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Computational social choice
The easy-to-compute axiom



• Linear programming
– variables are positive real numbers
– all constraints are linear, the objective is linear
– in P

• (Mixed) Integer programming
– (Some) All variables are integer
– NP-hard

• Basic computation
– Big O
– Polynomial-time reduction

2

Last class: linear programming 
and computation



• A real proof of NP-hardness 
(completeness) 

• Computational social choice: the easy-to-
compute axiom
– voting rules that can be computed in P

• satisfies the axiom

– Kemeny: a(nother) real proof of NP-hardness
– IP formulation of Kemeny
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Today’s schedule



• Polynomial-time reduction: convert an instance of A to an 
instance of another decision problem B in polynomial-time
– so that answer to A is “yes” if and only if the answer to B is “yes”

• If you can do this for all instances of A, then it proves that B 
is HARDER than A w.r.t. polynomial-time reduction
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How a reduction works?

Instance of A Instance of B

Yes

No

Yes

No

P-time



• NP-hard problems
– the decision problems “harder” than any problem in NP
– for any problem A in NP there exits a P-time reduction from A

• NP-complete problems
– the decision problems in NP that are NP-hard
– the “hardest” problems in NP
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NP-hard and NP-complete problems

P NP-hard
NP

NP-C



• How to put an elephant in a fridge
– Step 1. open the door
– Step 2. put the elephant in
– Step 3. close the door

• To prove a decision problem B is NP-hard
– Step 1. find a problem A
– Step 2. prove that A is NP-hard
– Step 3. find a p-time reduction from A to B

• To prove B is NP-complete
– prove B is NP-hard
– prove B is in NP (find a p-time verification for any correct 

answer)
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How to prove a problem is NP-hard



• 3SAT
– Input: a logical formula F in conjunction 

normal form (CNF) where each clause has 
exactly 3 literals

• F = (x1∨x2∨x3)∧(¬x1∨¬x3∨x4)∧(¬x2∨x3∨¬x4)

– Answer: Is F satisfiable?

• 3SAT is NP-complete (Cook-Levin 
theorem)
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The first known NP-complete problem



• Vertex cover (VC): 
– Given a undirected graph and a natural number k. 
– Does there exists a set S of no more than k vertices so 

that every edge has an endpoint in S

• Example: Does there exists a vertex cover of 4? 
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Vertex cover (VC)



• Given F= (x1∨x2∨x3)∧(¬x1∨¬x3∨x4)∧(¬x2∨x3∨¬x4)

• Does there exist a vertex cover of 4+2*3?
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VC is NP-complete

x3 x2

x1
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• More details: 
http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2
001/CW/npproof.html

• A yes to B must correspond to a yes to A
– if yes↔no then this proves coNP-hardness

• The best source for NP-complete problems
– Computers and Intractability: A Guide to the Theory of 

NP-Completeness
– by M. R. Garey and D. S. Johnson
– cited for >46k times [Google Scholar]

• vs the “most cited book” The Structure of Scientific 
Revolutions 59K 10

Notes



• A voting rule satisfies the easy-to-
compute axiom if computing the winner 
can be done in polynomial time
– P: easy to compute

– NP-hard: hard to compute

– assuming P≠NP
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The easy-to-compute axiom



• Given: a voting rule r
• Input: a preference profile D and an 

alternative c
– input size: nmlog m

• Output: is c the winner of r under D?
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The winner determination problem



• If following the description of r the winner can 
be computed in p-time, then r satisfies the 
easy-to-compute axiom

• Positional scoring rule
– For each alternative (m iter)

• for each vote in D (n iter)
– find the position of m, find the score of this position

– Find the alternative with the largest score (m iter)
– Total time O(mn+m)=O(mn)
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Computing positional scoring rules



• For each pair of alternatives c,d (m(m-1) iter)
– let k = 0

– for each vote R
• if c>d add 1 to the counter k

• if d>c subtract 1 from k

– the weight on the edge c→d is k
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Computing the weighted 
majority graph



• Kendall tau distance 
– K(R,W)= # {different pairwise comparisons}

• Kemeny(D)=argminW K(D,W)

=argminW ΣR∈D K(R,W)

• For single winner, choose the top-ranked 
alternative in Kemeny(D)
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Kemeny’s rule

K(  b ≻ c ≻ a , a ≻ b ≻ c ) = 2



• For each linear order W (m! iter)
– for each vote R in D (n iter)

• compute K(R,W)

• Find W* with the smallest total distance 
– W*= argminW K(D,W)=argminWΣR∈DK(R,W)

– top-ranked alternative at W* is the winner

• Takes exponential O(m!n) time!
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Computing the Kemeny winner



• Ranking R → direct acyclic complete graph G(R)

• Given the WMG G(D) of the input profile D

• K(D,W) =Σa→b∈G(W) (n-w(a→b))/2 

= constant - Σa→b∈G(W) w(a→b)/2

• argminW K(D,W)=argmaxWΣa→b∈G(W) w(a→b)
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Kemeny

a>b>c>d
ba

c d



• Reduction from feedback arc set
– Given a directed graph and a number k

– does there exist a way to eliminate no more 
than k edges to obtain an acyclic graph?
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Kemeny is NP-hard to compute

c
c1

c2

c1

c2

c2 c2
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Satisfiability of easy-to-compute

Rule Complexity
Positional scoring

P

Plurality w/ runoff
STV

Copeland
Maximin

Ranked pairs
Kemeny

NP-hardSlater
Dodgson



• For each pair of alternatives a, b there is a 
binary variable xab

Øxab = 1 if a>b in W
Øxab = 0 if b>a in W

• max Σa,bw(a→b)xab

s.t. for all a, b, xab+xba=1
for all a, b, c, xab+xbc+xca≤2

• Do we need to worry about cycles of >3 
vertices? Homework
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Solving Kemeny in practice

No edges in both directions 

No cycle of 3 vertices



• Approximation
• Randomization

• Fixed-parameter analysis
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Advanced computational 
techniques



• In California, voters voted on 11 binary issues (     
/      )
– 211=2048 combinations in total
– 5/11 are about budget and taxes
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Next class: combinatorial voting

• Prop.30 Increase sales 
and some income tax 
for education

• Prop.38 Increase 
income tax on almost 
everyone for education


