Bayesian networks (2)

Lirong Xia

Last class

- Bayesian networks
 - compact, graphical representation of a joint probability distribution
 - conditional independence

Bayesian network

- Definition of Bayesian network (Bayes' net or BN)
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$p(X|a_1,...,a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

$$p(X|A_1...A_n)$$

A Bayesian network = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Toothache Catch
- Bayesian networks implicitly encode joint distributions
 - As a product of local conditional distributions

$$p(x_1, x_2, \dots x_n) = \prod_{i=1}^{n} p(x_i | parents(X_i))$$

– Example:

$$p(+Cavity, +Catch, -Toothache)$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Reachability (D-Separation)

- Question: are X and Y conditionally independent given evidence vars {Z}?
 - Yes, if X and Y "separated" by Z
 - Look for active paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Checking conditional independence from BN graph

- Given random variables Z₁,...Z_p, we are asked whether X⊥Y|Z₁,...Z_p
- Step 1: shade Z₁,...Z_p
- Step 2: for each undirected path from X to Y
 - if all triples are active, then X and Y are NOT conditionally independent
- If all paths have been checked and none of them is active, then X \(\perp Y | Z_1, ... Z_p\)

Example

 $R \perp B$ Yes! $R \perp B \mid T$ $R \perp B \mid T$

Example

Yes!

$$L \perp B$$

Yes!

$$L \perp B | T$$

$$L \perp B | T'$$

$$L \perp B | T, R$$

Yes!

Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I am sad
- Questions:

$$T \perp D$$

$$T \perp D | R$$

 $T \perp D | R, S$

Yes!

Active Triples

Inactive Triples

Today: Inference---variable elimination (dynamic programming)

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - Posterior probability:

$$p(Q|E_1 = e_1, \dots E_k = e_k)$$

– Most likely explanation:

$$\arg\max_{q} p(Q = q | E_1 = e_1, \cdots)$$

Inference

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the marginal probabilities you need
 - Figure out ALL the atomic probabilities you need
 - Calculate and combine them
- Example:

$$p(+b|+j,+m) = \frac{p(+b,+j,+m)}{p(+j,+m)}$$

Example: Enumeration

 In this simple method, we only need the BN to synthesize the joint entries

$$p(+b,+j,+m) = p(+b)p(+e)p(+a|+b,+e)p(+j|+a)p(+m|+a) + p(+b)p(+e)p(-a|+b,+e)p(+j|-a)p(+m|-a) + p(+b)p(-e)p(+a|+b,-e)p(+j|+a)p(+m|+a) + p(+b)p(-e)p(-a|+b,-e)p(+j|-a)p(+m|-a)$$

Inference by Enumeration?

More elaborate rain and sprinklers example

Inference

- Want to know: p(+R|+D) = p(+R,+D)/P(+D)
- Let's compute p(+R,+D)

Inference

• $p(+R,+D) = \Sigma_s \Sigma_g \Sigma_n p(+R)p(s)p(n|+R)p(g|+R,s)p(+D|n,g) = p(+R)\Sigma_s p(s)\Sigma_a p(g|+R,s)\Sigma_n p(n|+R)p(+D|n,g)$

The formula

$$p(+R,+D)=$$

- Order: s>g>n
- is what we want to compute
- only involves s
- only involves s, g

Variable elimination

- From the factor $\Sigma_n p(n|+R)p(+D|n,g)$ we sum out n to obtain a factor only depending on g
- f₂(s, g) happens to be insensitive to s, lucky!
- $f_2(s,+G) = [\Sigma_n p(n|+R)p(+D|n,+G)] = p(+N|+R)P(+D|+N,+G) + p(-N|+R)p(+D|-N,+G) = .3*.9+.7*.5 = .62$
- $f_2(s,-G) = [\Sigma_n p(n|+R)p(+D|n,-G)] = p(+N|+R)p(+D|+N,-G) + p(-N|+R)p(+D|-N,-G) = .3*.4+.7*.3 = .33$

Calculating $f_1(s)$

- $f_1(s) = p(+G|+R,s) f_2(s,+G) + p(-G|+R,s)$ $f_2(s,-G)$
- $f_1(+S) = p(+G|+R,+S) f_2(+S,+G) + p(-G|+R,+S) f_2(+S,-G) = 0.9*0.62+0.1*0.33=0.591$
- $f_1(-S) = p(+G|+R,-S) f_2(-S,+G) + p(-G|+R,-S) f_2(-S,-G) = 0.7*0.62+0.3*0.33=0.533$

Calculating p(+R,+D)

• $p(+R,+D)=p(+R)p(+S) f_1(+S) + p(+R)p(-S) f_1(-S)$

=0.2*(0.6*0.591+0.4*0.533)=0.11356

Elimination order matters

- $p(+R,+D) = \Sigma_n \Sigma_s \Sigma_g p(+r)p(s)p(n|+R)p(g|+r,s)p(+D|n,g) = p(+R)\Sigma_n p(n|+R)\Sigma_s p(s)\Sigma_g p(g|+R,s)p(+D|n,g)$
- Last factor will depend on two variables in this case!

General method for variable elimination

- Compute a marginal probability $p(x_1,...,x_p)$ in a Bayesian network
 - Let Y₁,...,Y_k denote the remaining variables
 - Step 1: fix an order over the Y's (wlog $Y_1 > ... > Y_k$)
 - Step 2: rewrite the summation as

Step 3: variable elimination from right to left