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Hypothesis testing and 
statistical decision theory



• Hypothesis testing 
• Statistical decision theory

– a more general framework for statistical 
inference

– try to explain the scene behind tests
• Two applications of the minimax theorem

– Yao’s minimax principle
– Finding a minimax rule in statistical decision 

theory
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Schedule



• The average GRE quantitative score of
– RPI graduate students vs.

– national average: 558(139)

• Randomly sample some GRE Q scores 
of RPI graduate students and make a 
decision based on these
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An example



• You have a random variable X
– you know

• the shape of X: normal

• the standard deviation of X: 1

– you don’t know
• the mean of X

4

Simplified problem: one 
sample location test



• Given a statistical model
– parameter space: Θ

– sample space: S
– Pr(s|θ)

• H1: the alternative hypothesis
– H1 ⊆ Θ
– the set of parameters you think contain the ground truth

• H0: the null hypothesis
– H0 ⊆ Θ

– H0∩H1=∅
– the set of parameters you want to test (and ideally reject)

• Output of the test
– reject the null: suppose the ground truth is in H0, it is unlikely that we see 

what we observe in the data

– retain the null: we don’t have enough evidence to reject the null 5

The null and alternative hypothesis



• Combination 1 (one-sided, right tail)
– H1: mean>0
– H0: mean=0 (why not mean<0?)

• Combination 2 (one-sided, left tail)
– H1: mean<0
– H0: mean=0

• Combination 3 (two-sided)
– H1: mean≠0
– H0: mean=0

• A hypothesis test is a mapping f : S⟶{reject, retain}
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One sample location test 



• H1: mean>0
• H0: mean=0
• Parameterized by a number 0<α<1

– is called the level of significance

• Let xα be such that Pr(X>xα|H0)=α
– xα is called the critical value

• Output reject, if 
– x>xα, or Pr(X>x|H0)<α

• Pr(X>x|H0) is called the p-value

• Output retain, if 
– x≤xα, or p-value≥α
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One-sided Z-test

0 xα

α



• Popular values of α:
– 5%: xα= 1.645 std (somewhat confident)

– 1%: xα= 2.33 std (very confident)

• α is the probability that given mean=0, a 
randomly generated data will leads to “reject”
– Type I error

8

Interpreting level of significance

0 xα

α



• H1: mean≠0
• H0: mean=0
• Parameterized by a number 0<α<1
• Let xα be such that 2Pr(X>xα|H0)=α

• Output reject, if 
– x>xα, or x<xα

• Output retain, if 
– -xα≤x≤xα 9

Two-sided Z-test

0 xα

α

-xα



• What is a “correct” answer given by a test?
– when the ground truth is in H0, retain the null 

(≈saying that the ground truth is in H0)
– when the ground truth is in H1, reject the null 

(≈saying that the ground truth is in H1)
– only consider cases where θ∈H0∪H1

• Two types of errors
– Type I: wrongly reject H0, false alarm
– Type II: wrongly retain H0, fail to raise the alarm
– Which is more serious?
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Evaluation of hypothesis tests
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Type I and Type II errors
Output

Retain Reject

Ground 
truth in 

H0 size: 1-α Type I: α

H1 Type II: β power: 1-β

• Type I: the max error rate for all θ∈H0

α=supθ∈H0Pr(false alarm|θ)
• Type II: the error rate given θ∈H1

• Is it possible to design a test where α=β=0?
– usually impossible, needs a tradeoff



• One-sided Z-test
– we can freely control Type I error
– for Type II, fix some θ∈H1
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Illustration

0

α:Type I error

θ

β:Type II error

Output
Retain Reject

Ground 
truth in 

H0 size: 1-α Type I: α
H1 Type II: β power: 1-β

xα

Type I: α

Type II: β Black: One-sided 
Z-test

Another test



• Errors for one-sided Z-test

• Errors for two-sided Z-test, same α
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Using two-sided Z-test for 
one-sided hypothesis

0 θ

α:Type I error

Type II error α:Type I error

Type II error



• H0: mean≤0 (vs. mean=0)
• H1: mean>0
• supθ≤0Pr(false alarm|θ)=Pr(false 

alarm|θ=0)
– Type I error is the same

• Type II error is also the same for any θ>0
• Any better tests?
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Using one-sided Z-test for a 
set-valued null hypothesis



• A hypothesis test f is uniformly 
most powerful (UMP), if 
– for any other test f’ with the same 

Type I error
– for any θ∈H1, 
Type II error of f < Type II error of f’
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Optimal hypothesis tests

• Corollary of Karlin-Rubin theorem:
One-sided Z-test is a UMP for H0:≤0 
and H1:>0
– generally no UMP for two-sided tests

Type I: α

Type II: β Black: UMP

Any other
test



• Tell you the H0 and H1 used in the test
– e.g., H0:mean≤0 and H1:mean>0

• Tell you the test statistic, which is a function 
from data to a scalar
– e.g., compute the mean of the data

• For any given α, specify a region of test 
statistic that will leads to the rejection of H0

– e.g., 

16

Template of other tests

0



• Step 1: look for a type of test that fits your 
problem (from e.g. wiki)

• Step 2: choose H0 and H1

• Step 3: choose level of significance α

• Step 4: run the test
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How to do test for your problem?



• Given
– statistical model: Θ, S, Pr(s|θ)

– decision space: D

– loss function: L(θ, d)∈ℝ

• We want to make a decision based on 
observed generated data
– decision function f : data⟶D
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Statistical decision theory



• D={reject, retain}
• L(θ, reject)=

– 0, if θ∈H1

– 1, if θ∈H0 (type I error)

• L(θ, retain)=
– 0, if θ∈H0

– 1, if θ∈H1 (type II error)
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Hypothesis testing as a 
decision problem



• Given data and the decision d
– ELB(data, d) = Eθ|dataL(θ,d)

• Compute a decision that minimized EL for 
a given the data
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Bayesian expected loss



• Given the ground truth θ and the decision function f
– ELF(θ, f ) = Edata|θL(θ,f(data))

• Compute a decision function with small EL for all 
possible ground truth
– c.f. uniformly most powerful test: for all θ∈H1, the UMP 

test always has the lowest expected loss (Type II error)

• A minimax decision rule f is argminf maxθ ELF(θ, f )
– most robust against unknown parameter
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Frequentist expected loss
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Two interesting applications 
of game theory



• For any simultaneous-move two player zero-sum game
• The value of a player’s mixed strategy s is her worst-case 

utility against against the other player
– Value(s)=mins’ U(s,s’)
– s1 is a mixed strategy for player 1 with maximum value
– s2 is a mixed strategy for player 2 with maximum value

• Theorem Value(s1)=-Value(s2) [von Neumann]
– (s1, s2) is an NE
– for any s1’ and s2’, Value(s1’) ≤ Value(s1)= -Value(s2) ≤ -

Value(s2’)
– to prove that s1* is minimax, it suffices to find s2* with 

Value(s1*)=-Value(s2*) 
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The Minimax theorem



• Question: how to prove a randomized algorithm A is (asymptotically) 
fastest?

– Step 1: analyze the running time of A

– Step 2: show that any other randomized algorithm runs slower for some input

– but how to choose such a worst-case input for all other algorithms?

• Theorem [Yao 77] For any randomized algorithm A
– the worst-case expected running time of A

is more than

– for any distribution over all inputs, the expected running time of the fastest 
deterministic algorithm against this distribution

• Example. You designed a O(n2) randomized algorithm, to prove that no 
other randomized algorithm is faster, you can

– find a distribution π over all inputs (of size n)

– show that the expected running time of any deterministic algorithm on π is more 
than O(n2)
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App1: Yao’s minimax principle



• Two players: you, Nature
• Pure strategies

– You: deterministic algorithms

– Nature: inputs

• Payoff
– You: negative expected running time

– Nature: expected running time

• For any randomized algorithm A
– largest expected running time on some input

– is more than the expected running time of your best (mixed) strategy
– =the expected running time of Nature’s best (mixed) strategy
– is more than the smallest expected running time of any deterministic 

algorithm on any distribution over inputs
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Proof



• Guess a least favorable distribution π over 
the parameters
– let fπ denote its Bayesian decision rule
– Proposition. fπ minimizes the expected loss 

among all rules, i.e. fπ=argminf Eθ∽πELF(θ, f )

• Theorem. If for all θ, ELF(θ, fπ) are the 
same, then fπ is minimax
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App2: finding a minimax rule?



• Two players: you, Nature
• Pure strategies

– You: deterministic decision rules

– Nature: the parameter

• Payoff
– You: negative frequentist loss, want to minimize the max frequentist loss

– Nature: frequentist loss ELF(θ, f ) = Edata|θL(θ,f(data)), want to maximize the 
minimum frequentist loss

• Nee to prove that fπ is minimax
– suffices to show that there exists a mixed strategy π* for Nature

• π* is a distribution over Θ

– such that
• for all rule f and all parameter θ, ELF( π*, f ) ≥ ELF(θ, fπ )

– the equation holds for π*=π  QED
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Proof



• Problem: make a decision based on randomly 
generated data

• Z-test
– null/alternative hypothesis
– level of significance
– reject/retain

• Statistical decision theory framework
– Bayesian expected loss
– Frequentist expected loss

• Two applications of the minimax theorem
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Recap


