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Bayesian networks (2)



• Bayesian networks
– compact, graphical representation of a joint 

probability distribution

– conditional independence
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Last class



Bayesian network
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• Definition of Bayesian network (Bayes’ 
net or BN)

• A set of nodes, one per variable X

• A directed, acyclic graph

• A conditional distribution for each node
– A collection of distributions over X, one for 

each combination of parents’ values

p(X|a1,…, an)

– CPT: conditional probability table

– Description of a noisy “causal” process

p X A1…An( )

A Bayesian network = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs
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• Bayesian networks implicitly encode joint distributions
– As a product of local conditional distributions

– Example:

• This lets us reconstruct any entry of the full joint

• Not every BN can represent every joint distribution
– The topology enforces certain conditional independencies

p x1,x2 ,xn( ) = p xi parents X i( )( )
i=1

n

∏

p +Cavity, +Catch, -Toothache( )



Reachability (D-Separation)
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• Question: are X and Y conditionally 
independent given evidence vars
{Z}?
– Yes, if X and Y “separated” by Z
– Look for active paths from X to Y
– No active paths = independence!

• A path is active if each triple is 
active:
– Causal chain                      where B is 

unobserved (either direction)
– Common cause                      where B 

is unobserved
– Common effect                       where B 

or one of its descendents is observed

• All it takes to block a path is a 
single inactive segment

A B C→ →

A B C← →

A B C→ ←



• Given random variables Z1,…Zp, 
we are asked whether 
X⊥Y|Z1,…Zp

• Step 1: shade Z1,…Zp

• Step 2: for each undirected path 
from X to Y
– if all triples are active, then X and Y 

are NOT conditionally independent

• If all paths have been checked 
and none of them is active, then 
X⊥Y|Z1,…Zp
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Checking conditional 
independence from BN graph



Example 
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Example 
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Example 
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T D
T D R

T D R S

⊥

⊥

⊥

Yes!

• Variables:
– R: Raining
– T: Traffic
– D: Roof drips
– S: I am sad

• Questions:
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Today: Inference---variable 
elimination (dynamic programming)



Inference
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• Inference: calculating 
some useful quantity from 
a joint probability 
distribution

• Examples:
– Posterior probability:

– Most likely explanation:

p Q E1 = e1,Ek = ek( )

argmaxq p Q = q E1 = e1,( )



Inference
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• Given unlimited time, inference in BNs is easy

• Recipe:
– State the marginal probabilities you need
– Figure out ALL the atomic probabilities you need
– Calculate and combine them

• Example:

( ) ( )
( )
, ,

,
,

p b j m
p b j m

p j m
+ + +

+ + + =
+ +



Example: Enumeration
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• In this simple method, we only need the BN to 
synthesize the joint entries

( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, ,

,

,

,

,

p b j m

p b p e p a b e p j a p m a

p b p e p a b e p j a p m a

p b p e p a b e p j a p m a

p b p e p a b e p j a p m a

+ + + =

+ + + + + + + + + +

+ + − + + + − + − +

+ − + + − + + + + +

+ − − + − + − + −



Inference by Enumeration?
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More elaborate rain and 
sprinklers example

Rained Sprinklers 
were on

Grass wet

Dog wet

Neighbor 
walked dog

p(+R) = .2

p(+N|+R) = .3
p(+N|-R) = .4

p(+S) = .6

p(+G|+R,+S) = .9
p(+G|+R,-S) = .7
p(+G|-R,+S) = .8
p(+G|-R,-S) = .2

p(+D|+N,+G) = .9
p(+D|+N,-G) = .4
p(+D|-N,+G) = .5
p(+D|-N,-G) = .3



Inference

• Want to know: p(+R|+D) = p(+R,+D)/P(+D)
• Let’s compute p(+R,+D)

Rained Sprinklers 
were on

Grass wet

Dog wet

Neighbor 
walked dog

p(+R) = .2

p(+N|+R) = .3
p(+N|-R) = .4

p(+S) = .6

p(+G|+R,+S) = .9
p(+G|+R,-S) = .7
p(+G|-R,+S) = .8
p(+G|-R,-S) = .2

p(+D|+N,+G) = .9
p(+D|+N,-G) = .4
p(+D|-N,+G) = .5
p(+D|-N,-G) = .3



Inference

• p(+R,+D)= ΣsΣgΣn p(+R)p(s)p(n|+R)p(g|+R,s)p(+D|n,g) = 
p(+R)Σsp(s)Σgp(g|+R,s)Σn p(n|+R)p(+D|n,g)

Rained Sprinklers 
were on

Grass wet

Dog wet

Neighbor 
walked dog

p(+R) = .2

p(+N|+R) = .3
p(+N|-R) = .4

p(+S) = .6

p(+G|+R,+S) = .9
p(+G|+R,-S) = .7
p(+G|-R,+S) = .8
p(+G|-R,-S) = .2

p(+D|+N,+G) = .9
p(+D|+N,-G) = .4
p(+D|-N,+G) = .5
p(+D|-N,-G) = .3



p(+R)Σsp(s) Σgp(g|+R,s) Σn p(n|+R)p(+D|n,g)

• Order: s>g>n
• is what we want to compute
• only involves s
• only involves s, g
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The formula

f1(s)

f2(s,g)

p(+R,+D)=



Variable elimination

• From the factor Σn p(n|+R)p(+D|n,g) we sum out n to obtain a factor only depending on g

• f2(s, g) happens to be insensitive to s, lucky!

• f2(s,+G) = [Σn p(n|+R)p(+D|n,+G)] = p(+N|+R)P(+D|+N,+G) + p(-N|+R)p(+D|-N,+G) = .3*.9+.7*.5 = 
.62

• f2(s,-G) = [Σn p(n|+R)p(+D|n,-G)] = p(+N|+R)p(+D|+N,-G) + p(-N|+R)p(+D|-N,-G) = .3*.4+.7*.3 = .33

Rained Sprinklers 
were on

Grass wet

Dog wet

Neighbor 
walked dog

p(+R) = .2

p(+N|+R) = .3
p(+N|-R) = .4

p(+S) = .6

p(+G|+R,+S) = .9
p(+G|+R,-S) = .7
p(+G|-R,+S) = .8
p(+G|-R,-S) = .2

p(+D|+N,+G) = .9
p(+D|+N,-G) = .4
p(+D|-N,+G) = .5
p(+D|-N,-G) = .3



• f1(s) = p(+G|+R,s) f2(s,+G) + p(-G|+R,s)
f2(s,-G)

• f1(+S) = p(+G|+R,+S) f2(+S,+G) + p(-
G|+R, +S) f2(+S,-G) = 
0.9*0.62+0.1*0.33=0.591

• f1(-S) = p(+G|+R,-S) f2(-S,+G) + p(-G|+R, 
-S) f2(-S,-G) = 0.7*0.62+0.3*0.33=0.533
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Calculating f1(s)



• p(+R,+D)= p(+R)p(+S) f1(+S) + p(+R)p(-
S) f1(-S)

=0.2*(0.6*0.591+0.4*0.533)=0.11356
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Calculating p(+R,+D)



Elimination order matters

• p(+R,+D)= ΣnΣsΣg p(+r)p(s)p(n|+R)p(g|+r,s)p(+D|n,g) = 
p(+R)Σnp(n|+R)Σsp(s)Σg p(g|+R,s)p(+D|n,g)

• Last factor will depend on two variables in this case!

Rained Sprinklers 
were on

Grass wet

Dog wet

Neighbor 
walked dog

p(+R) = .2

p(+N|+R) = .3
p(+N|-R) = .4

p(+S) = .6

p(+G|+R,+S) = .9
p(+G|+R,-S) = .7
p(+G|-R,+S) = .8
p(+G|-R,-S) = .2

p(+D|+N,+G) = .9
p(+D|+N,-G) = .4
p(+D|-N,+G) = .5
p(+D|-N,-G) = .3



• Compute a marginal probability p(x1,…,xp) in a 
Bayesian network
– Let Y1,…,Yk denote the remaining variables
– Step 1: fix an order over the Y’s (wlog Y1>…>Yk)
– Step 2: rewrite the summation as

Σy1
Σy2

…Σyk-1                                 
Σykanything

– Step 3: variable elimination from right to left
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General method for variable 
elimination

sth only 
involving 

X’s

sth only 
involving Y1

and X’s

sth only 
involving Y1, 
Y2 and X’s

sth only 
involving Y1, 

Y2,…,Yk-1

and X’s


