
Feb 19, 2016

Lirong Xia

Computational social choice
The easy-to-compute axiom

• Linear programming
– variables are positive real numbers
– all constraints are linear, the objective is linear
– in P

• (Mixed) Integer programming
– (Some) All variables are integer
– NP-hard

• Basic computation
– Big O
– Polynomial-time reduction

2

Last class: linear programming
and computation

• A real proof of NP-hardness
(completeness)

• Computational social choice: the easy-to-
compute axiom
– voting rules that can be computed in P

• satisfies the axiom

– Kemeny: a(nother) real proof of NP-hardness
– IP formulation of Kemeny

3

Today’s schedule

• Polynomial-time reduction: convert an instance of A to an
instance of another decision problem B in polynomial-time
– so that answer to A is “yes” if and only if the answer to B is “yes”

• If you can do this for all instances of A, then it proves that B
is HARDER than A w.r.t. polynomial-time reduction

4

How a reduction works?

Instance of A Instance of B

Yes

No

Yes

No

P-time

• NP-hard problems
– the decision problems “harder” than any problem in NP
– for any problem A in NP there exits a P-time reduction from A

• NP-complete problems
– the decision problems in NP that are NP-hard
– the “hardest” problems in NP

5

NP-hard and NP-complete problems

P NP-hard
NP

NP-C

• How to put an elephant in a fridge
– Step 1. open the door
– Step 2. put the elephant in
– Step 3. close the door

• To prove a decision problem B is NP-hard
– Step 1. find a problem A
– Step 2. prove that A is NP-hard
– Step 3. find a p-time reduction from A to B

• To prove B is NP-complete
– prove B is NP-hard
– prove B is in NP (find a p-time verification for any correct

answer)

6

How to prove a problem is NP-hard

• 3SAT
– Input: a logical formula F in conjunction

normal form (CNF) where each clause has
exactly 3 literals

• F = (x1∨x2∨x3)∧(¬x1∨¬x3∨x4)∧(¬x2∨x3∨¬x4)

– Answer: Is F satisfiable?

• 3SAT is NP-complete (Cook-Levin
theorem)

7

The first known NP-complete problem

• Vertex cover (VC):
– Given a undirected graph and a natural number k.
– Does there exists a set S of no more than k vertices so

that every edge has an endpoint in S

• Example: Does there exists a vertex cover of 4?

8

Vertex cover (VC)

• Given F= (x1∨x2∨x3)∧(¬x1∨¬x3∨x4)∧(¬x2∨x3∨¬x4)

• Does there exist a vertex cover of 4+2*3?

9

VC is NP-complete

x3 x2

x1

¬x1x1 ¬x2x2 ¬x3x3

¬x3 x4

¬x1

x3 ¬x4

¬x2

¬x4x4

• More details:
http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2
001/CW/npproof.html

• A yes to B must correspond to a yes to A
– if yes↔no then this proves coNP-hardness

• The best source for NP-complete problems
– Computers and Intractability: A Guide to the Theory of

NP-Completeness
– by M. R. Garey and D. S. Johnson
– cited for >46k times [Google Scholar]

• vs the “most cited book” The Structure of Scientific
Revolutions 59K 10

Notes

• A voting rule satisfies the easy-to-
compute axiom if computing the winner
can be done in polynomial time
– P: easy to compute

– NP-hard: hard to compute

– assuming P≠NP

11

The easy-to-compute axiom

• Given: a voting rule r
• Input: a preference profile D and an

alternative c
– input size: nmlog m

• Output: is c the winner of r under D?

12

The winner determination problem

• If following the description of r the winner can
be computed in p-time, then r satisfies the
easy-to-compute axiom

• Positional scoring rule
– For each alternative (m iter)

• for each vote in D (n iter)
– find the position of m, find the score of this position

– Find the alternative with the largest score (m iter)
– Total time O(mn+m)=O(mn)

13

Computing positional scoring rules

• For each pair of alternatives c,d (m(m-1) iter)
– let k = 0

– for each vote R
• if c>d add 1 to the counter k

• if d>c subtract 1 from k

– the weight on the edge c→d is k

14

Computing the weighted
majority graph

• Kendall tau distance
– K(R,W)= # {different pairwise comparisons}

• Kemeny(D)=argminW K(D,W)

=argminW ΣR∈D K(R,W)

• For single winner, choose the top-ranked
alternative in Kemeny(D)

15

Kemeny’s rule

K(b ≻ c ≻ a , a ≻ b ≻ c) = 2

• For each linear order W (m! iter)
– for each vote R in D (n iter)

• compute K(R,W)

• Find W* with the smallest total distance
– W*= argminW K(D,W)=argminWΣR∈DK(R,W)

– top-ranked alternative at W* is the winner

• Takes exponential O(m!n) time!
16

Computing the Kemeny winner

• Ranking R → direct acyclic complete graph G(R)

• Given the WMG G(D) of the input profile D

• K(D,W) =Σa→b∈G(W) (n-w(a→b))/2

= constant - Σa→b∈G(W) w(a→b)/2

• argminW K(D,W)=argmaxWΣa→b∈G(W) w(a→b)
17

Kemeny

a>b>c>d
ba

c d

• Reduction from feedback arc set
– Given a directed graph and a number k

– does there exist a way to eliminate no more
than k edges to obtain an acyclic graph?

18

Kemeny is NP-hard to compute

c
c1

c2

c1

c2

c2 c2

19

Satisfiability of easy-to-compute

Rule Complexity
Positional scoring

P

Plurality w/ runoff
STV

Copeland
Maximin

Ranked pairs
Kemeny

NP-hardSlater
Dodgson

• For each pair of alternatives a, b there is a
binary variable xab

Øxab = 1 if a>b in W
Øxab = 0 if b>a in W

• max Σa,bw(a→b)xab

s.t. for all a, b, xab+xba=1
for all a, b, c, xab+xbc+xca≤2

• Do we need to worry about cycles of >3
vertices? Homework

20

Solving Kemeny in practice

No edges in both directions

No cycle of 3 vertices

• Approximation
• Randomization

• Fixed-parameter analysis

21

Advanced computational
techniques

• In California, voters voted on 11 binary issues (
/)
– 211=2048 combinations in total
– 5/11 are about budget and taxes

22

Next class: combinatorial voting

• Prop.30 Increase sales
and some income tax
for education

• Prop.38 Increase
income tax on almost
everyone for education

