Announcements

* Paper presentation
— meet with me ASAP
— 1sttime: tell me what you will discuss
— 2"d time: show me the slides
— prepare for a few reading questions

* Project
— meet with me ASAP

— think about a problem that may use social
choice, game theory, or mechanism design
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How to do test for your problem?

» Step 1: look for a type of test that fits your
problem (from e.g. wiki)

» Step 2: choose H, and H,
» Step 3: choose level of significance a

« Step 4: run the test



Today: recommender systems
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« Content-based approaches
based on user’s past ratings on similar items computed using features

« Collaborative filtering

— user-based: find similar users
— item-based: find similar items (based on all users’ ratings)



Applications

elp

NETFLIX

amazoncom You




The Netflix challenge

« $1M award to the first team who can
outperform their own recommender system
CinMatch by 10%

* A big dataset

— half million users
— 17000 movies
— a secret test set

* Won by a hybrid approach in 2009

— a few minutes later another hybrid approach also

achieved the goal
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Exploring the tail

Popularity

ltem

 Personalize to sell the “tail” items



The problem

* Given
— features of users i
— features of items
— users’ ratings r,(j) over items

 Predict

— a user's preference over items she has not tried
* by e.qg., predicting a user’s rating of new item
* Not a social choice problem, but has a
information/preference aggregation component



Classical approaches

* Content-based approaches

» Collaborative filtering

— user-based: find similar users

— item-based: find similar items (based on all
users’ ratings)

» Hybrid approaches



Framework for content-
based approaches

* |nputs: profiles for items
— K features of item j

* w; = (W,..., Wik)

* w;y € [0,1]: degree the item has the feature

— the user’s past ratings for items 1 through j-1
 Similarity heuristics
— compute the user's profile: v, = (v;,..., vik), vy € [0,1]

— recommend items based on the similarity of the user’s
profile and profiles of the items

* Probabilistic approaches

— use machine learning techniques to predict user’'s
preferences over new items
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Example

1 1 11,00 |1 7
1 1 101019
1 o 1,11 08
1 1 11,0 1|0 7
= 0.8 | 0.8 |0.75|0.85|0.75| 0.9
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Similarity heuristics
* A possible way to define v,

— v;.1s the average normalized score of the user
over items with feature k

* A possible way to define similarly
measure

— cosine similarity measure

K
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—In the previous example, the measure is 0.68

12

cos(v,,w;) =



Probabilistic classifier

Rating of an item

 Nalve Bayes model: suppose we know
— Pr(r)
— Pr(f,|r) for every r and k

— learned from previous ratings using MLE

+ Givenw; = (wyy,..., wig)
— Pr(rlw;)o<Pr(wlr) Pr(r)=Pr(r) TIPr(w;|r)

— Choose r that maximizes Pr(r|w,)
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Framework for collaborative
filtering approaches

* |nputs: a matrix M.

— M, ;: user i’s rating for item j

Alice S 0

Bob < 5 & -
Carol 4 4 ° .
David | 6 . E :

 Collaborative filters

— User-based: use similar users’ rating to predict
— ltem-based: use similar items’ rating to predict 14



User-based approaches (1)

« Step 1. Define a similarity measure between
users based on co-rated items
— Pearson correlation coefficient between i and i*

— G, ;«: the set of all items that both i and i* have rated

- M.: the average rate of user i

EJEGi,i* (Ml] B Ml) . (MZ*J - Ml*)

\/2 JEGi i (Mij B Mi )2 \/2 JEG; Mi*j B Mi* )2

sim(1,1*) =
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User-based approaches (2)

» Step 2. Find all users i* within a given
threshold

— let N; denote all such users

— let N/ denote the subset of N;who have rated
item
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User-based approaches (3)

» Step 3. Predict i's rating on j by
aggregating similar users’ rating on j

s 1 .
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I'tem-based approaches

* Transpose the matrix M

* Perform a user-based approach on M?
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Hybrid approaches

» Combining recommenders

— e.g. content-based + user-based + item-
based

— socilal choice!

» Considering features when computing
similarity measures

» Adding features to probabilistic models
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Challenges

New user
New item
Knowledge acquisition

— discussion paper: preference elicitation
Computation: challenging when the number

of features and the number of users are
extremely large

— M is usually very sparse

— dimension reduction
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Recap: recommender systems

Task: personalize to sell the tail items

Content-based approaches

— based on user's past ratings on similar items
computed using features

Collaborative filtering
— user-based: find similar users

— item-based: find similaritems (based on all users’
ratings)

Hybrid approaches
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