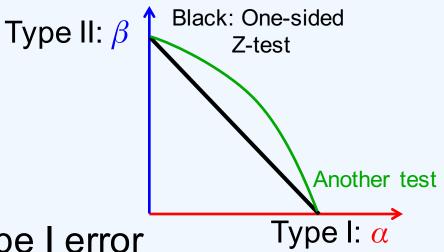
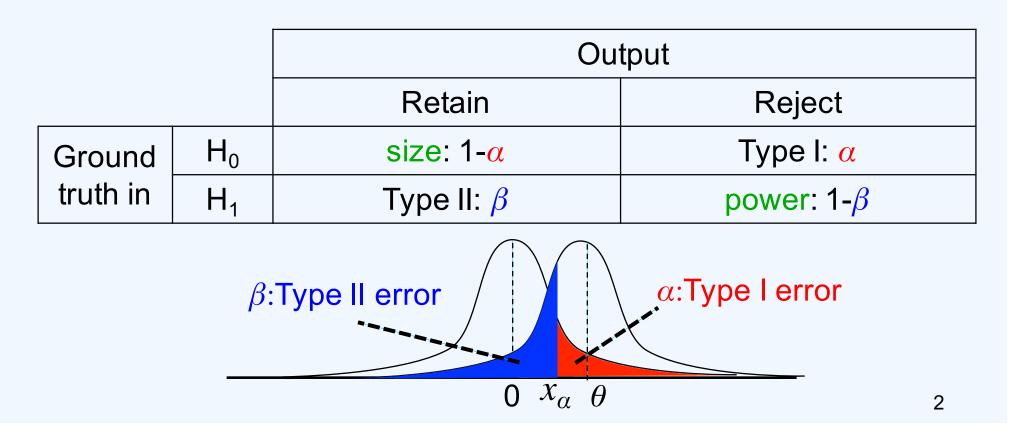
Announcements

- Paper presentation
 - meet with me ASAP
 - 1st time: tell me what you will discuss
 - 2nd time: show me the slides
 - prepare for a few reading questions
- Project
 - meet with me ASAP
 - think about a problem that may use social choice, game theory, or mechanism design

One-sided Z-test



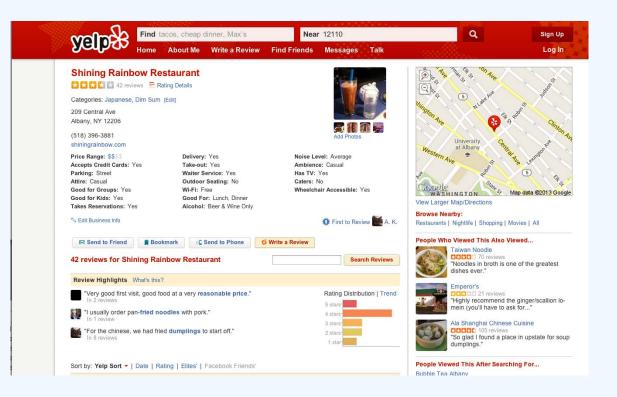
- we can freely control Type I error
 - for Type II, fix some $\theta \in H_1$



How to do test for your problem?

- Step 1: look for a type of test that fits your problem (from e.g. wiki)
- Step 2: choose H₀ and H₁
- Step 3: choose level of significance α
- Step 4: run the test

Today: recommender systems



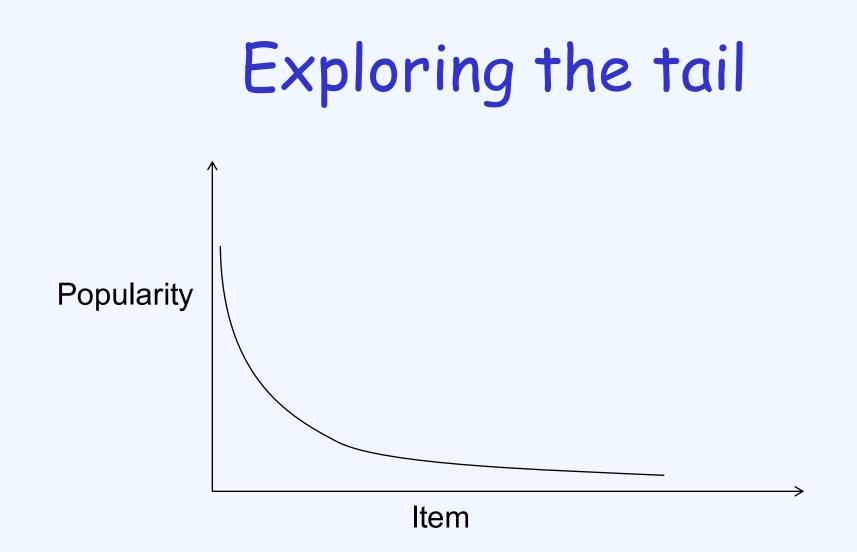
- Content-based approaches
 - based on user's past ratings on similar items computed using features
- Collaborative filtering
 - user-based: find similar users
 - item-based: find similar items (based on all users' ratings)

Applications

amazon.com[®] You Tube

The Netflix challenge

- \$1M award to the first team who can outperform their own recommender system CinMatch by 10%
- A big dataset
 - half million users
 - 17000 movies
 - a secret test set
- Won by a hybrid approach in 2009
 - a few minutes later another hybrid approach also achieved the goal



Personalize to sell the "tail" items

The problem

- Given
 - features of users *i*
 - features of items j
 - users' ratings $r_i(j)$ over items
- Predict
 - a user's preference over items she has not tried
 - by e.g., predicting a user's rating of new item
- Not a social choice problem, but has a information/preference aggregation component

Classical approaches

- Content-based approaches
- Collaborative filtering
 - user-based: find similar users
 - item-based: find similar items (based on all users' ratings)
- Hybrid approaches

Framework for contentbased approaches

- Inputs: profiles for items
 - K features of item j
 - $w_j = (w_{j1}, \ldots, w_{jK})$
 - $w_{jk} \in [0,1]$: degree the item has the feature
 - the user's past ratings for items 1 through j-1
- Similarity heuristics
 - compute the user's profile: $v_i = (v_{i1}, \dots, v_{iK}), v_{ik} \in [0, 1]$
 - recommend items based on the similarity of the user's profile and profiles of the items
- Probabilistic approaches
 - use machine learning techniques to predict user's preferences over new items

	Animation	Adventure	Family	Comedy	Disney	Bluesky	rate
	1	1	1	0	0	1	?
	1	1	0	1	0	1	9
Tangled stelt in 30 only in cinemas	1	0	1	1	1	0	8
Dierep-PIXAR URLL. JUNE 27	1	1	1	0	1	0	7
<i>v</i> =	0.8	0.8	0.75	0.85	0.75	0.9	

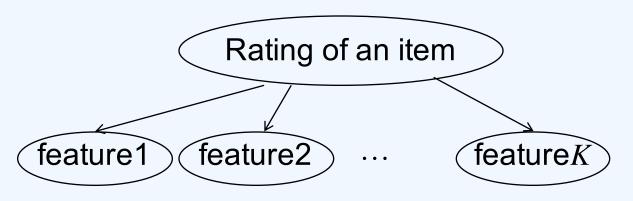
Similarity heuristics

- A possible way to define v_i
 - $-v_{ik}$ is the average normalized score of the user over items with feature k
- A possible way to define similarly measure

$$-\cos(v_i, w_j) = \frac{v_i \cdot w_j}{\|v_i\|_2 \|w_j\|_2} = \frac{\sum_{k=1}^{K} v_{ik} \cdot w_{jk}}{\sqrt{\sum_{k=1}^{K} v_{ik}^2} \sqrt{\sum_{k=1}^{K} w_{ik}^2}}$$

- in the previous example, the measure is 0.68

Probabilistic classifier



- Naïve Bayes model: suppose we know
 - **Pr**(*r*)
 - $-\Pr(f_k|r)$ for every r and k
 - learned from previous ratings using MLE
- Given $w_j = (w_{j1}, ..., w_{jK})$
 - $-\Pr(r|w_j) \propto \Pr(w_j|r) \Pr(r) = \Pr(r) \prod \Pr(w_{jk}|r)$
 - Choose r that maximizes $Pr(r|w_j)$

Framework for collaborative filtering approaches

- Inputs: a matrix *M*.
 - $M_{i,j}$: user *i*'s rating for item *j*

		Trees the ALTERNA THE PROOF STATES CONTACT THE PROOF STATES AND	Tangled HE IT IN 30 ONLY IN CITEMAS	
Alice	8	6	4	9
Bob	Ø	8	10	10
Carol	4	4	8	Ø
David	6	Ø	10	5

- Collaborative filters
 - User-based: use similar users' rating to predict
 - Item-based: use similar items' rating to predict

User-based approaches (1)

- Step 1. Define a similarity measure between users based on co-rated items
 - Pearson correlation coefficient between i and i^*
 - $-G_{i,i^*}$: the set of all items that both *i* and *i** have rated
 - $-\overline{M_i}$: the average rate of user *i*

$$sim(i,i^{*}) = \frac{\sum_{j \in G_{i,i^{*}}} (M_{ij} - \overline{M_{i}}) \cdot (M_{i^{*}j} - \overline{M_{i^{*}}})}{\sqrt{\sum_{j \in G_{i,i^{*}}} (M_{ij} - \overline{M_{i}})^{2}} \sqrt{\sum_{j \in G_{i,i^{*}}} M_{i^{*}j} - \overline{M_{i^{*}}})^{2}}}$$

User-based approaches (2)

- Step 2. Find all users *i** within a given threshold
 - let N_i denote all such users
 - let N_i^j denote the subset of N_i who have rated item j

User-based approaches (3)

• Step 3. Predict *i*'s rating on *j* by aggregating similar users' rating on *j*

$$\begin{split} \hat{r}_{i}(j) &= \frac{1}{|N|_{i}^{j}|} \sum_{i^{*} \in N_{i}^{j}} r_{i^{*}}(j) \\ \hat{r}_{i}(j) &= \frac{\sum_{i^{*} \in N_{i}^{j}} sim(i,i^{*}) r_{i^{*}}(j)}{\sum_{i^{*} \in N_{i}^{j}} sim(i,i^{*})} \\ \hat{r}_{i}(j) &= \overline{M_{i}} + \frac{\sum_{i^{*} \in N_{i}^{j}} sim(i,i^{*}) (r_{i^{*}}(j) - \overline{M_{i^{*}}})}{\sum_{i^{*} \in N_{i}^{j}} sim(i,i^{*})} \end{split}$$

Item-based approaches

- Transpose the matrix *M*
- Perform a user-based approach on M^T

Hybrid approaches

- Combining recommenders
 - e.g. content-based + user-based + itembased
 - social choice!
- Considering features when computing similarity measures
- Adding features to probabilistic models

Challenges

- New user
- New item
- Knowledge acquisition
 - discussion paper: preference elicitation
- Computation: challenging when the number of features and the number of users are extremely large
 - *M* is usually very sparse
 - dimension reduction

Recap: recommender systems

- Task: personalize to sell the tail items
- Content-based approaches
 - based on user's past ratings on similar items computed using features
- Collaborative filtering
 - user-based: find similar users
 - item-based: find similar items (based on all users' ratings)
- Hybrid approaches