
Feb 12, 2016

Lirong Xia

Introduction to computation



• Agents (players): N={1,…,n}
• Outcomes: O

• Preferences (private): total preorders over O

• Message space (c.f. strategy space): Sj for agent j
• Mechanism: f : Πj Sj →O 2

Last class: mechanism design

R1
* R1

Outcome
R2
* R2

Rn
* Rn

Mechanism f

… …

Strategy 
Profile D

True 
Profile D*

f *



• Computation (completely different from previous 
classes)!

• Linear programming: a useful and generic technic to 
solve optimization problems

• Basic computational complexity theorem
– how can we formally measure computational efficiency?
– how can we say a problem is harder than another?

• HW2 out
• Remember you should answer the “why what how” 

question

3

Today’s schedule



strength minerals gas supply

Zealot
1 100 0 2

Stalker
2 125 50 2

Archon
10 100 300 4

• Available resource: 
• How to maximize the total      strength of your 

troop? 4

The last battle

mineral gas supply
2000 1500 30



• Variables
– xZ: number of Zealots 
– xS: number of Stalkers 
– xA: number of Archons

• Objective: maximize total strength
• max 1xZ + 2xS + 10xA

• Constraints
– mineral: 100xZ + 125xS + 100xA ≤ 2000
– gas: 0xZ + 50xS + 300xA ≤ 1500
– supply: 2xZ + 2xS + 4xA ≤ 30
– xZ , xS , xA ≥ 0, integers 5

Computing the optimal solution
str m g s

Z 1 100 0 2
S 2 125 50 2
A 10 100 300 4

Resource 2000 1500 30



• Given
– Variables x: a row vector of m positive real numbers
– Parameters (fixed)

• c: a row vector of m real numbers
• b: a column vector of n real numbers
• A: an n×m real matrix

• Solve max   cxT

s.t. AxT ≤ b, x ≥ 0
• Solutions

– x is a feasible solution, if it satisfies all constraints
– x is an optimal solution, if it maximizes the objective 

function among all feasible solutions
6

Linear programming (LP)



• Possibly negative variable x
Ø x = y – y’

• Minimizing cxT

Ø max -cxT

• Greater equals to axT ≥ b
Ø - axT ≤ - b

• Equation axT = b
Ø axT ≥ b and axT ≤ b

• Strict inequality axT < b
Ø no “theoretically perfect” solution
Ø axT ≤ b-ε

7

General tricks



• Integer programming (IP): all variables 
are integers

• Mixed integer programming (MIP): some 
variables are integers

8

Integrality constraints



• LP: can be solved efficiently
– if there are not too many variables and 

constraints

• IP/MIP: some instances might be hard to 
solve
– practical solver: CPLEX free for academic 

use!

9

Efficient solvers



• n professors N = {1, 2,…, n}, each has one course to teach
• m time slots S

– slot i has capacity ci

– e.g. M&Th 12-2 pm is one slot
– any course takes one slot

• Degree of satisfaction (additive) for professor j
– Sj

1, Sj
2, …, Sj

k are subsets of S. sj
1, …, sj

k are real numbers
• if j is assigned to a slot in Sj

l, then her satisfaction is sj
l

• E.g. Sj
1 is the set of all afternoon classes

– Nj is a subset of N
• For each time confliction (allocated to the same slot) of j with a professor in Nj, 

her satisfaction is decreased by 1

• Objective: find an allocation
– utilitarian: maximize total satisfaction
– egalitarian: maximize minimum satisfaction 10

My mini “course project”



• How to model an allocation as values of variables?
– for each prof. j, each slot i, a binary (0-1) variable xij

– each prof. j is assigned to exactly one course
• for every j, Σi xij = 1

– each slot i is assigned to no more than ci profs.
• for every i, Σj xij ≤ ci

• How to model the satisfaction of prof. j?
– allocated to Sj

l if and only if Σi∈Sjl xij = 1
– confliction with j*∈Nj: xij+xij*=2 for some i

• for each pair of profs. (j, j*), a variable yjj* 

• s.t. for every i, yjj* ≥ xij+xij* - 1 

• How to model the objective?
– utilitarian: max Σj [Σl(sj

l Σi∈Sjl xij) - Σj*∈Nj yjj*]
– egalitarian: max minj [Σl(sj

lΣi∈Sjl xij) - Σj*∈Nj yjj*]
11

Modeling the problem linearly



• variables
–xij for each i, j

– integers: yjj* for each j, j*

• max Σj [Σl(sj
lΣi∈Sjl xij)-Σj*∈Nj yjj*]

s.t. for every j: Σi xij = 1

for every i: Σj xij ≤ ci

for every i,j,j*: yjj* ≥ xij+xij* - 1

12

Full MIP (utilitarian)

Prof. j’s course is assigned to slot i

j and j* have confliction

j gets exactly one slot

slot capacity

j and j* are
both assigned to i



• variables
–xij for each i, j

– integers: yjj* for each j, j*

• max x

s.t. for every j: Σi xij = 1

for every i: Σj xij ≤ ci

for every i,j,j*: yjj* ≥ xij+xij* - 1

for every j: x ≤ Σl(sj
lΣi∈Sjl xij)-Σj*∈Nj yjj* 13

Full MIP (egalitarian)

Prof. j’s course is assigned to slot i

j and j* have confliction

j gets exactly one slot

slot capacity

j and j* are
both assigned to i



14

Why this solves the problem?

Any optimal solution 
to the allocation problem

Any optimal solution 
to the MIP



• You can prioritize professors (courses) 
add weights
– e.g. a big undergrad course may have 

heavier weight

• You can add hard constraints too
– e.g. CS 1 must be assigned to W afternoon

• Side comment: you can use other 
mechanisms e.g. sequential allocation

15

Variantions



• Given m, and m positional scoring rules, 
does there exist a profile such that these 
rules output different winners?

• Objective: output such a profile with 
fewest number of votes

16

Your homework



17

Theory of computation
• History
• Running time of algorithms

– polynomial-time algorithms

• Easy and hard problems
– P vs. NP

– reduction



“Given a Diophantine equation with any number of 
unknown quantities and with rational integral numerical 
coefficients:
To devise a process according to which it can be 
determined in a finite number of operations whether the 
equation is solvable in rational integers.”
• Diophantine equation: p(x1,…,xm) = 0

– p is a polynomial with integer coefficients

• Does there exist an algorithm that determines where 
the equation has a solution?

• Answer: No!
18

Hilbert’s tenth problem 



19

What is computation?

Input

Output

Computation

• Binary (yes-no): decision problem
• Values: optimization problem



• Dominating set (DS): 
– Given a undirected graph and a natural number k. 
– Does there exists a set S of no more than k

vertices so that every vertex is either
• in S, or 
• connected to at least one vertex in S

• Example: Does there exists a dominating set of 
2 vertices? 

20

A decision problem



21

How to formalize computation?

Input

Output

Turing machine

Church-Turing conjecture

Alonzo Church
1903–1995

Alan Turing
1912–1954

Turing’s most cited work 
“The chemical basis of morphogenesis”



• Number of “basic” steps
– basic arithmetic operations, basic read/write, 

etc.
– depends on the input size

• f(x): number of “basic” steps when the 
input size is x
– (theoretical) computer scientists care about 

asymptotic running time
22

Running time of an algorithm



• Given two real-valued functions f(x), g(x)
• f is O(g) if there exists a constant c and x0 such that

– for all x>x0, |f(x)| ≤ cg(x)
– f is O(2x) ⇔ f is O(x) ⇒ f is O(x2)

• g is an asymptotic upper bound of f
– up to a constant multiplicative factor

• Can we say an O(x2) algorithm always runs faster 
than an O(x) algorithm?
– No

• Can we say an O(x) algorithm runs faster than an 
O(x2) algorithm?
– No 23

The big O notation



24

.
x

f(x)

0

.
. .

. . .
.
. .

.
.
.

. .

.

.
* * *

*

*
*
*

*

*

*

¢

¢
¢ ¢

¢

¢

¢
¢

¢

¢
¢

¢

¢
¢ ¢

¢

O(x)

O(x2)
O(2x)

Example



• An algorithm is a polynomial-time algorithm if
– there exists g(x) = a polynomial of x

• e.g. g(x) = x100-89x7+3

– such that f is O(g)

• Running time is asymptotically bounded 
above by a polynomial function

• Considered “fast” in most part of the 
computational complexity theory

25

Polynomial-time algorithms



• P (polynomial time): all decision problems that can be solved by 
deterministic polynomial-time algorithms
– “easy” problems
– Linear programming

• NP (nondeterministic polynomial time, not “Not P”): all decision 
problems that can be solved by nondeterministic Turing 
machines in polynomial-time
– “believed-to-be-hard” problems

• Open question: is it true that P = NP?
– widely believed that P ≠ NP

– $1,000,000 Clay Mathematics Institute Prize

• If P = NP, 
– current cryptographic techniques can be broken in polynomial time

– many hard problems can be solved efficiently

26

P vs. NP



• P: design a polynomial-time deterministic 
algorithm to give a correct answer

• NP: for every output, design a 
polynomial-time deterministic algorithm to 
verify the correctness of the answer
– why this seems harder than P?

– Working on Problem 5’ vs reading the 
solution

27

To show a problem is in: 



• Of course you can define it by
– the fastest algorithm for A is faster than the fastest 

algorithm for B
– What is the fastest algorithm?

• A mathematician and an engineer are on desert 
island. They find two palm trees with one coconut 
each. The engineer climbs up one tree, gets the 
coconut, eats. The mathematician climbs up the other 
tree, gets the coconut, climbs the other tree and puts 
it there. "Now we've reduced it to a problem we know 
how to solve."

28

How to prove a problem is 
easier than another?



• Provides a formal, mathematical way to 
say “problem A is easier than B”

• Easier in the sense that A can be 
reduced to B efficiently
– how efficiently? It depends on the context 

29

Complexity theory



• Polynomial-time reduction: convert an instance of A to an 
instance of another decision problem B in polynomial-time
– so that answer to A is “yes” if and only if the answer to B is “yes”

• If you can do this for all instances of A, then it proves that B 
is HARDER than A w.r.t. polynomial-time reduction

30

How a reduction works?

Instance of A Instance of B

Yes

No

Yes

No

P-time



• “Harder” than any NP problems w.r.t. 
polynomial-time reduction
– suppose B is NP-hard

• NP-hard problems
– Dominating set
– Mixed integer programming 31

NP-hard problems

Instance of 
any NP problem A Instance of B

Yes

No

Yes

No

P-time



• https://complexityzoo.uwaterloo.ca/Compl
exity_Zoo

32

Any more complexity classes?



• Linear programming
• Basic computational complexity

– big O notation

– polynomial-time algorithms

– P vs. NP

– reduction

– NP-hard problems

33

Wrap up



• More on computational complexity
– more examples of NP-hardness proofs

• Computational social choice: the easy-to-
compute axiom
– winner determination for some voting rules 

can be NP-hard!
– solve them using MIP in practice

34

Next class


