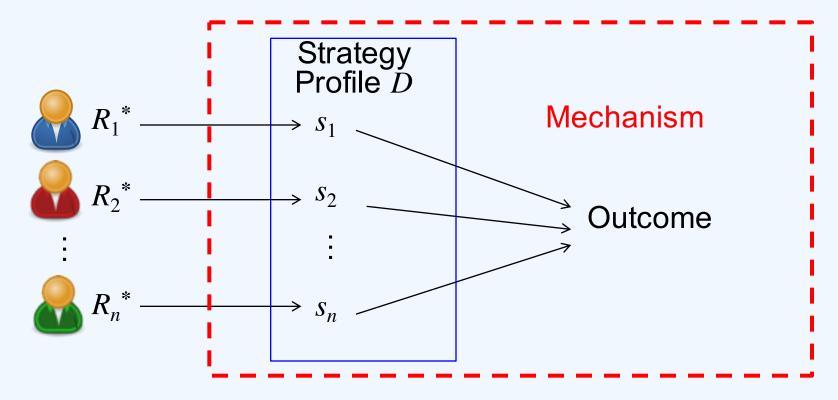
Introduction to mechanism design

Lirong Xia

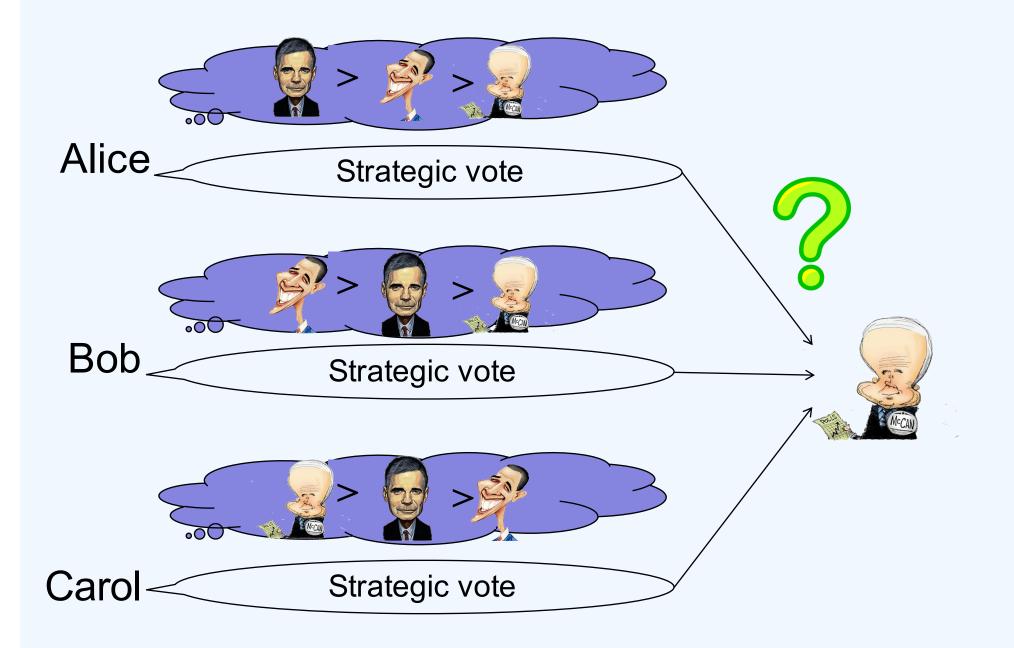
Feb. 9, 2016

Last class: game theory



- Game theory: predicting the outcome with strategic agents
- Games and solution concepts
 - general framework: NE
 - normal-form games: mixed/pure-strategy NE
 - extensive-form games: subgame-perfect NE

Election game of strategic voters

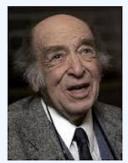


Game theory is predictive

- How to design the "rule of the game"?
 - so that when agents are strategic, we can achieve a designated outcome w.r.t. their true preferences?
 - "reverse" game theory
- Example: design a social choice mechanism f so that
 - for every true preference profile D*
 - OutcomeOfGame (f, D^*) =Plurality (D^*)

Today's schedule: mechanism design

Mechanism design: Nobel prize in economics 2007



Leonid Hurwicz 1917-2008

Eric Maskin

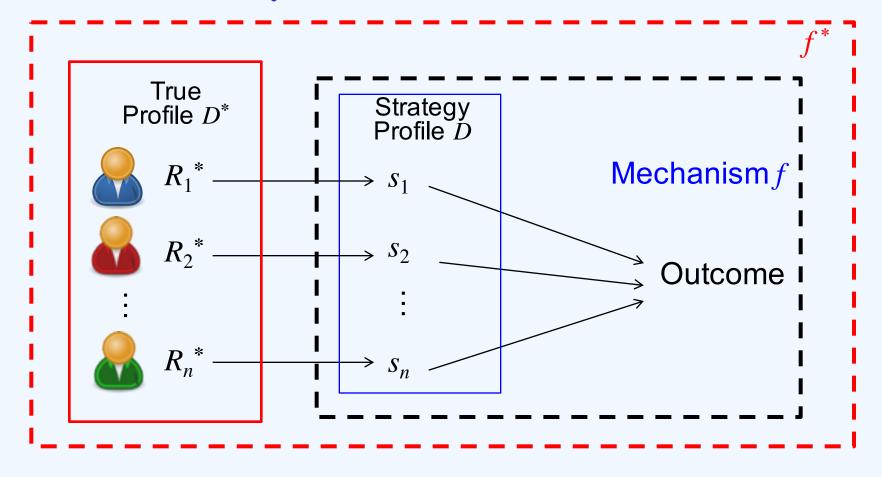
Roger Myerson

VCG Mechanism: Vickrey won Nobel prize in economics 1996

William Vickrey 1914-1996

- What? Your homework
- Why? Your homework
- How? Your homework

Implementation



- A game and a solution concept implement a function f^* , if
 - for every true preference profile D^*
 - $f^*(D^*) = OutcomeOfGame(f, D^*)$
- f* is defined for the true preferences

A general workflow of mechanism design

- Pareto optimal outcome
- utilitarian optimal
- egalitarian optimal
- allocation+ payments
- etc

1. Choose a target function

 f^* to implement

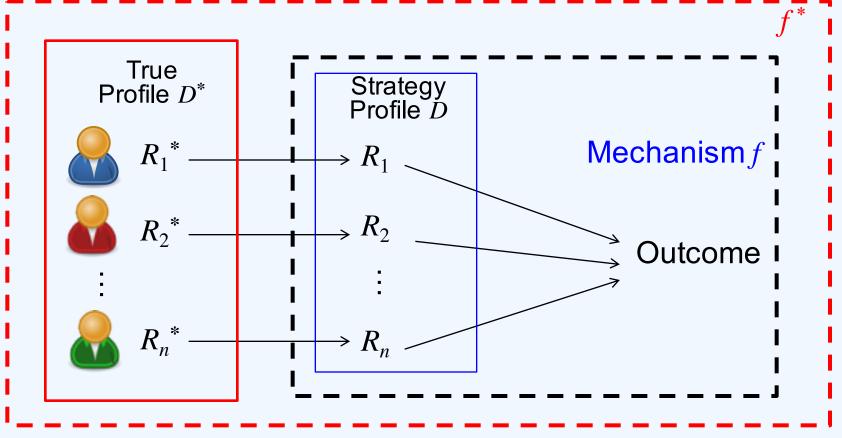
- 2. Model the situation as a game
- normal form
- extensive form
- etc

- dominant-strategy NE
- mixed-strategy NE
- SPNE
- etc

3. Choose a solution concept SC

4. Design f such that the game and SC implements f^*

Framework of mechanism design



- Agents (players): *N*={1,...,*n*}
- Outcomes: O
- Preferences (private): total preorders over *O*
- Message space (c.f. strategy space): S_j for agent j
- Mechanism: $f: \Pi_j S_j \rightarrow O$

Frameworks of social choice, game theory, mechanism design

- Agents = players: $N=\{1,...,n\}$
- Outcomes: O
- True preference space: P_j for agent j
 - consists of total preorders over O
 - sometimes represented by utility functions
- Message space = reported preference space = strategy space: S_i for agent j
- Mechanism: $f: \Pi_j S_j \rightarrow O$

Step 1: choose a target function (social choice mechanism w.r.t. truth preferences)

Nontrivial, later after revelation principle

Step 2: specify the game

- Agents: often obvious
- Outcomes: need to design
 - require domain expertise, beyond mechanism design
- Preferences: often obvious given the outcome space
 - usually by utility functions
- Message space: need to design

Step 3: choose a solution concept

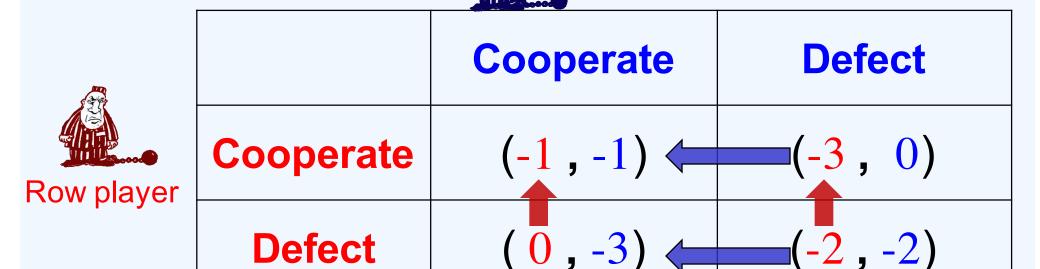
- If the solution concept is too weak (general)
 - equilibrium selection
 - e.g. mixed-strategy NE
- If the solution concept is too strong (specific)
 - unlikely to exist an implementation
 - e.g. SPNE
- We will focus on dominant-strategy NE for the rest of today

Dominant-strategy NE

- Recall that an NE exists when every player has a dominant strategy
 - $-s_j$ is a dominant strategy for player j, if for every $s_j' \in S_j$,
 - 1. for every s_{-j} , $f(s_j, s_{-j}) \ge_j f(s_j', s_{-j})$
 - 2. the preference is strict for some s_{-i}
- A dominant-strategy NE (DSNE) is an NE where
 - every player takes a dominant strategy
 - may not exists, but if exists, then must be unique

Prisoner's dilemma

Column player



Defect is the dominant strategy for both players

Step 4: Design a mechanism

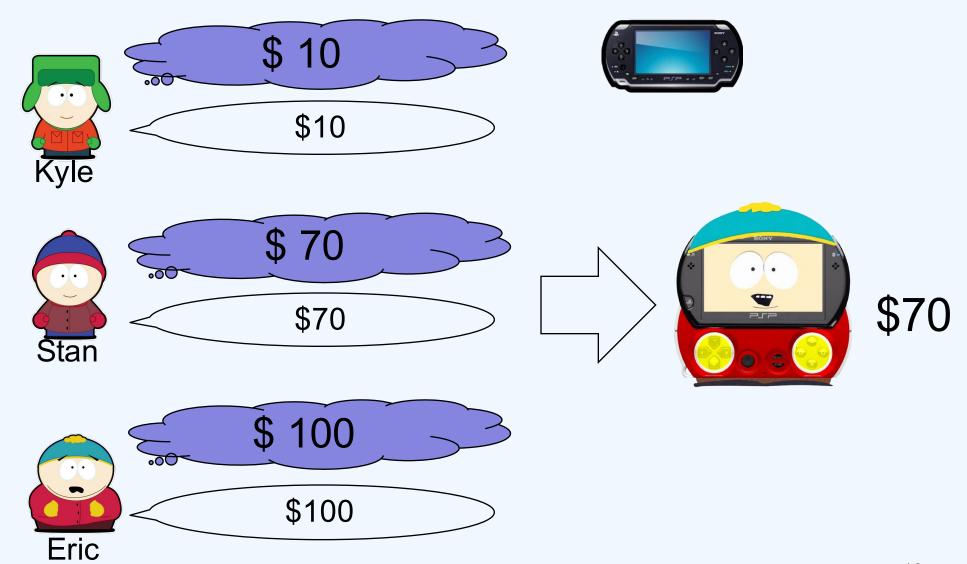
Direct-revelation mechanisms (DRMs)

- A special mechanism where for agent j, $S_i = P_j$
 - true preference space = reported preference space
- A DRM f is truthful (incentive compatible) w.r.t. a solution concept SC (e.g. NE), if
 - In SC, $R_j = R_j^*$
 - i.e. everyone reports her true preferences
 - A truthful DRM implements itself!
- Examples of truthful DRMs
 - always outputs outcome "a"
 - dictatorship

A non-trivial truthful DRM

- Auction for one indivisible item
- n bidders
- Outcomes: { (allocation, payment) }
- Preferences: represented by a quasi-linear utility function
 - every bidder j has a private value v_j for the item. Her utility is
 - v_i payment_i, if she gets the item
 - 0, if she does not get the item
 - suffices to only report a bid (rather than a total preorder)
- Vickrey auction (second price auction)
 - allocate the item to the agent with the highest bid
 - charge her the second highest bid

Example



Indirect mechanisms (IM)

- No restriction on S_i
 - includes all DRMs
 - If $S_j \neq P_j$ for some agent j, then truthfulness is not defined
 - not clear what a "truthful" agent will do under
 IM
- Example
 - Second-price auction where agents are required to report an integer bid

Another example

English auction

"arguably the most common form of auction in use today" ----wikipedia

- Every bidder can announce a higher price
- The last-standing bidder is the winner
- Implements Vickrey (second price) auction

Truthful DRM vs. IM: usability

- Truthful DRM: f^* is implemented for truthful and strategic agents
 - Truthfulness:
 - if an agent is truthful, she reports her true preferences
 - if an agent is strategic (as indicated by the solution concept),
 she still reports her true preferences
 - Communication: can be a lot
 - Privacy: no
- Indirect Mechanisms
 - Truthfulness: no
 - Communication: can be little
 - Privacy: may preserve privacy

Truthful DRM vs. IM: easiness of design

- Implementation w.r.t. DSNE
- Truthful DRM:
 - -f itself!
 - only needs to check the incentive conditions, i.e. for every j, R_i ,
 - for every R_{-j} : $f(R_j^*, R_{-j}) \ge_j f(R_j', R_{-j})$
 - the inequality is strict for some R_{-j}
- Indirect Mechanisms
 - Hard to even define the message space

Truthful DRM vs. IM: implementability

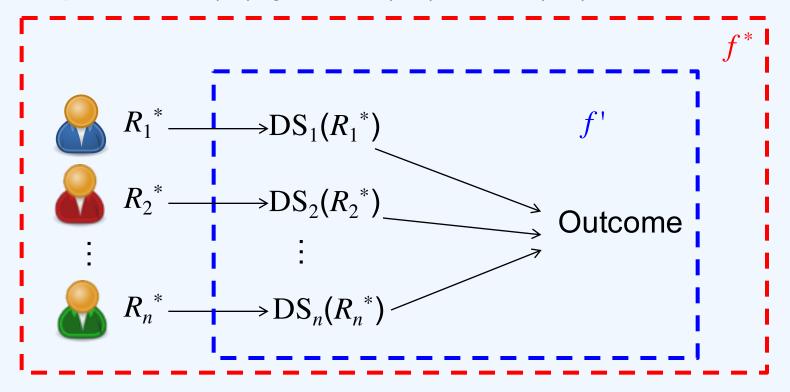
- Can IMs implement more social choice mechanisms than truthful DRMs?
 - depends on the solution concept
- Implementability
 - the set of social choice mechanisms that can be implemented (by the game + mechanism + solution concept)

Revelation principle

- Revelation principle. Any social choice mechanism f* implemented by a mechanism w.r.t. DSNE can be implemented by a truthful DRM (itself) w.r.t. DSNE
 - truthful DRMs is as powerful as IMs in implementability w.r.t. DSNE
 - If the solution concept is DSNE, then designing a truthful DRM implication is equivalent to checking that agents are truthful under f^*
- has a Bayesian-Nash Equilibrium version

Proof

- DS_j(R_j^{*}): the dominant strategy of agent j
- Prove that f^* is a truthful DRM that implements itself
 - truthfulness: suppose on the contrary that f^* is not truthful
 - W.l.o.g. suppose $f^*(R_1, R_{-1}^*) >_1 f^*(R_1, R_{-1}^*)$
 - $-DS_1(R_1^*)$ is not a dominant strategy
 - compared to $DS_1(R_1)$, given $DS_2(R_2^*)$, ..., $DS_n(R_n^*)$



Interpreting the revelation principle

- It is a powerful, useful, and negative result
- Powerful: applies to any mechanism design problem
- Useful: only need to check if truth-reporting is the dominant strategy in f*
- Negative: If any agent has incentive to lie under f*, then f* cannot be implemented by any mechanism w.r.t. DSNE

Step 1: Choosing the function to implement (w.r.t. DSNE)

Mechanism design with money

- Modeling situations with monetary transfers
- Set of alternatives: A
 - e.g. allocations of goods
- Outcomes: { (alternative, payments) }
- Preferences: represented by a quasi-linear utility function
 - every agent j has a private value $v_j^*(a)$ for every $a \in A$. Her utility is

$$u_{j}^{*}(a,p) = v_{j}^{*}(a) - p_{j}$$

- It suffices to report a value function v_i

Can we adjust the payments to maximize social welfare?

Social welfare of a

$$-\operatorname{SCW}(a)=\Sigma_{j}v_{j}^{*}(a)$$

Can any (argmax_a SCW(a), payments)
 be implemented w.r.t. DSNE?

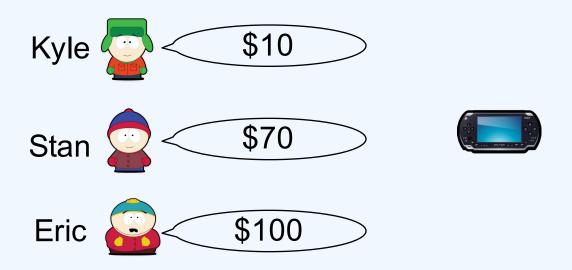
The Vickrey-Clarke-Groves mechanism (VCG)

- The Vickrey-Clarke-Groves mechanism (VCG) is defined by
 - Alterative in outcome: a^* =argmax_a SCW(a)
 - Payments in outcome: for agent j

$$p_j = \max_a \Sigma_{i \neq j} v_i(a) - \Sigma_{i \neq j} v_i(a^*)$$

- negative externality of agent j of its presence on other agents
- Truthful, efficient
- A special case of Groves mechanism

Example: auction of one item



- Alternatives = (give to K, give to S, give to E)
- $a^* =$
- $p_1 = 100 100 = 0$
- $p_2 = 100 100 = 0$
- $p_3 = 70 0 = 70$

Wrap up

- Mechanism design:
 - the social choice mechanism f^*
 - the game and the mechanism to implement f^*
- The revelation principle: implementation w.r.t.
 DSNE = checking incentive conditions
- VCG mechanism: a generic truthful and efficient mechanism for mechanism design with money

Looking forward

- The end of "pure economics" classes
 - Social choice: 1972 (Arrow), 1998 (Sen)
 - Game theory: 1994 (Nash, Selten and Harsanyi), 2005
 (Schelling and Aumann)
 - Mechanism design: 2007 (Hurwicz, Maskin and Myerson)
 - Auctions: 1996 (Vickrey)
- The next class: introduction to computation
 - Linear programming
 - Basic computational complexity theory
- Then
 - Computation + Social choice
- HW1 is due on Friday before class

NE of the plurality election game

- Players: { YOU, Bob, Carol}, n=3
- Outcomes: $O = \{ \emptyset, \emptyset, \emptyset \}$
- Strategies: $S_i = \text{Rankings}(O)$
- Preferences: Rankings(O)
- Mechanism: the plurality rule

Proof (1)

- Given
 - $-f^*$ implemented by f' w.r.t. DSNE
- Construct a DRM f that "simulates" the strategic behavior of the agents under f', $DS_i(u_i)$

$$f(u_1,...,u_n) = f'(DS_1(u_1),...,DS_n(u_n))$$

