Minimax strategies, alpha beta pruning

Lirong Xia

Rensselaer

Friday, February 3, 2017
Reminder

- Project 1 due tonight
 - Makes sure you DO NOT SEE “ERROR: Summation of parsed points does not match”
- Project 2 due in two weeks
How to find good heuristics?

- No really mechanical way
 - art more than science
- General guideline: relaxing constraints
 - e.g. Pacman can pass through the walls
- Mimic what you would do
Last class

- Arc consistency
- CSP on tree graphs
- Linear programming
- The “sum 2” game
A simple form of propagation makes sure all arcs are consistent:

- If V loses a value, neighbors of V need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- Might be time-consuming
Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
CSP for tree graph

- Stage 1: moving upward, cross out the values that cannot work with the subtree below that node
- Stage 2: if a value remains at the root, there is a solution: go downward to pick a solution
Given

- Variables x: a row vector of m positive real numbers
- Parameters (fixed)
 - c: a row vector of m real numbers
 - b: a column vector of n real numbers
 - A: an $n \times m$ real matrix

Solve

$$\max \ cs^T$$

$$s.t. \ Ax^T \leq b, \ x \geq 0$$

Solutions

- x is a feasible solution, if it satisfies all constraints
- x is an optimal solution, if it maximizes the objective function among all feasible solutions
“Sum to 2” game

- Player 1 moves, then player 2, finally player 1 again
- Move = 0 or 1
- Player 1 wins if and only if all moves together sum to 2

Player 1’s utility is in the leaves; player 2’s utility is the negative of this
Today’s schedule

- Adversarial game
- Minimax search
- Alpha-beta pruning algorithm
Adversarial Games

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - The MAX player maximizes result
 - The MIN player minimizes result

- Minimax search:
 - A search tree
 - Players alternate turns
 - Each node has a minimax value: best achievable utility against a rational adversary
Computing Minimax Values

- This is DFS

- Two recursive functions:
 - `max-value` maxes the values of successors
 - `min-value` mins the values of successors

- Def `value (state)`:
 - If the state is a terminal state: return the state’s utility
 - If the agent at the state is MAX: return `max-value(state)`
 - If the agent at the state is MIN: return `min-value(state)`

- Def `max-value(state)`: similar to `max-value`

 Initialize max = $-\infty$
 For each successor of state:
 - Compute `value(successor)`
 - Update max accordingly
 return max

- Def `min-value(state)`: similar to `max-value`
Minimax Example
Tic-tac-toe Game Tree

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

-1 0 +1
Renju

- 15*15
- 5 horizontal, vertical, or diagonal in a row win
- no double-3 or double-4 moves for black
- otherwise black’s winning strategy was computed
 - L. Victor Allis 1994 (PhD thesis)
Minimax Properties

- Time complexity?
 - \(O(b^m) \)

- Space complexity?
 - \(O(bm) \)

- For chess,
 - Exact solution is completely infeasible \(b \approx 35, \ m \approx 100 \)
 - But, do we need to explore the whole tree?
Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Guarantee of optimal play is gone
Evaluation Functions

- Functions which scores non-terminals

- Ideal function: returns the minimax utility of the position

- In practice: typically weighted linear sum of features:
 \[Evals(s) = w_1 f_1(s) + w_2 f_2(s) + \cdots + w_n f_n(s) \]

- e.g. \(f_1(s) = \left(\# \text{ white queens} - \# \text{ black queens} \right) \), etc.
Minimax with limited depth

- Suppose you are the MAX player
- Given a depth d and current state
- Compute value(state, d) that reaches depth d
 - at depth d, use a evaluation function to estimate the value if it is non-terminal
Improving minimax: pruning
Pruning in Minimax Search

- An ancestor is a MAX node
 - already has an option than my current solution
 - my future solution can only be smaller
Alpha-beta pruning

- **Pruning** = cutting off parts of the search tree (because you realize you don’t need to look at them)
 - When we considered A* we also pruned large parts of the search tree

- **Maintain**
 - α = value of the best option for the MAX player along the path so far
 - β = value of the best option for the MIN player along the path so far
 - Initialized to be $\alpha = -\infty$ and $\beta = +\infty$

- **Maintain and update** α and β for each node
 - α is updated at MAX player’s nodes
 - β is updated at MIN player’s nodes
Alpha-Beta Pruning

- General configuration
 - We’re computing the MIN-VALUE at n
 - We’re looping over n’s children
 - n’s value estimate is dropping
 - α is the best value that MAX can get at any choice point along the current path
 - If n becomes worse than α, MAX will avoid it, so can stop considering n’s other children
 - Define β similarly for MIN
 - α is usually smaller than β
 - Once α >= β, return to the upper layer
Alpha-Beta Pruning Example

\[\alpha \text{ is MAX's best alternative here or above} \]
\[\beta \text{ is MIN's best alternative here or above} \]
Alpha-Beta Pruning Example

Starting α / β

Raising α

Lowering β

Raising α

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above
Alpha-Beta Pseudocode

function MAX-VALUE(state) returns a utility value
 if Terminal-Test(state) then return Utility(state)
 \(v \leftarrow -\infty \)
 for \(a, s \) in Successors(state) do \(v \leftarrow \text{Max}(v, \text{Min-Value}(s)) \)
 return \(v \)

function MAX-VALUE(state, \(\alpha, \beta \)) returns a utility value
 inputs: state, current state in game
 \(\alpha \), the value of the best alternative for \(\text{MAX} \) along the path to state
 \(\beta \), the value of the best alternative for \(\text{MIN} \) along the path to state
 if Terminal-Test(state) then return Utility(state)
 \(v \leftarrow -\infty \)
 for \(a, s \) in Successors(state) do
 \(v \leftarrow \text{Max}(v, \text{Min-Value}(s, \alpha, \beta)) \)
 if \(v \geq \beta \) then return \(v \)
 \(\alpha \leftarrow \text{Max}(\alpha, v) \)
 return \(v \)
Alpha-Beta Pruning Properties

- This pruning has no effect on final result at the root
- Values of intermediate nodes might be wrong!
 - Important: children of the root may have the wrong value
- Good children ordering improves effectiveness of pruning
- With “perfect ordering”:
 - Time complexity drops to $O(b^{m/2})$
 - Doubles solvable depth!
 - Your action looks smarter: more forward-looking with good evaluation function
 - Full search of, e.g. chess, is still hopeless…
Project 2

- **Q1:** write an evaluation function for (state, action) pairs
 - the evaluation function is for this question only
- **Q2:** minimax search with arbitrary depth and multiple MIN players (ghosts)
 - evaluation function on states has been implemented for you
- **Q3:** alpha-beta pruning with arbitrary depth and multiple MIN players (ghosts)
Recap

- Minimax search
 - with limited depth
 - evaluation function
- Alpha-beta pruning
- Project 1 due midnight today
- Project 2 due in two weeks