Introduction to Social Choice

Lirong Xia

(Q) Rensselaer

Jan 29, 2016

Last class: Two goals for social choice

GOAL1: democracy

GOAL2: truth

Change the world: 2011 UK Referendum

- The second nationwide referendum in UK history
- The first was in 1975
- Member of Parliament election:

Plurality rule \rightarrow Alternative vote rule

- 68\% No vs. 32\% Yes
- In 10/440 districts more voters said yes
- 6 in London, Oxford, Cambridge, Edinburgh Central, and Glasgow Kelvin
- Why change?
- Why failed?
- Which voting rule is the best?

Today's schedule: memory challenge

- Topic: Voting
- We will learn
- How to aggregate preferences?
- A large variety of voting rules
- How to evaluate these voting rules?
- Democracy: A large variety of criteria (axioms)
- Truth: an axiom related to the Condorcet Jury theorem
- Characterize voting rules by axioms
- impossibility theorems
- Home 1 out

Social choice: Voting

- Agents: n voters, $N=\{1, \ldots, n\}$
- Alternatives: m candidates, $A=\left\{a_{1}, \ldots, a_{m}\right\}$ or $\{a, b, c, d, \ldots\}$
- Outcomes:
- winners (alternatives): $O=A$. Social choice function
- rankings over alternatives: $O=$ Rankings (A). Social welfare function
- Preferences: R_{j}^{*} and R_{j} are full rankings over A
- Voting rule: a function that maps each profile to an outcome

Popular voting rules

(a.k.a. what people have done in the past two centuries)

The Borda rule

Borda $(P)=$

Borda scores \&: $2 \times 4+4=12$

Positional scoring rules

- Characterized by a score vector s_{1}, \ldots, s_{m} in nonincreasing order
- For each vote R, the alternative ranked in the i-th position gets s_{i} points
- The alternative with the most total points is the winner
- Special cases
- Borda: score vector ($m-1, m-2, \ldots, 0$) [French academy of science 1784-1800, Slovenia, Naru]
- k-approval: score vector $(\underbrace{1 \ldots 1}_{k}, 0 \ldots 0)$
- Plurality: score vector $(1,0 \ldots 0)$ [UK, US]
- Veto: score vector (1...1, 0)

Example

Borda

Plurality
(1- approval)

Veto
(2-approval)

Off topic: different winners for the same profile?

Research 101

- Lesson 1: generalization
- Conjecture: for any $m \geq 3$, there exists a profile P such that
- for different $k \leq m$-1, k-approval chooses a different winner

Research 102

- Lesson 2: open-mindedness
- "If we knew what we were doing, it wouldn't be called research, would it?"
---Albert Einstein
- Homework: Prove or disprove the conjecture

Research 103

- Lesson 3: inspiration in simple cases
- Hint: look at the following example for $m=3$
-3 voters: $a_{1}>a_{2}>a_{3}$
-2 voters: $a_{2}>a_{3}>a_{1}$
-1 voter: $a_{3}>a_{1}>a_{2}$

It never ends!

- You can apply Lesson 1 again to generalize your observation, e.g.
- If the conjecture is true, then can you characterize the smallest number of votes in P ? How about adding Borda? How about any combination of voting rules?
- If the conjecture is false, then can you characterize the set of k-approvals to make it true?

Plurality with runoff

- The election has two rounds
- First round, all alternatives except the two with the highest plurality scores drop out
- Second round, the alternative preferred by more voters wins
- [used in France, Iran, North Carolina State]

Example: Plurality with runoff

$$
\left.G>\xi^{2}>2, G>G^{2}>2\right\}
$$

- First round: drops out
- Second round: defeats

Different from Plurality!

Single transferable vote (STV)

- Also called instant run-off voting or alternative vote
- The election has m-1 rounds, in each round,
- The alternative with the lowest plurality score drops out, and is removed from all votes
- The last-remaining alternative is the winner
- [used in Australia and Ireland]

$a>b>c>d$	$d \boldsymbol{d}>a>b>c$	$c>d>a>b$	$b>c>d>a$
10	7	6	3
a			

Other multi-round voting rules

- Baldwin's rule
- Borda+STV: in each round we eliminate one alternative with the lowest Borda score
- break ties when necessary
- Nanson's rule
- Borda with multiple runoff: in each round we eliminate all alternatives whose Borda scores are below the average
- [Marquette, Michigan, U. of Melbourne, U. of Adelaide]

Weighted majority graph

- Given a profile P, the weighted majority graph WMG (P) is a weighted directed complete graph (V, E, w) where
- $V=A$
- for every pair of alternatives (a, b)
- $w(a \rightarrow b)=\#\{a>b$ in $P\}-\#\{b>a$ in $P\}$
- $w(a \rightarrow b)=-w(b \rightarrow a)$
- WMG (only showing positive edges\} might be cyclic
- Condorcet cycle: $\{a>b>c, b>c>a, c>a>b\}$

Example: WMG

$\mathrm{WMG}(P)=$

WGM-based voting rules

- A voting rule r is based on weighted majority graph, if for any profiles P_{1}, P_{2},
$\left[\operatorname{WMG}\left(P_{1}\right)=\mathrm{WMG}\left(P_{2}\right)\right] \Rightarrow\left[r\left(P_{1}\right)=r\left(P_{2}\right)\right]$
- WMG-based rules can be redefined as a function that maps \{WMGs\} to \{outcomes\}
- Example: Borda is WMG-based
- Proof: the Borda winner is the alternative with the highest sum over outgoing edges.

The Copeland rule

- The Copeland score of an alternative is its total "pairwise wins"
- the number of positive outgoing edges in the WMG
- The winner is the alternative with the highest Copeland score
- WMG-based

Example: Copeland

Copeland score:

The maximin rule

- A.k.a. Simpson or minimax
- The maximin score of an alternative a is

$$
\mathrm{MS}_{P}(a)=\min _{b} \#\{a>b \text { in } P\}
$$

- the smallest pairwise defeats
- The winner is the alternative with the highest maximin score
- WMG-based

Example: maximin

Maximin score:

Ranked pairs

- Given the WMG
- Starting with an empty graph G, adding edges to G in multiple rounds
- In each round, choose the remaining edge with the highest weight
- Add it to G if this does not introduce cycles
- Otherwise discard it
- The alternative at the top of G is the winner

Example: ranked pairs

WMG

Q1: Is there always an alternative at the "top" of G ?
Q2: Does it suffice to only consider positive edges?

Kemeny's rule

- Kendall tau distance
- $\mathrm{K}(R, W)=\#$ different pairwise comparisons\}

- Kemeny $(D)=\operatorname{argmin}_{W} \mathrm{~K}(D, W)=\operatorname{argmin}_{W} \Sigma_{R \in D} \mathrm{~K}(R, W)$
- For single winner, choose the top-ranked alternative in Kemeny (D)
- [reveals the truth]

Popular criteria for voting rules

(a.k.a. what people have done in the past 60 years)

How to evaluate and compare voting rules?

- No single numerical criteria
- Utilitarian: the joint decision should maximize the total happiness of the agents
- Egalitarian: the joint decision should maximize the worst agent's happiness
- Axioms: properties that a "good" voting rules should satisfy
- measures various aspects of preference aggregation

Fairness axioms

- Anonymity: names of the voters do not matter - Fairness for the voters
- Non-dictatorship: there is no dictator, whose top-ranked alternative is always the winner, no matter what the other votes are
- Fairness for the voters
- Neutrality: names of the alternatives do not matter
- Fairness for the alternatives

A truth-revealing axiom

- Condorcet consistency: Given a profile, if there exists a Condorcet winner, then it must win
- The Condorcet winner beats all other alternatives in pairwise comparisons
- The Condorcet winner only has positive outgoing edges in the WMG
- Why this is truth-revealing?
- why Condorcet winner is the truth?

The Condorcet Jury theorem [Condorcet 1785]

- Given
- two alternatives $\{a, b\}$. a : liable, b : not liable
$-0.5<p<1$,
- Suppose
- given the ground truth (a or b), each voter's preference is generated i.i.d., such that
- w/p p, the same as the ground truth
- w/p 1-p, different from the ground truth
- Then, as $n \rightarrow \infty$, the probability for the majority of agents' preferences is the ground truth goes to

Condorcet's model [Condorcet 1785]

- Given a "ground truth" ranking W and $p>1 / 2$, generate each pairwise comparison in R independently as follows (suppose $c>d$ in W)

$$
\left.\operatorname{Pr}(b>c>a \mid a>b>c)=Q_{0}(p)+p\right)^{2}
$$

- Its MLE is Kemeny's rule [Young JEP-95]

Truth revealing

Extended Condorcet Jury theorem

- Given
- A ground truth ranking W
- $0.5<p<1$,
- Suppose
- each agent's preferences are generated i.i.d. according to Condorcet's model
- Then, as $n \rightarrow \infty$, with probability that $\rightarrow 1$
- the randomly generated profile has a Condorcet winner
- The Condorcet winner is ranked at the top of W
- If r satisfies Condorcet criterion, then as $n \rightarrow \infty, r$ will reveal the "correct" winner with probability that $\rightarrow 1$.

Other axioms

- Pareto optimality: For any profile D, there is no alternative c such that every voter prefers c to $r(D)$
- Consistency: For any profiles D_{1} and D_{2}, if $r\left(D_{1}\right)=r\left(D_{2}\right)$, then $r\left(D_{1} \cup D_{2}\right)=r\left(D_{1}\right)$
- Monotonicity: For any profile D_{1},
- if we obtain D_{2} by only raising the position of $r\left(D_{1}\right)$ in one vote,
- then $r\left(D_{1}\right)=r\left(D_{2}\right)$
- In other words, raising the position of the winner won't hurt it

Which axiom is more important?

Clurality	Condorcet criterion	Consistency	Anonymity/neutrality, non-dictatorship, monotonicity
STV (alternative vote)	N	Y	Y

- Some axioms are not compatible with others -Which rule do you prefer?

An easy fact

- Theorem. For voting rules that selects a single winner, anonymity is not compatible with neutrality
- proof:

W.O.L.G.

\neq
Anonymity

Neutrality

Another easy fact [Fishburn APSR-74]

- Theorem. No positional scoring rule satisfies Condorcet criterion:
- suppose $s_{1}>s_{2}>s_{3}$

3 Voters

2 Voters

1 Voter

1 Voter

Arrow's impossibility theorem

- Recall: a social welfare function outputs a ranking over alternatives
- Arrow's impossibility theorem. No social welfare function satisfies the following four axioms
- Non-dictatorship
- Universal domain: agents can report any ranking
- Unanimity: if $a>\mathrm{b}$ in all votes in D, then $a>\mathrm{b}$ in $r(D)$
- Independence of irrelevant alternatives (IIA): for two profiles $D_{1}=$ $\left(R_{1}, \ldots, R_{n}\right)$ and $D_{2}=\left(R_{1}{ }^{\prime}, \ldots, R_{n}{ }^{\prime}\right)$ and any pair of alternatives a and b
- if for all voter j, the pairwise comparison between a and b in R_{j} is the same as that in $R_{j}{ }^{\prime}$
- then the pairwise comparison between a and b are the same in $r\left(D_{1}\right)$ as in $r\left(D_{2}\right)$

Other Not-So-Easy facts

- Gibbard-Satterthwaite theorem
- Later in the "hard to manipulate" class
- Axiomatic characterization
- Template: A voting rule satisfies axioms A1, A2, A2 \Leftrightarrow if it is rule X
- If you believe in A1 A2 A3 are the most desirable properties then X is optimal
- (unrestricted domain+unanimity+IIA) \Leftrightarrow dictatorships [Arrow]
- (anonymity+neutrality+consistency+continuity) \Leftrightarrow positional scoring rules [Young SIAMAM-75]
- (neutrality+consistency+Condorcet consistency) \Leftrightarrow Kemeny [Young\&Levenglick SIAMAM-78]

Remembered all of these?

- Impressive! Now try a slightly larger tip of the iceberg at wiki

Change the world: 2011 UK Referendum

- The second nationwide referendum in UK history
- The first was in 1975
- Member of Parliament election:

Plurality rule \rightarrow Alternative vote rule

- 68\% No vs. 32\% Yes
- Why people want to change?
-Why it was not successful?
- Which voting rule is the best?

Wrap up

- Voting rules
- positional scoring rules
- multi-round elimination rules
- WMG-based rules
- A Ground-truth revealing rule (Kemeny's rule)
- Criteria (axioms) for "good" rules
- Fairness axioms
- A ground-truth-revealing axiom (Condorcet consistency)
- Other axioms
- Evaluation
- impossibility theorems
- Axiomatic characterization

The reading questions

- What is the problem?
- social choice
- Why we want to study this problem? How general it is?
- It is very general and important
- How was problem addressed?
- by designing voting rules for aggregation and axioms for evaluation and comparisons
- Appreciate the work: what makes the paper nontrivial?
- No single numerical criterion for evaluation
- Critical thinking: anything you are not very satisfied with?
- evaluation of axioms, computation, incentives

Looking forward

- How to apply these rules?
- never use without justification: democracy or truth?
- Preview of future classes
- Strategic behavior of the voters
- Game theory and mechanism design
- Computational social choice
- Basics of computation
- Easy-to-compute axiom
- Hard-to-manipulate axiom
- You can start to work on the first homework!

