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• Start to think about the topic for project
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Announcement



• Various “undesirable” behavior
– manipulation

– bribery

– control
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Last class: manipulation

NP-
Hard
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Outline: statistical approaches
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Condorcet’s MLE model
(history)

A General framework

Why MLE? Why Condorcet’s 
model?

Random Utility Models

Model selection



The Condorcet Jury theorem. 
• Given

– two alternatives {a,b}. 
– 0.5<p<1, 

• Suppose
– each agent’s preferences is generated i.i.d., such that
– w/p p, the same as the ground truth
– w/p 1-p, different from the ground truth

• Then, as n→∞, the majority of agents’ preferences 
converges in probability to the ground truth
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The Condorcet Jury theorem 
[Condorcet 1785]



• Composed of three parts
– A parameter space: Θ

– A sample space: S = Rankings(C)n

• C = the set of  alternatives, n=#voters

• assuming votes are i.i.d.

– A set of probability distributions over S: 

{Pr(s|θ) for each s∈Rankings(C) and θ∈Θ}
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Parametric ranking models



Maximum likelihood estimator (MLE) 
mechanism

• For any profile D=(P1,…,Pn),
– The likelihood of Θ is L(Θ|D)=Pr(D|Θ)=∏P∈D 

Pr(P|Θ)
– The MLE mechanism

MLE(D)=argmaxΘL(Θ|D)
– Decision space = Parameter space

“Ground truth”Θ

P1 P2 Pn…
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Model: Mr



• Use a statistical model to explain the data 
(preference profile)
– Condorcet’s model

• Use likelihood inference to make a 
decision
– Decision space = Parameter space

– not necessarily MLE
9

Condorcet’s MLE approach
[Condorcet 1785]



• Parameterized by an opinion (simple directed graphs)

• Given a “ground truth” opinion W and p>1/2, generate 
each pairwise comparison in V independently as 
follows (suppose  c ≻ d in W)

• MLE ranking is the Kemeny rule [Young APSR-88]
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Condorcet’s model 
[Condorcet 1785]

Pr(  b ≻ c ≻ a | a ≻ b ≻ c ) = (1-p)p (1-p)p (1-p)2

c≻d in W
c≻d in Vp

d≻c in V1-p
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Condorcet’s model for more 
than 2 alternatives [Young 1988]

• Not very clear in Young’s paper, email Lirong for a working note 
that proofs this according to Young’s calculations
– message 1: Condorcet’s model is different from the Mallows model
– message 2: Kemeny is not an MLE of Condorcet (but it is an MLE of 

Mallows)

• Fix 0.5<p<1, parameter space: all binary relations over the 
alternatives
– may contain cycles

• Sample space: each vote is a all binary relations over the 
alternatives

• Probabilities: given a ground truth binary relation
– comparison between a and b is generated i.i.d. and is the same as 

the comparison between a and b in the ground truth with probability p

• Also studied in [ES UAI-14]



• Fix ϕ<1, parameter space
– all full rankings over alternatives
– different from Condorcet’s model

• Sample space
– i.i.d. generated full rankings over alternatives
– different from Condorcet’s model

• Probabilities: given a ground truth ranking W, 
generate a ranking V w.p.
– Pr(V|W)∝ ϕ Kendall(V,W)
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Mallows model [Mallows 1957]



• Given
– statistical model: Θ, S, Pr(s|θ)
– decision space: D
– loss function: L(θ, d)∈ℝ

• Make a good decision based on data
– decision function f : data⟶D
– Bayesian expected lost: 

• ELB(data, d) = Eθ|dataL(θ,d)

– Frequentist expected lost: 
• ELF(θ, f ) = Edata|θL(θ,f(data))

– Evaluated w.r.t. the objective ground truth
• different from the approaches evaluated w.r.t. agents’ subjective 

utilities [BCH+ EC-12] 13

Statistical decision theory
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Statistical decision framework

ground 
truth Θ

P1 Pn
……

Mr

Decision 
(winner, ranking, etc)

Information about the
ground truth

P1 P2 Pn
…

Step 1: statistical inference

Data D

Given Mr
Step 2: decision making



Mr = Condorcet’ model
Step 1: MLE
Step 2: top-alternative
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Example: Kemeny
Winner

The most probable ranking

P1 P2 Pn
…

Step 1: MLE

Data D

Step 2: top-1 alternative



• Frequentist
– there is an unknown 

but fixed ground truth

– p = 10/14=0.714

– Pr(2heads|p=0.714) 
=(0.714)2=0.51>0.5

– Yes!
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Frequentist vs. Bayesian in general

• Bayesian
– the ground truth is 

captured by a belief 
distribution

– Compute Pr(p|Data) 
assuming uniform prior

– Compute 
Pr(2heads|Data)=0.485<0
.5

– No!

Credit: Panos Ipeirotis
& Roy Radner

• You have a biased coin: head w/p p
– You observe 10 heads, 4 tails

– Do you think the next two tosses will be two heads in a row?



Mr = Condorcet’ model
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Classical Kemeny [Fishburn-77]

Winner

The most probable ranking

P1 P2 Pn
…

Step 1: MLE

Data D

Step 2: top-1 alternative

This is the Kemeny rule 
(for single winner)!
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Example: Bayesian

Mr = Condorcet’ model

Winner

Posterior over rankings

P1 P2 Pn
…

Step 1: Bayesian update

Data D

Step 2: mostly likely top-1

This is a new rule!



Anonymity, 
neutrality, 

monotonicity
Consistency Condorcet Easy to 

compute

Kemeny
(Fishburn
version) Y N

Y N

Bayesian N Y
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Classical Kemeny vs. Bayesian

Lots of open questions!



Outline: statistical 
approaches
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Condorcet’s MLE model
(history)

Why MLE? Why Condorcet’s 
model?

A General framework



• When the outcomes are winning alternatives
– MLE rules must satisfy consistency: if r(D1)∩r(D2)≠ϕ, 

then r(D1∪D2)=r(D1)∩r(D2)
– All classical voting rules except positional scoring rules 

are NOT MLEs

• Positional scoring rules are MLEs
• This is NOT a coincidence!

– All MLE rules that outputs winners satisfy anonymity and 
consistency

– Positional scoring rules are the only voting rules that satisfy 
anonymity, neutrality, and consistency! [Young SIAMAM-75] 21

Classical voting rules as MLEs 
[Conitzer&Sandholm UAI-05]



• When the outcomes are winning rankings
– MLE rules must satisfy reinforcement (the 

counterpart of consistency for rankings)
– All classical voting rules except positional 

scoring rules and Kemeny are NOT MLEs
• This is not (completely) a coincidence!

– Kemeny is the only preference function (that 
outputs rankings) that satisfies neutrality, 
reinforcement, and Condorcet consistency 
[Young&Levenglick SIAMAM-78]
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Classical voting rules as MLEs 
[Conitzer&Sandholm UAI-05]



• Condorcet’s model
– not very natural

– computationally hard

• Other classic voting rules
– most are not MLEs

– models are not very natural either

– approximately compute the MLE 23

Are we happy?



New mechanisms via the 
statistical decision framework

Model selection
– How can we evaluate fitness?

• Frequentist or Bayesian?

• Computation
– How can we compute MLE efficiently?

24

Decision

Information about the
ground truth

Data D

decision making

inference



Outline: statistical 
approaches
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Condorcet’s MLE model
(history)

A General framework

Why MLE? Why Condorcet’s 
model?

Random Utility Models



• Continuous parameters: Θ=(θ1,…, θm)
– m: number of alternatives
– Each alternative is modeled by a utility distribution μi

– θi: a vector that parameterizes μi

• An agent’s perceived utility Ui for alternative ci is generated 
independently according to μi(Ui)

• Agents rank alternatives according to their perceived utilities

– Pr(c2≻c1≻c3|θ1, θ2, θ3) = PrUi ∼ μi (U2>U1>U3)
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Random utility model (RUM)
[Thurstone 27]

U1 U2U3

θ3 θ2 θ1



• Pr(Data |θ1, θ2, θ3) = ∏R∈Data Pr(R |θ1, θ2, θ3)
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Generating a preference-
profile

Parameters

P1= c2≻c1≻c3
Pn= c1≻c2≻c3…

Agent 1 Agent n

θ3 θ2 θ1



• μi’s are Gumbel distributions
– A.k.a. the Plackett-Luce (P-L) model [BM 60, Yellott 77]

• Equivalently, there exist positive numbers λ1,…,λm

• Pros: 
– Computationally tractable

• Analytical solution to the likelihood function
– The only RUM that was known to be tractable

• Widely applied in Economics [McFadden 74], learning to rank [Liu 11],
and analyzing elections [GM 06,07,08,09]

• Cons: does not seem to fit very well

Pr(c1  c2  cm | λ1λm ) =
λ1

λ1 ++λm
×

λ2
λ2 ++λm

××
λm−1

λm−1 +λm
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RUMs with Gumbel
distributions

c1 is the top choice in { c1,…,cm }c2 is the top choice in { c2,…,cm }cm-1 is preferred to cm



• μi’s are normal distributions
– Thurstone’s Case V [Thurstone 27]

• Pros:
– Intuitive
– Flexible

• Cons: believed to be computationally intractable
– No analytical solution for the likelihood function Pr(P | 
Θ) is known
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RUM with normal 
distributions

Pr(c1  cm |Θ) =  µm (Um )µm−1(Um−1)µ1(U1)dU1U2

∞

∫ 
Um

∞

∫ dUm−1 dUm−∞

∞

∫

Um: from -∞ to ∞ Um-1: from Um to ∞ … U1: from U2 to ∞



• Utility distributions μl’s belong to the exponential 
family (EF)
– Includes normal, Gamma, exponential, Binomial, Gumbel, 

etc.

• In each iteration t
• E-step, for any set of parameters Θ

– Computes the expected log likelihood (ELL)

ELL(Θ| Data, Θt) = f (Θ, g(Data, Θt))
• M-step

– Choose Θt+1 = argmaxΘ ELL(Θ| Data, Θt)

• Until |Pr(D|Θt)-Pr(D|Θt+1)|< ε
30

Approximately computed  
by Gibbs sampling

MC-EM algorithm for RUMs 
[APX NIPS-12]



Outline: statistical 
approaches
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Condorcet’s MLE model
(history)

A General framework

Why MLE? Why Condorcet’s 
model?

Random Utility Models

Model selection
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Model selection

Value(Normal)
- Value(PL)

LL Pred. LL AIC BIC
44.8(15.8) 87.4(30.5) -79.6(31.6) -50.5(31.6) 

• Compare RUMs with Normal distributions and PL for
– log-likelihood: log Pr(D|Θ)
– predictive log-likelihood: E log Pr(Dtest|Θ)
– Akaike information criterion (AIC): 2k-2log Pr(D|Θ)
– Bayesian information criterion (BIC): klog n-2log Pr(D|Θ)

• Tested on an election dataset
– 9 alternatives, randomly chosen 50 voters

Red: statistically significant with 95% confidence

Project: model fitness for election data


