Computational social choice The hard-to-manipulate axiom

Lirong Xia

Feb 26, 2016

Old news in the world

- Scottish independence referendum
 - 45% yes vs 55% no
- The YouGov survey predicts Scots have rejected independence by a margin of 54% to 46%
 - based on the responses of 1,828 people after they voted, as well as 800 people who had already cast their ballots
 - Peter Kellner of YouGov said: "At risk of looking utterly ridiculous in a few hours time, I would say it's a 99% chance of a No victory."
- Where does this 99% come from?
 - we will learn in the hypothesis testing class

Last class: combinatorial voting

Strategic behavior (of the agents)

- Manipulation: an agent (manipulator) casts a vote that does not represent her true preferences, to make herself better off
- A voting rule is strategy-proof if there is never a (beneficial) manipulation under this rule

- truthful direct revelation mechanism

Is strategy-proofness compatible with other axioms?

Any strategy-proof voting rule?

- No reasonable voting rule is strategyproof
- Gibbard-Satterthwaite Theorem [Gibbard Econometrica-73, Satterthwaite JET-75]: When there are at least three alternatives, no voting rules except dictatorships satisfy
 - non-imposition: every alternative wins for some profile
 - unrestricted domain: voters can use any linear order as their votes
 - strategy-proofness
- Axiomatic characterization for dictatorships!
- Revelation principle: among all voting rules that satisfy nonimposition and unrestricted domain, only dictatorships can be implemented w.r.t. dominant strategy
- Randomized version [Gibbard Econometrica-77]

A few ways out

- Relax non-dictatorship: use a dictatorship
- Restrict the number of alternatives to 2
- Relax unrestricted domain: mainly pursued by economists
 - Single-peaked preferences:
 - Range voting: A voter submit any natural number between 0 and 10 for each alternative
 - Approval voting: A voter submit 0 or 1 for each alternative 7

Computational thinking

- Use a voting rule that is too complicated so that nobody can easily predict the winner
 - Dodgson
 - Kemeny
 - The randomized voting rule used in Venice Republic for more than 500 years [Walsh&Xia AAMAS-12]
- We want a voting rule where
 - Winner determination is easy
 - Manipulation is hard
- The hard-to-manipulate axiom: manipulation under the given voting rule is NP-hard

Manipulation: A computational complexity perspective

- If it is computationally too hard for a manipulator to compute a manipulation, she is best off voting truthfully
 - Similar as in cryptography

For which common voting rules manipulation is computationally hard?

Unweighted coalitional manipulation (UCM) problem

- Given
 - The voting rule *r*
 - The non-manipulators' profile PNM
 - The number of manipulators n'
 - The alternative *c* preferred by the manipulators
- We are asked whether or not there exists a profile *P^M* (of the manipulators) such that *c* is the winner of *P^{NM}* ∪ *P^M* under *r*

The stunningly big table for UCM

#manipulators	One manipulator		At least two		
Copeland	P	[BTT SCW-89b]	NPC	[FHS AAMAS-08,10]	
STV	NPC	[BO SCW-91]	NPC	[BO SCW-91]	
Veto	P	[ZPR AIJ-09]	P	[ZPR AIJ-09]	
Plurality with runoff	P	[ZPR AIJ-09]	P	[ZPR AIJ-09]	
Сир	Р	[CSL JACM-07]	Р	[CSL JACM-07]	
Borda	P	[BTT SCW-89b]	NPC	[DKN+ AAAI-11] [BNW IJCAI-11]	¥ ¥
Maximin	P	[BTT SCW-89b]	NPC	[XZP+ IJCAI-09]	
Ranked pairs	NPC	[XZP+ IJCAI-09]	NPC	[XZP+ IJCAI-09]	
Bucklin	P	[XZP+ IJCAI-09]	P	[XZP+ IJCAI-09]	
Nanson's rule	NPC	[NWX AAA-11]	NPC	[NWX AAA-11]	
Baldwin's rule	NPC	[NWX AAA-11]	NPC	[NWX AAA-11]	

Nanson & Baldwin in the news

What can we conclude?

- For some common voting rules, computational complexity provides some protection against manipulation
- Is computational complexity a strong barrier?
 - NP-hardness is a worst-case concept

Probably NOT a strong barrier

1. Frequency of manipulability

2. Easiness of Approximation

3. Quantitative G-S

A first angle: frequency of manipulability

- Non-manipulators' votes are drawn i.i.d.
 - E.g. i.i.d. uniformly over all linear orders (the impartial culture assumption)
- How often can the manipulators make *c* win?
 - Specific voting rules [Peleg T&D-79, Baharad&Neeman RED-02, Slinko T&D-02, Slinko MSS-04, Procaccia and Rosenschein AAMAS-07]

A general result [Xia&Conitzer EC-08a]

- Theorem. For any generalized scoring rule
 - Including many common voting rules

# maninulators	All-powerful	$\Theta(\sqrt{n})$
	No power	O(m)

- Computational complexity is not a strong barrier against manipulation
 - UCM as a decision problem is easy to compute in most cases
 - The case of $\Theta(\sqrt{n})$ has been studied experimentally in [Walsh IJCAI-09]

A second angle: approximation

- Unweighted coalitional optimization
 (UCO): compute the smallest number of
 manipulators that can make *c* win
 - A greedy algorithm has additive error no more than 1 for Borda [Zuckerman, Procaccia, &Rosenschein AlJ-09]

An approximation algorithm for positional scoring rules[Xia,Conitzer,& Procaccia EC-10]

- A polynomial-time approximation algorithm that works for all positional scoring rules
 - Additive error is no more than *m*-2
 - Based on a new connection between UCO for positional scoring rules and a class of scheduling problems
- Computational complexity is not a strong barrier against manipulation
 - The cost of successful manipulation can be easily approximated (for positional scoring rules)

The scheduling problems $Q|pmtn|C_{max}$

- m^* parallel uniform machines M_1, \ldots, M_{m^*}
 - Machine *i*'s speed is sⁱ (the amount of work done in unit time)
- $n^* \text{ jobs } J_1, ..., J_{n^*}$
- preemption: jobs are allowed to be interrupted (and resume later maybe on another machine)
- We are asked to compute the minimum makespan
 - the minimum time to complete all jobs

Thinking about UCO_{pos}

• Let p, p_1, \dots, p_{m-1} be the total points that c, c_1, \dots, c_{m-1} obtain in the non-manipulators' profile

Complexity of UCM for Borda

- Manipulation of positional scoring rules = scheduling (preemptions at integer time points)
 - Borda manipulation corresponds to scheduling where the machines speeds are m-1, m-2, ..., 0
 - NP-hard [Yu, Hoogeveen, & Lenstra J.Scheduling 2004]
 - UCM for Borda is NP-C for two manipulators
 - [Davies et al. AAAI-11 best paper]
 - [Betzler, Niedermeier, & Woeginger IJCAI-11 best paper]

A third angle: quantitative G-S

- G-S theorem: for any reasonable voting rule there exists a manipulation
- Quantitative G-S: for any voting rule that is "far away" from dictatorships, the number of manipulable situations is non-negligible
 - First work: 3 alternatives, neutral rule [Friedgut, Kalai, &Nisan FOCS-08]
 - Extensions: [Dobzinski&Procaccia WINE-08, Xia&Conitzer EC-08b, Isaksson,Kindler,&Mossel FOCS-10]
 - Finally proved: [Mossel&Racz STOC-12]

Next steps

- The first attempt seems to fail
- Can we obtain positive results for a restricted setting?
 - The manipulators has complete information about the non-manipulators' votes
 - The manipulators can perfectly discuss their strategies

Limited information

 Limiting the manipulator's information can make dominating manipulation computationally harder, or even impossible [Conitzer,Walsh,&Xia AAAI-11]

Bayesian information [Lu et al. UAI-12]

Limited communication among manipulators

- The leader-follower model
 - The leader broadcast a vote W, and the potential followers decide whether to cast W or not
 - The leader and followers have the same preferences
 - Safe manipulation [Slinko&White COMSOC-08]: a vote W that
 - No matter how many followers there are, the leader/potential followers are not worse off
 - Sometimes they are better off
 - Complexity: [Hazon&Elkind SAGT-10, lanovski et al. IJCAI-11]

Research questions

- How to predict the outcome?
 - Game theory
- How to evaluate the outcome?
- Price of anarchy [Koutsoupias&Papadimitriou STACS-99]
 - Optimal welfare when agents are truthful

Worst welfare when agents are fully strategic

- Not very applicable in the social choice setting
 - Equilibrium selection problem
 - Social welfare is not well defined
 - Use best-response game to select an equilibrium and use scores as social welfare [Brânzei et al. AAAI-13]

Simultaneous-move voting games

- Players: Voters 1,...,n
- Strategies / reports: Linear orders over alternatives
- Preferences: Linear orders over alternatives
- Rule: r(P'), where P' is the reported profile

Equilibrium selection problem

Stackelberg voting games [Xia&Conitzer AAAI-10]

- Voters vote sequentially and strategically
 - voter $1 \rightarrow \text{voter } 2 \rightarrow \text{voter } 3 \rightarrow \dots \rightarrow \text{voter } n$
 - any terminal state is associated with the winner under rule r
- Called a Stackelberg voting game
 - Unique winner in SPNE (not unique SPNE)
 - Similar setting in [Desmedt&Elkind EC-10]

Other types of strategic behavior (of the chairperson)

- Procedure control by
 - {adding, deleting} \times {voters, alternatives}
 - partitioning voters/alternatives
 - introducing clones of alternatives
 - changing the agenda of voting
 - [Bartholdi, Tovey, &Trick MCM-92, Tideman SCW-07, Conitzer, Lang, &Xia IJCAI-09]
- Bribery [Faliszewski, Hemaspaandra, & Hemaspaandra JAIR-09]
- See [Faliszewski, Hemaspaandra, &Hemaspaandra CACM-10] for a survey on their computational complexity
- See [Xia EC-15] for a framework for studying many of these for generalized scoring rules 32

Next class: statistical approaches

