

Last class: linear programming
and computation

* Linear programming
— variables are positive real numbers
— all constraints are linear, the objective is linear
—inP
* (Mixed) Integer programming
— (Some) All variables are integer
— NP-hard
e Basic computation
— Big O
— Polynomial-time reduction

Today's schedule

* A real proof of NP-hardness
(completeness)

» Computational social choice: the easy-to-
compute axiom

— voting rules that can be computedin P
* satisfies the axiom

— Kemeny: a(nother) real proof of NP-hardness
— IP formulation of Kemeny

How a reduction works?

« Polynomial-time reduction: convert an instance of A to an
instance of another decision problem B in polynomial-time

— so that answer to A is “yes” if and only if the answer to B is “yes”

P-time
Instance of A > Instance of B
Yes € Yes
No € No

 If you can do this for all instances of A, then it proves that B
Is HARDER than A w.r.t. polynomial-time reduction

NP-hard and NP-complete problems

 NP-hard problems

— the decision problems “harder” than any problem in NP
— for any problem A in NP there exits a P-time reduction from A

 NP-complete problems

— the decision problems in NP that are NP-hard
— the “hardest” problems in NP

NP
@ NP-hard

How to prove a problem is NP-hard

* How to put an elephant in a fridge
— Step 1. open the door
— Step 2. put the elephantin

— Step 3. close the door

 To prove a decision problem B is NP-hard
— Step 1. find a problem A
— Step 2. prove that A is NP-hard
— Step 3. find a p-time reduction from A to B
 To prove B is NP-complete
— prove B is NP-hard

— prove B is in NP (find a p-time verification for any correct
answer)

The first known NP-complete problem
« 3SAT

— Input: a logical formula F in conjunction
normal form (CNF) where each clause has
exactly 3 literals

o F=(x; Vx, Vx3) A (=x; Vs Vg) A (=, Vs V)
— Answer: Is F satisfiable?

« 3SAT is NP-complete (Cook-Levin
theorem)

Vertex cover (VC)

* Vertex cover (VC):

— Given a undirected graph and a natural number k.

— Does there exists a set S of no more than k vertices so
that every edge has an endpointin §

« Example: Does there exists a vertex cover of 4?

VC is NP-complete
« Given F= (x; Vi, V) A (= V=g Vi) A (=, Vg Vi)

 Does there exist a vertex cover of 4+2*37

PSRN PSRN PSRN PSRN
/7 N / \ /7 N Vi N
«x \—l_'x (.X —«—Ix [X —1 X7} [Xqg ———7 X!
y Y 2, 2! X3) =) Xy) Xy,
s_/ - s ~
1
l_IXI “_Ile\
[\ | \ \ { \ e | \
\\ 3/,’ ‘\\ 21/‘ ‘\\ :O)/‘ ‘\\ 4//‘ ‘\\ 31/‘ ‘\\ ?-/'

Notes

* More detalls:
http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2

001/CW/npproof.html

* A yes to B must correspondto a yes to A
— If yes<no then this proves coNP-hardness

* The best source for NP-complete problems

— Computers and Intractability: A Guide to the Theory of
NP-Completeness

— by M. R. Garey and D. S. Johnson

— cited for >46k times [Google Scholar]

e vs the “most cited book” The Structure of Scientific
Revolutions 59K 10

The easy-to-compute axiom

* A voting rule satisfies the easy-to-
compute axiom if computing the winner
can be done in polynomial time
— P: easy to compute
— NP-hard: hard to compute
— assuming P#NP

11

The winner determination problem

» Given: a voting rule r

* |nput: a preference profile D and an
alternative c
— Input size: nmlog m

* Output: is ¢ the winner of r under D?

12

Computing positional scoring rules

* |If following the description of r the winner can
be computed in p-time, then r satisfies the
easy-to-compute axiom

* Positional scoring rule

— For each alternative (m iter)

» for each vote in D (n iter)
— find the position of m, find the score of this position

— Find the alternative with the largest score (m: iter)

— Total time O(mn+m)=0(mn)
13

Computing the weighted
majority graph

* For each pair of alternatives c,d (m(m-1) iter)
—letk=0
— for each vote R

 if c>d add 1 to the counter &

 if d>c subtract 1 from &

— the weighton the edge c—d is k

14

Kemeny's rule

« Kendall tau distance
— K(R,W)= # {different pairwise comparisons}
K(b>c>a,a>b>c)= 2
* Kemeny(D)=argmin,, K(D,W)
=argmin,, 2. , K(R,W)
* For single winner, choose the top-ranked
alternative in Kemeny(D)

15

Computing the Kemeny winner

* For each linear order W (m! iter)

— for each vote R in D (n iter)
« compute K(R,W)

* Find W* with the smallest total distance
— W*=argminy, K(D,W)=argminy, 2 p,K(R,W)
— top-ranked alternative at W* is the winner

» Takes exponential O(m!n) time!

16

Kemeny

Ranking R — direct acyclic complete graph G(R)

a b
=[]
C > d

Given the WMG G(D) of the input profile D
K(D,W) =Z,_,,cgw (n-wla—b))/2
= constant- >, ,, 5w w(a—b)/2

argminy, K(D,W)=argmaxy,2, ., < w(a—b)

17

Kemeny is NP-hard to compute

* Reduction from feedback arc set
— Given a directed graph and a number k

— does there exist a way to eliminate no more
than k£ edges to obtain an acyclic graph?

61/6\61
AN
NN

18

Satisfiability of easy-to-compute

Rule Complexity

Positional scoring

Plurality w/ runoff
STV -
Copeland \/

Maximin

Ranked pairs

Kemeny -
Slater NP-hard (&%
Dodgson

19

Solving Kemeny in practice

* For each pair of alternatives a, b there is a
binary variable x ,

»x,=1ifa>bin W
»x,=0ifb>ain W
* max X, ,w(a—b)x,,
s.t. foralla, b, x,,+x,,=1 No edges in both directions
forall a, b, c, x,+x,.+x,.,<2 No cycle of 3 vertices

* Do we need to worry about cycles of >3
vertices”? Homework

20

Advanced computational
techniques

* Approximation
« Randomization

* Fixed-parameter analysis

21

Next class: combinatorial voting

In California, voters voted on 11 binary issues (

&by
— 211=2048 combinations in total
— 5/11 are about budget and taxes

 Prop.30 Increase sales

and some income tax
for education

* Prop.38 Increase

income tax on almost
everyone for education

22

