta)$
- H<sub>1</sub>: the alternative hypothesis
  - $H_1 \subseteq \Theta$
  - the set of parameters you think contain the ground truth
- H<sub>0</sub>: the null hypothesis
  - $\ H_0 \subseteq \Theta$
  - $H_0 \cap H_1 = \emptyset$
  - the set of parameters you want to test (and ideally reject)
- Output of the test
  - reject the null: suppose the ground truth is in H<sub>0</sub>, it is unlikely that we see what we observe in the data
  - retain the null: we don't have enough evidence to reject the null

## One sample location test

- Combination 1 (one-sided, right tail)
  - H<sub>1</sub>: mean>0
  - H<sub>0</sub>: mean=0 (why not mean<0?)
- Combination 2 (one-sided, left tail)
  - $H_1$ : mean<0
  - $H_0: mean=0$
- Combination 3 (two-sided)
  - H₁: mean≠0
  - $H_0$ : mean=0
- A hypothesis test is a mapping  $f: S \rightarrow \{reject, retain\}$

#### One-sided Z-test

- H<sub>1</sub>: mean>0
- H<sub>0</sub>: mean=0
- Parameterized by a number  $0 < \alpha < 1$ 
  - is called the level of significance
- Let  $x_{\alpha}$  be such that  $Pr(X>x_{\alpha}|H_0)=\alpha$ 
  - $x_{\alpha}$  is called the critical value



- Output reject, if
  - $x > x_{\alpha}$ , or  $Pr(X > x | H_0) < \alpha$ 
    - Pr(X>x|H<sub>0</sub>) is called the p-value
- Output retain, if
  - −  $x \le x_{\alpha}$ , or p-value ≥ $\alpha$



- Popular values of  $\alpha$ :
  - -5%:  $x_{\alpha}$ = 1.645 std (somewhat confident)

-1%:  $x_{\alpha}$ = 2.33 std (very confident)

- $\alpha$  is the probability that given mean=0 a randomly generated data will leads to "reject"
  - Type I error

#### Two-sided Z-test

- H<sub>1</sub>: mean≠0
- H<sub>0</sub>: mean=0
- Parameterized by a number  $0 < \alpha < 1$
- Let  $x_{\alpha}$  be such that  $2\Pr(X>x_{\alpha}|H_0)=\alpha$



## What we have learned so far...

- One/two-sided Z test: hypothesis tests for one sample location test (for different H<sub>1</sub>'s)
- Outputs either to "reject" or "retain" the null hypothesis
- And defined a lot of seemingly fancy terms on the way
  - null/alternative hypothesis
  - level of significance
  - critical value
  - p-value
  - Type I error

#### Questions that haunted me when I first learned these

- Isn't point estimation H<sub>0</sub> never true?
  - the "chance" for the mean to be exactly 0 is negligible
  - fine, but what made you believe so?
- What the heck are you doing by using different  $H_1$ ?
  - the description of the tests does not depend on the selection of  $\rm H_{1}$
  - if we reject H<sub>0</sub> using one-sided test (mean>0), shouldn't we already be able to say mean≠0? Why need two-sided test?
- What the heck are you doing by saying "reject" and "retain"
  - Can't you just predict whether the ground truth is in  $H_0$  or  $H_1$ ?



- Evaluation of hypothesis testing methods
- Statistical decision theory