Computational social choice Statistical approaches

Lirong Xia

Mar 1, 2016

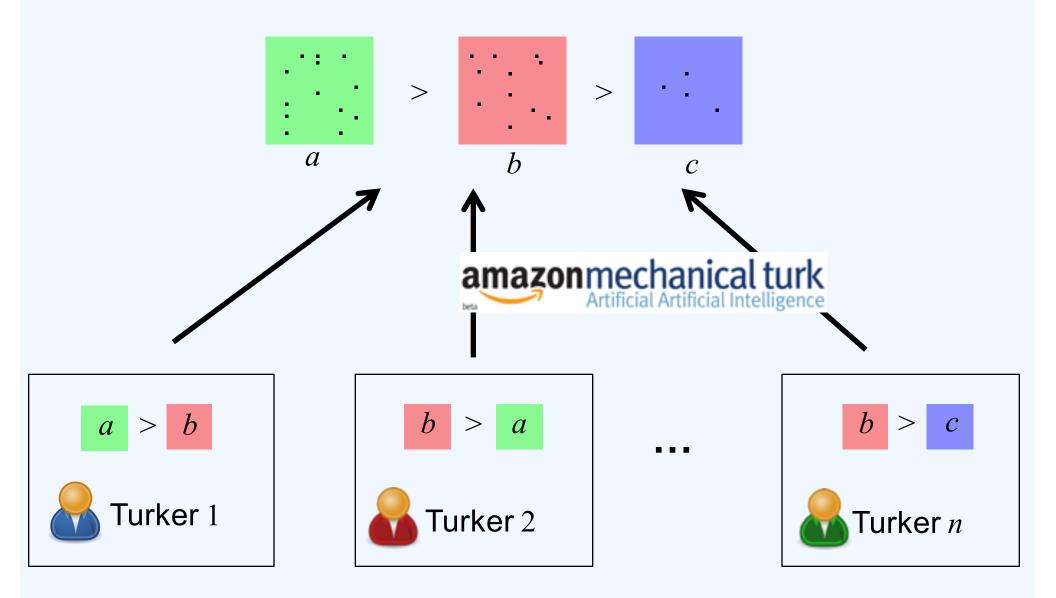
Announcement

• Start to think about the topic for project

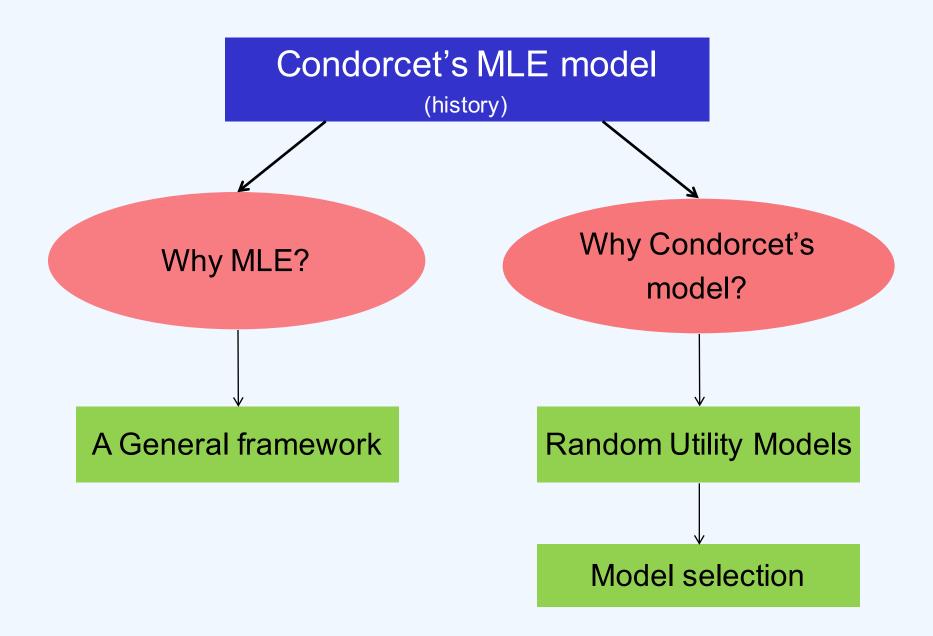
Last class: manipulation

- Various "undesirable" behavior
 - manipulation
 - bribery
 - control

Example: Crowdsourcing



Outline: statistical approaches



The Condorcet Jury theorem [Condorcet 1785]

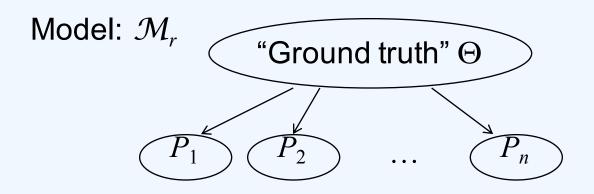
The Condorcet Jury theorem.

- Given
 - two alternatives $\{a,b\}$.
 - 0.5<*p*<1,
- Suppose
 - each agent's preferences is generated i.i.d., such that
 - w/p p, the same as the ground truth
 - w/p 1-p, different from the ground truth
- Then, as $n \rightarrow \infty$, the majority of agents' preferences converges in probability to the ground truth

Parametric ranking models

- Composed of three parts
 - A parameter space: Θ
 - -A sample space: $S = Rankings(C)^n$
 - *C* = the set of alternatives, n=#voters
 - assuming votes are i.i.d.
 - A set of probability distributions over S: {Pr($s|\theta$) for each $s \in \text{Rankings}(C)$ and $\theta \in \Theta$ }

Maximum likelihood estimator (MLE) mechanism



- For any profile $D=(P_1,\ldots,P_n)$,
 - The likelihood of Θ is $L(\Theta|D)=\Pr(D|\Theta)=\prod_{P\in D} \Pr(P|\Theta)$
 - The MLE mechanism $MLE(D) = \operatorname{argmax}_{\Theta} L(\Theta | D)$
 - Decision space = Parameter space

Condorcet's MLE approach [Condorcet 1785]

 Use a statistical model to explain the data (preference profile)

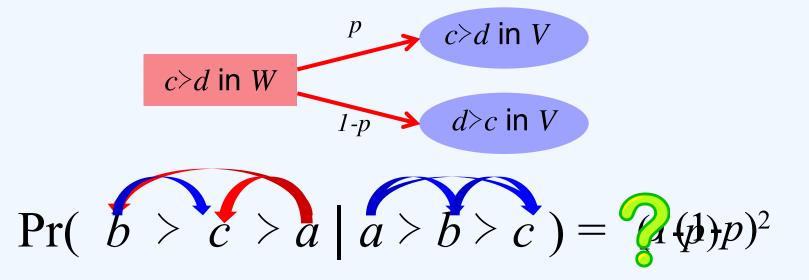
- Condorcet's model

- Use likelihood inference to make a decision
 - Decision space = Parameter space

- not necessarily MLE

Condorcet's model [Condorcet 1785]

- Parameterized by an opinion (simple directed graphs)
- Given a "ground truth" opinion W and p>1/2, generate each pairwise comparison in V independently as follows (suppose c > d in W)



MLE ranking is the Kemeny rule [Young APSR-88]

Condorcet's model for more than 2 alternatives [Young 1988]

- Not very clear in Young's paper, email Lirong for a working note that proofs this according to Young's calculations
 - message 1: Condorcet's model is different from the Mallows model
 - message 2: Kemeny is not an MLE of Condorcet (but it is an MLE of Mallows)
- Fix 0.5<p<1, parameter space: all binary relations over the alternatives
 - may contain cycles
- Sample space: each vote is a all binary relations over the alternatives
- Probabilities: given a ground truth binary relation
 - comparison between a and b is generated i.i.d. and is the same as the comparison between a and b in the ground truth with probability p
- Also studied in [ES UAI-14]

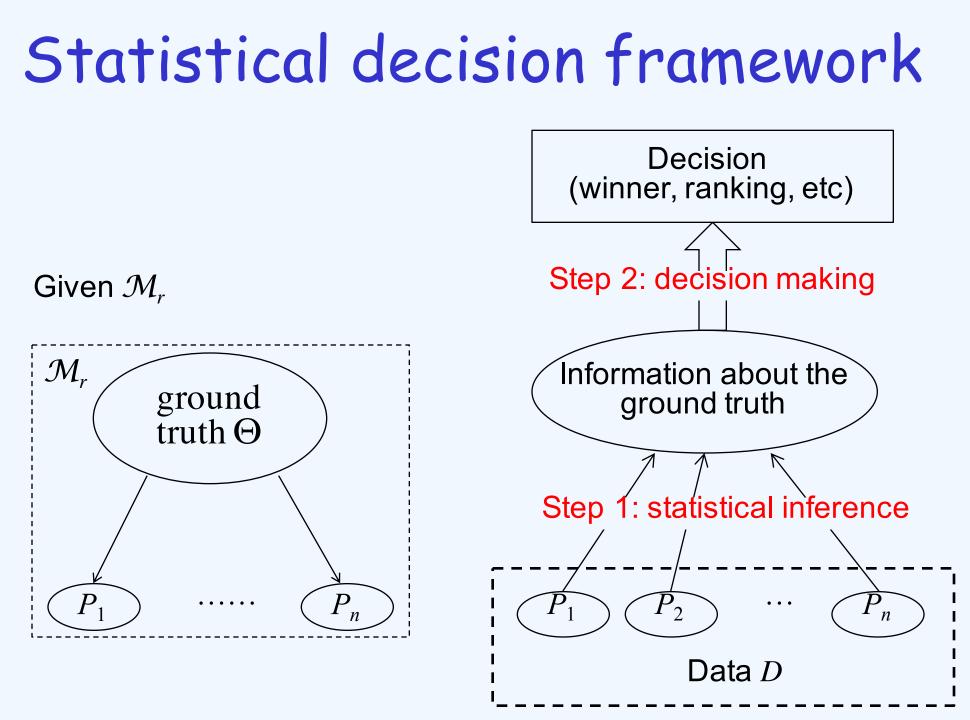
Mallows model [Mallows 1957]

- Fix ϕ <1, parameter space
 - all full rankings over alternatives
 - different from Condorcet's model
- Sample space
 - i.i.d. generated full rankings over alternatives
 - different from Condorcet's model
- Probabilities: given a ground truth ranking *W*, generate a ranking *V* w.p.

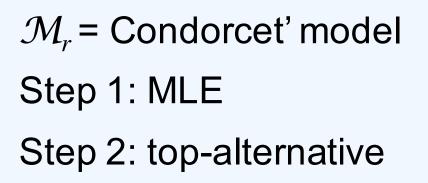
 $-\Pr(V|W) \propto \boldsymbol{\phi}^{\operatorname{Kendall}(V,W)}$

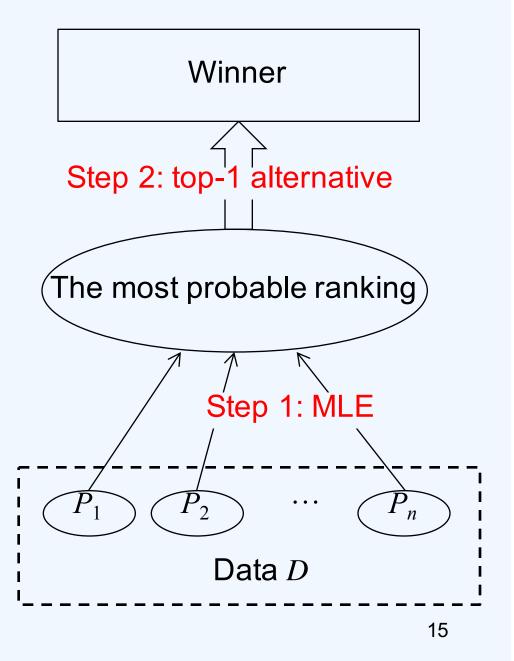
Statistical decision theory

- Given
 - statistical model: Θ , S, Pr(s| θ)
 - decision space: D
 - loss function: $L(\theta, d) \in \mathbb{R}$
- Make a good decision based on data
 - decision function $f: data \rightarrow D$
 - Bayesian expected lost:
 - $EL_B(data, d) = E_{\theta|data}L(\theta, d)$
 - Frequentist expected lost:
 - $\mathsf{EL}_{\mathsf{F}}(\theta, f) = \mathsf{E}_{\mathsf{data}|\theta} \mathsf{L}(\theta, f(\mathsf{data}))$
 - Evaluated w.r.t. the objective ground truth
 - different from the approaches evaluated w.r.t. agents' subjective utilities [BCH+ EC-12]



Example: Kemeny





Frequentist vs. Bayesian in general

- You have a biased coin: head w/p p
 - You observe 10 heads, 4 tails
 - Do you think the next two tosses will be two heads in a row?
 - Frequentist
 - there is an unknown but fixed ground truth

$$-p = 10/14 = 0.714$$

- Pr(2heads|p=0.714)=(0.714)²=0.51>0.5

- Yes!

- Bayesian
 - the ground truth is captured by a belief distribution
 - Compute Pr(p|Data) assuming uniform prior
 - Compute
 Pr(2heads|Data)=0.485<0
 .5

Credit: Panos Ipeirotis

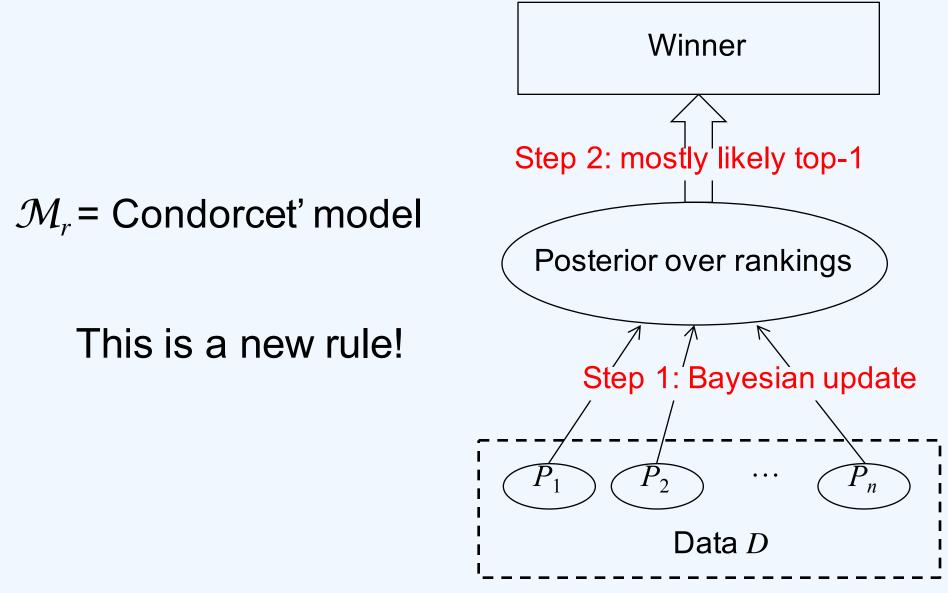
& Roy Radner

- No!

Classical Kemeny [Fishburn-77]

Winner Step 2: top-1 alternative \mathcal{M}_r = Condorcet' model The most probable ranking` This is the Kemeny rule Step 1: MLE (for single winner)! \bar{P}_n \overline{P}_2 Data D

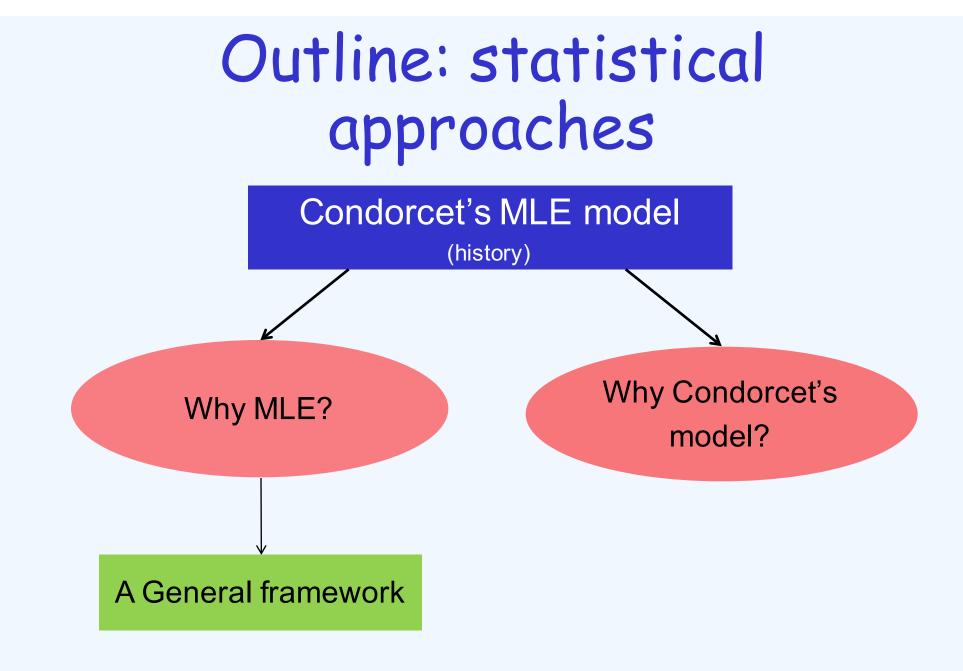
Example: Bayesian



Classical Kemeny vs. Bayesian

	Anonymity, neutrality, monotonicity	Consistency	Condorcet	Easy to compute
Kemeny (Fishburn version)	Y	Ν	Y	Ν
Bayesian			Ν	Y

Lots of open questions!



Classical voting rules as MLEs [Conitzer&Sandholm UAI-05]

- When the outcomes are winning alternatives
 - MLE rules must satisfy consistency: if $r(D_1) \cap r(D_2) \neq \phi$, then $r(D_1 \cup D_2) = r(D_1) \cap r(D_2)$
 - All classical voting rules except positional scoring rules are NOT MLEs
- Positional scoring rules are MLEs
- This is NOT a coincidence!
 - All MLE rules that outputs winners satisfy anonymity and consistency
 - Positional scoring rules are the only voting rules that satisfy anonymity, neutrality, and consistency! [Young SIAMAM-75] 21

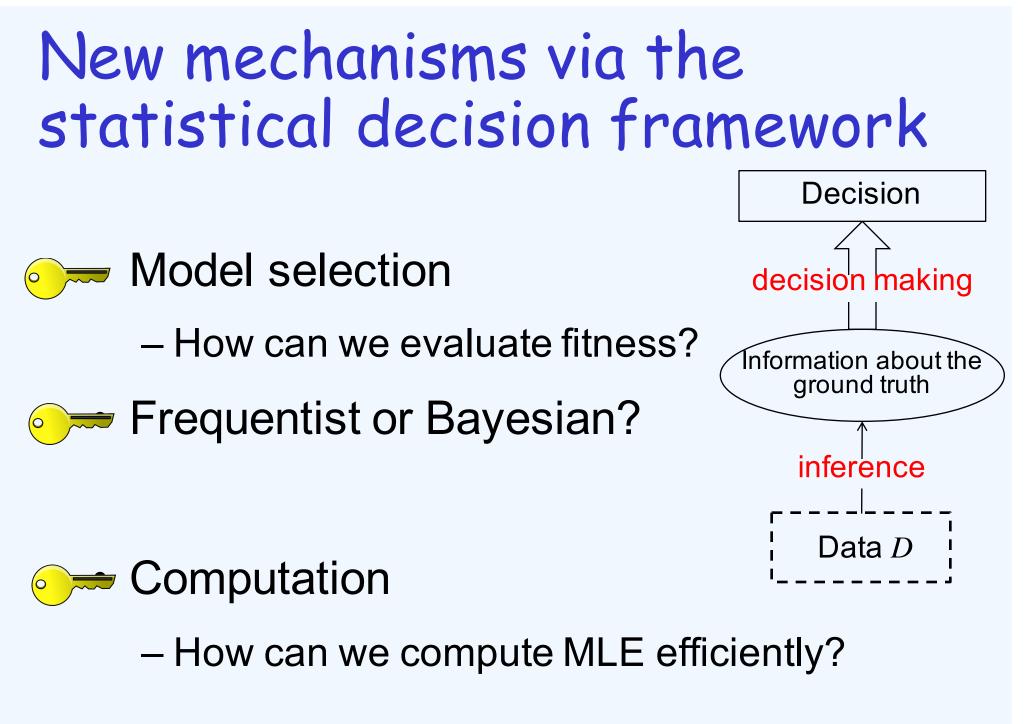
Classical voting rules as MLEs [Conitzer&Sandholm UAI-05]

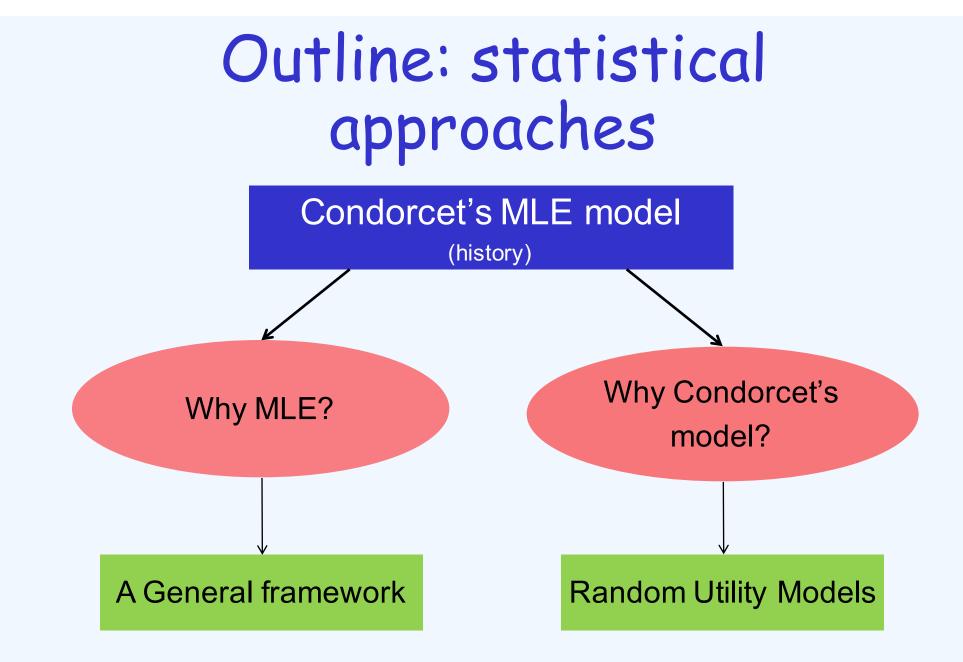
- When the outcomes are winning rankings
 - MLE rules must satisfy reinforcement (the counterpart of consistency for rankings)
 - All classical voting rules except positional scoring rules and Kemeny are NOT MLEs
- This is not (completely) a coincidence!
 - Kemeny is the only preference function (that outputs rankings) that satisfies neutrality, reinforcement, and Condorcet consistency [Young&Levenglick SIAMAM-78]

Are we happy?

- Condorcet's model

 not very natural
 - computationally hard
- Other classic voting rules
 - most are not MLEs
 - models are not very natural either
 - approximately compute the MLE

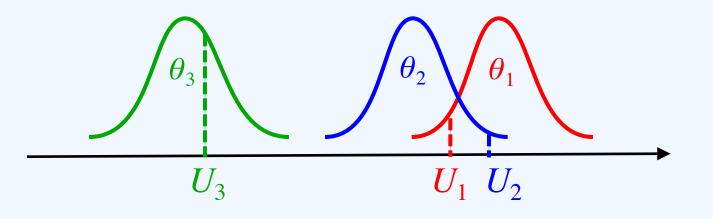




Random utility model (RUM) [Thurstone 27]

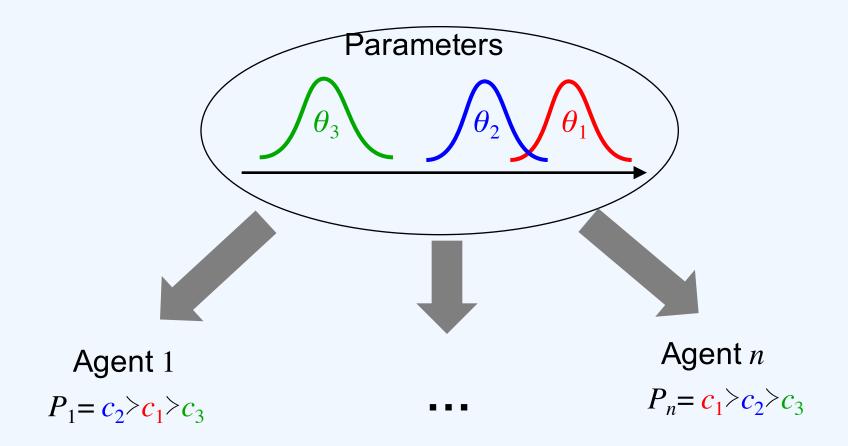
- Continuous parameters: $\Theta = (\theta_1, \dots, \theta_m)$
 - *m*: number of alternatives
 - Each alternative is modeled by a utility distribution μ_i
 - θ_i : a vector that parameterizes μ_i
- An agent's perceived utility U_i for alternative c_i is generated independently according to $\mu_i(U_i)$
- Agents rank alternatives according to their perceived utilities

$$-\Pr(c_{2} > c_{1} > c_{3} | \theta_{1}, \theta_{2}, \theta_{3}) = \Pr_{U_{i} \sim \mu_{i}}(U_{2} > U_{1} > U_{3})$$



Generating a preferenceprofile

• Pr(Data $|\theta_1, \theta_2, \theta_3$) = $\prod_{R \in \text{Data}} \Pr(R | \theta_1, \theta_2, \theta_3)$



RUMs with Gumbel distributions

- μ_i 's are Gumbel distributions
 - A.k.a. the Plackett-Luce (P-L) model [ВМ 60, Yellott 77]
- Equivalently, there exist positive numbers $\lambda_1, \ldots, \lambda_m$

$$\Pr(c_1 \succ c_2 \succ \cdots \succ c_m \mid \lambda_1 \cdots \lambda_m) = \frac{\lambda_1}{\lambda_1 + \cdots + \lambda_m} \times \frac{\lambda_2}{\lambda_2 + \cdots + \lambda_m} \times \cdots \times \frac{\lambda_{m-1}}{\lambda_{m-1} + \lambda_m}$$

 c_2 is the predered to c_{m-1} to predered to c_{m-1}, c_m

🙂 Pros:

- Computationally tractable
 - Analytical solution to the likelihood function
 - The only RUM that was known to be tractable
 - Widely applied in Economics [McFadden 74], learning to rank [Liu 11], and analyzing elections [GM 06,07,08,09]
- Cons: does not seem to fit very well

RUM with normal distributions

- μ_i 's are normal distributions
 - Thurstone's Case V [Thurstone 27]
- 🙂 Pros:
 - Intuitive
 - Flexible

Cons: believed to be computationally intractable

– No analytical solution for the likelihood function $\Pr(P \mid \Theta)$ is known

MC-EM algorithm for RUMs [APX NIPS-12]

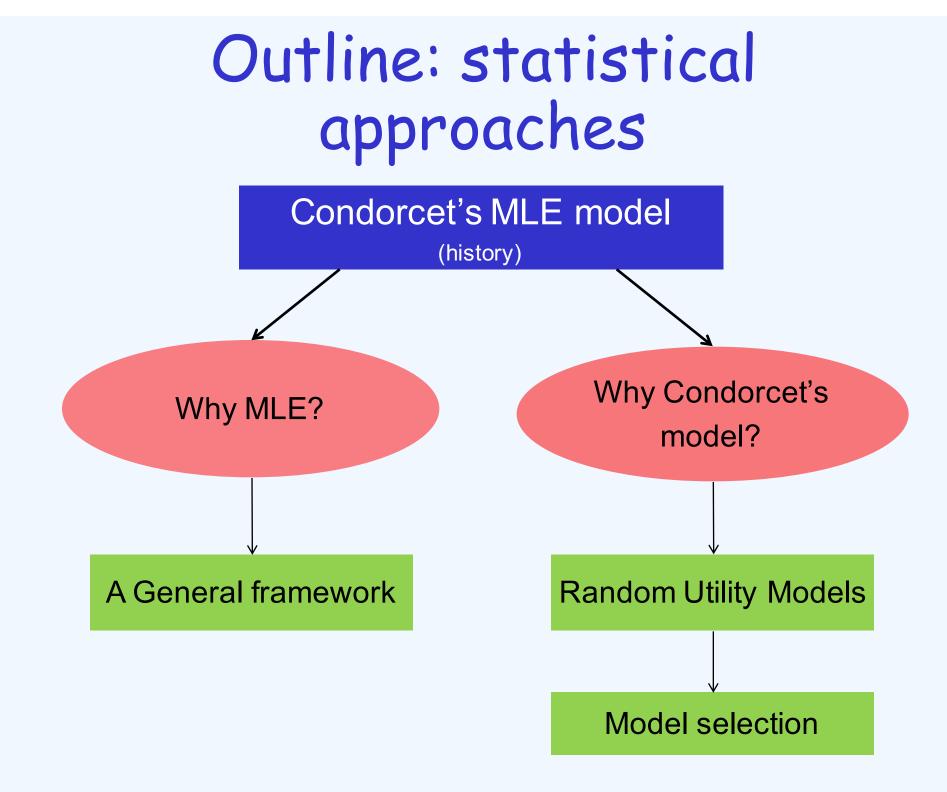
- Utility distributions μ_l 's belong to the exponential family (EF)
 - Includes normal, Gamma, exponential, Binomial, Gumbel, etc.
- In each iteration t
- E-step, for any set of parameters Θ
 - Computes the expected log likelihood (*ELL*)

 $ELL(\Theta | \mathsf{Data}, \Theta^t) = f(\Theta, g(\mathsf{Data}, \Theta^t))$ Approximately computed

M-step

by Gibbs sampling

- Choose $\Theta^{t+1} = \operatorname{argmax}_{\Theta} ELL(\Theta | \text{Data}, \Theta^t)$
- Until $|\Pr(D|\Theta^t)-\Pr(D|\Theta^{t+1})| < \varepsilon$



Model selection

- Compare RUMs with Normal distributions and PL for
 - log-likelihood: log $Pr(D|\Theta)$
 - predictive log-likelihood: E log $Pr(D_{test}|\Theta)$
 - Akaike information criterion (AIC): 2k- $2\log Pr(D|\Theta)$
 - Bayesian information criterion (BIC): $k\log n-2\log \Pr(D|\Theta)$
- Tested on an election dataset
 - 9 alternatives, randomly chosen 50 voters

Value(Normal) - Value(PL)	LL	Pred. LL	AIC	BIC
	44.8(15.8)	87.4(30.5)	-79.6(31.6)	-50.5(31.6)

Red: statistically significant with 95% confidence

Project: model fitness for election data