


Last class

« Bayesian networks

— compact, graphical representation of a joint
probability distribution

— conditional independence



Bayesian network

Definition of Bayesian network (Bayes’
net or BN)

A set of nodes, one per variable X 9 S e
A directed, acyclic graph

A conditional distribution for each node

— A collection of distributions over X, one for 9 3}

each combination of parents’ values

p(X|ay,..., a,
1 ) p (X ‘ A4...4 )
— CPT: conditional probability table

— Description of a noisy “causal” process

A Bayesian network = Topology (graph) + Local Conditional Probabilities



(Cavity)
Probabilities in BNs
e

« Bayesian networks implicitly encode joint distributions
— As a product of local conditional distributions

p(xl,xz,' - -xn) = Hp(xi‘parents()(i))
i=1

— Example:

P(+CaVity, +Catch, -Toothache)
* This lets us reconstruct any entry of the full joint

* Not every BN can represent every joint distribution
— The topology enforces certain conditional independencies



Reachability (D-Separation)

* Question: are X and Y conditionally Active Triples
Independent given evidence vars
{Z}?

— Yes, if Xand Y “separated” by Z
— Look for active paths from Xto Y
— No active paths = independence!

* A pathis active if each triple is
active:

— Causalchain 4 — B — C where B is
unobserved (either direction)

— Common cause 4 <— B — C where B
IS unobserved

— Common effect 4 — B < C where B
or one of its descendents is observed

« All it takes to block a path is a
single inactive segment
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Checking conditional
independence from BN graph

Active Triples Inactive Triples
Given random variables Z,,...Z O-@—O

we are asked whether
XLY|Z1,...Zp

Step 1: shade Z;,...Z,

Step 2: for each undirected path
from XtoY

— if all triples are active, then Xand Y
are NOT conditionally independent

p’

If all paths have been checked
and none of them is active, then
X1Y|Z,,...Z,

~dC o
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Example

LL1LT'"T Yes! ?

Ll1RB Yes! @ e
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 Variables:

— R: Raining

— T: Traffic

— D: Roof drips
— S: | am sad

e Questions:

I'1LD
I'1LD

I'1LD

R
R,S

Example

Yes!

Active Triples
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Inactive Triples
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Today: Inference---variable
elimination (dynamic programming)
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Tnference

* |Inference: calculating
some useful quantity from
a joint probability

distribution
 Examples:
— Posterior probabillty
(Q\E —e,E =

— Most likely explanatlon

arg max p(Q q‘E =e,
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Tnference

« Given unlimited time, inference in BNs is easy

* Recipe:
— State the marginal probabilities you need
— Figure out ALL the atomic probabilities you need

— Calculate and combine them ° e
 Example:
p(+b\+j,+M)=p(+b’J.r]’+m) °
TG e




Example: Enumeration

* In this simple method, we only need the BN to
synthesize the joint entries

p(+b,+j,+m)=

p(+b)p(+e)p(+a +b,+e)p(+j +a)p(+m +a)+
p(+b)p(+e)p(—a +b,+e)p(+j —a)p(+m —a)+
p(+b)p(—e)p[+a +b,—e]p(+j +a)p(+m +a)+
p(+b)p(—e)p[—a +b,—e]p(+j —a)p(+m —a)
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Inference by Enumeration?




More elaborate rain and
sprinklers example

prinkIoR
WCECIrc Oon

p(+GH+R,+S) =.9
p(+G+R,-S) =.7

Neighbor
walked dog

p(+G-R+S) = .8
p(+G-R,-S) = 2

p(+N|-R) = 4 p(+DH+N,+G) = .9
p(+DH+N,-G) = 4
p(+D|-N,+G) = .5

p(+D|-N,-G) = .3




Inference
prinkler3
WwEere on

Neighbor p(+GHR.+S) = .9

p(+G+R,-S) =.7
walked do - @ p(+G|-R,+S) = .8
p(+G|-R,-S) = .2

p(+N|+R) = .3
p(+N|-R) = 4 p(+D+N,+G) = .9
p(+D+N,-G) = 4
P(+DI-N+G) = .5

p(+D|-N9'G) =3

 Want to know: p(+R|+D) = p(+R,+D)/P(+D)
* Let's compute p(+R,+D)



Tnference

prinkler
WEere on

Neighbor p(+GHR+S) =.9
p(+GHR,-S) = .7
walked dog @ GRS = §
p(+G|-R,-S) = .2
p(+Nl+R) =3
p(+N|-R) = 4 p(+D+N,+G) = .9
p(+tDI*N.-G) = 4
p(+D|-N,+G) = .5

p(+D]-N,-G) = 3

* p(+*R,+D)= 2.2 2 p(+R)p(s)p(n[+R)p(g|+R,s)p(+D|n,g) =
P(+R)2p(s)2,p(g|*R,s)2, p(n|+R)p(+D|n,g)



The formula
p(+R,+D)=

p(+R)Zsp(s) 24p(9|*+R,s)Z,, p(n[+R)p(+DJn,g)
fZ(S’g)

f4(s)

* Order: s>g>n

|1s what we want to compute

jonly involves s

‘ only involves s, g
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Variable elimination
prinklers

WEere on

p(+GHR,+S) = .9
p(+G+R,-S) =.7
p(+G|-R,+S) = .8
p(+G|-R,-S) = .2

p(+N|-R) = 4 p(+D+N,+G) = .9
p(+D+N,-G) = 4

p(+D|-N,+G) = .5

p(+D|-N,-G) = .3

From the factor 2, p(n|+R)p(+DJ|n,g) we sum out n to obtain a factor only depending on g

Neighbor
walked dog

fo(s, g) happens to be insensitive to s, lucky!

fo(s,+G) = [Zn p(n[+R)p(+D|n,+G)] = p(+N[+R)P(+D[+N,+G) + p(-N[+R)p(+D|-N,+G) = .3".9+.7%5 =
62

fo(s,-G) = [Zn p(n[+R)p(+D[n,-G)] = p(+N[+R)p(+D|+N,-G) + p(-N[+R)p(+D|-N,-G) = .3".4+.7*.3 = .33



Calculating f4(s)

* T1(s) = p(+G[+R,8) f5(s,+G) + p(-G[+R;,s)
f5(s,-G)

* 11(+S) = p(+G[+R,+3) 1,(+5,+G) + p(-
G|+R, +S) f,(+S,-G) =
0.9%0.62+0.1*0.33=0.591

* 11(-5) = p(+G|+R,-S) 15(-S,+G) + p(-G|+R,
-S) ,(-S,-G) = 0.770.62+0.3*0.33=0.533
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Calculating p(+R,+D)

* P(+R,+D)= p(+R)p(+S) 14 (+S) + p(+R)p(-
S) 1(-S)

=0.2*(0.6*0.591+0.4*0.533)=0.11356
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Elimination order matters

prinkioR
WCECIc Oon

p(+GHRA4S) = .9
p(+GHR,-S) =.7

Neighbor
walked dog

p(+G|-R,+8S) = .8
p(+G-R,-S) = 2

p(+N|-R) = 4 p(+D+N,+G) = .9
p(+D+N,-G) = 4
p(+D|-N,+G) = .5

p(+D|-N,-G) = .3

* p(+R,#D)= 2,22, p(+r)p(s)p(n|+R)p(g|+r,s)p(+DIn,g) =
p(+R)Z.p(n[+R)Zsp(s)2, p(9|+R,s)p(+D]n,g)

« Last factor will depend on two variables in this case!



General method for variable

elimination

« Compute a marginal probability p(xy,...,x,) in a

Bayesian network

— LetY,,...,Y, denote the remaining variables

— Step 1: fix an order over the Y’s (wlog Y>...>Y))

— Step 2: rewrite the summationas

sth only
involving
X’s

2

Y1

sth only
involving Y,
and X's

2

Yo

sth only
involving Yy,
Y, and X's

L2

Yi1

sth only
involving Yy,

Yo, . 0,Yid

and X’s

— Step 3: variable elimination from right to left

2, anything
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